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ABSTRACT

The successful introduction of automated target recognition systems into combat
environments will depend on how well they interface with the knowledge and
processing strategies utilized by human operators. The goal of the present research is
to investigate cognitive issues in human recognition performance, and to explore their
implications for human interaction with automated recognition devices. Theoretical
background, specific hypotheses, and a plan of experimental research are laid out in
four areas:

1. Stages of visual processing and implications for the display of visual and
non-visual data

2. Favored levels of generality/specificity in verbal categorization and
implications for the display of ATR classification conclusions

3. Reasoning with mental models and implications for the display of uncertain
ATR conclusions

4. Strategies for verifying recognitional conclusions and implications for the
display of prompts and data under uncertainty

The products of the planned research will include empirically supported general design
principles for ATR-human interfaces, and a set of specific ATR interface designs.
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1.0 INTRODUCTION

1.1 The Problem

The pilot of an attack helicopter may emerge above the trees or hills for only a
minute or two to assess the battlefield situation before remasking. During that brief
period, he must collect accurate and relevant information about potential targets while
minimizing his own exposure to attack. The pilot must be able to detect and
discriminate friends and foes in a highly target-dense, rapidly changing, and visually
and electronically noisy environment; he must classify targets that are relevant to his
mission (e.g., tanks versus armored personnel carriers versus anti-air artillery), and
prioritize them for attack. After remasking behind trees or terrain, he must decide
whether to unmask again in a different location to collect more information, or to pop up
to engage his target.

Target recognition has become a crucible of success on the battlefield not only
for helicopters, but for virtually every weapons platform. The reason for its importance
lies both in the recent evolution of U.S. war-fighting doctrine and in the development of
new sensor and weapon technologies.  Exploitation of U.S. night-fighting capabilities,
for example, degrades the quality of optical information available for recognition
decisions by both helicopters and tanks. Utilization of stealth technology and rapid
maneuver tactics constrains the information obtainable from communications and from
active sensors like radar (which would alert the enemy to one's own presence), while
compressing the time in which recognition decisions must be made. At the same time,
increased enemy mobility and speed and improved enemy sensor and weapon ranges
reduce the time available for recognition; and information denial techniques (such as
camouflage, stealth, electronic countermeasures, and tactical deception) increase the
uncertainty that such decisions must resolve. Nine U.S. soldiers and nine British
soldiers were mistakenly killed by U.S. aircraft during Operation Desert Storm.  But
accurate target identification had become a major U.S. military concern well before the
Persian Gulf War (see, for example, Defense News, March 25, 1991), and it is easy to
imagine scenarios in which it would have played a much more crucial role in
determining the success of battle.

1.2 Current Approaches

One approach to target recognition is the development of cooperative identifica-
tion systems, e.g., distinctive visual markers for friendly vehicles, or systems for the
electronic exchange of codes among friendly aircraft and vehicles. The limitations of
these devices are obvious: In a sophisticated battlefield, they both expose friendly units
to detection and identification by the enemy, and may be exploited by enemy units who
mimic the friendly codes. Current research and development interest centers primarily
on so-called non-cooperative target recognition (NCTR) systems.

It is natural to think of non-cooperative target recognition as primarily a sensory
or perceptual problem. From this point of view, improvement in recognition accuracy
and speed will come by providing more and better target information to the human
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operator: i.e., (a) improved sensors and analyzers (e.g., infrared, electro-optical image
enhancement, synthetic aperture radar, laser radar, and others), and (b) improved
cockpit display technologies, e.g., higher resolution, color, digital interactive displays
with symbolic overlays, and so on. Artificial intelligence work on the user-computer
interface promises even more dramatic input/output technology for the future: e.g.,
spatial data management, natural language understanding, voice I/O, object-oriented
direct-manipulation interfaces, and multi-media three-dimensional virtual environments.
The downside of this approach (taken by itself) is that it may leave the operator
overloaded in environments where the sheer number of targets overwhelms his ability
to detect and recognize them.

A third approach to target recognition is to automate the human's role in
interpreting the sensor outputs. Automated Target Recognition (ATR) devices are
under development which aim to automatically detect, track, classify, and prioritize
objects of interest in a sensor image. In many cases the goal of such systems is to
reduce the role of the human to that of a passive observer (Toms and Kuperman,
1991). Despite considerable progress, the performance of ATR systems has not yet
been sufficient to achieve this goal. Current systems often fail under novel conditions
(e.g., of weather, time of day, target aspect, or target configuration), under degraded
observation conditions (e.g., low contrast or high clutter), or in the face of enemy
countermeasures. In order to reduce the number of missed targets to an acceptable
level, false alarm rates must often be set intolerably high, once again overloading the
human operator.

A final approach regards ATR systems and human operators as partners. At
least in the near future, humans will fill the gaps in ATR performance and ATR systems
will relieve human workload. From this point of view, target recognition is only one
phase or component of the human's overall task: For example, he must also decide
how long to remain exposed, where to look and with what sensors, whether to look
again, when to fire, where to fire, and with what weapons. Designs for human-ATR
interaction must take this entire complex of activities into account. It is to this approach
that we now turn.

1. 3 A Cognitive Approach

When ATR systems are initially fielded, they will almost certainly require human
partners. Even in the longer term, human-ATR collaboration may be beneficial,
providing flexibility and robustness not available in a fully automated system. Different
issues may come to the fore as ATR systems are more thoroughly automated over
time. In the short term, the emphasis will be on promoting human intervention in the
recognition of selected individual targets: e.g.,

• methods for directing user attention to targets where ATR conclusions are
uncertain,

• natural and effective displays of sensor data as well as ATR conclusions for
those targets,

• simple methods for providing human inputs.
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In the longer term, the human role may shift from individual targets to a more
executive-level function of monitoring and fine-tuning the operation of the ATR system
as a whole. At this stage, the most pressing human-computer interaction issues may
be:

• alerting users when ATR data, assumptions, or methods may be faulty,

• providing effective explanations of ATR reasoning and results, and

• permitting human operators to override or adjust internal ATR parameters or
rules.

Despite the importance of user-ATR collaboration, there has been virtually no
research on the cognitive impact of ATR devices. Very little research has addressed
the decision making skills of the user: How can computer-implemented analysis and
transformation of sensor data be optimally interfaced with human knowledge structures
and recognition strategies, in the context of the pilot's battlefield missions?

Automation without concern for human cognitive constraints may disrupt rather
than support the human's role in the recognition process. For example, there is often a
mismatch between the user's way of thinking and that imposed on him by the computer
in uncertainty handling. There is ample evidence that people do not engage in the
exhaustive generation of hypotheses, or the precise quantification of the strength of
evidence, that are required by conventional models.  Displays of multiple alternative
possible classifications along with numerical uncertainty by automated devices may
therefore be both meaningless and distracting to human operators. On the other hand,
without some indication of uncertainty, automated displays may encourage
overconfidence in users and fail to direct their attention to problematic results. In other
cases, operators may be underconfident, exposing themselves to unnecessary risk
while collecting superfluous information.

Another problem is the transition from attention to individual targets to a more
supervisory role by human operators. Such a transition may never be complete. Yet
displays that optimize overall system monitoring may degrade human recognition
performance with individual targets; the need to fine-tune system parameters may clash
with the time constraints of recognizing and engaging individual targets; prioritization of
targets for engagement may require transparent displays that enable users to
concretely visualize an evolving tactical battlefield undistracted by either the fine details
of specific targets or information about how the system processes information. Unless
the mix of operator roles in future systems is carefully defined and supported, there is
danger that human operators may sit passively in front of automated consoles that
operate too quickly and too incomprehensibly for humans to make any effective
contribution at all.

The present research focuses on the development of cognitive collaboration
between ATR systems and human operators. Target recognition interweaves
perceptual and cognitive components, and there is often no hard and fast separation
between the two. But there are at least four areas in which cognitive questions seem
crucial:
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1. Visual processing: How do operators represent and process visual data?
When and how do they decompose images into parts? How do they use
spatial and temporal context (such as convoys or typical SAM deployment
patterns), or self-generated templates to classify targets? How do they
combine image data with non-visual data? What are the implications for how
ATR data should be displayed?

2. Verbal categorization: What determines the label that operators apply to a
target, i.e., the level of generality or specificity at which they choose to
describe it? How do operators represent the patterns of similarity and
dissimilarity among different classes of targets and non-targets? How do
different levels of categorization reflect this structure? What are the effects
of typicality and goals? What are the implications for the way ATR
conclusions should be reported?

3. Uncertainty handling: How do operators represent uncertain conclusions?
When do they attempt to resolve the uncertainty by collecting more data?
When do they simply accept it? When do they resolve it by making
assumptions? What determines the assumptions they choose (e.g., worst-
case, best-case)? What are the implications for the way ATR's should report
uncertain results?

4. Strategic control of processing and metacognition: How do operators allocate
their attention across a display? How do they evaluate their confidence in
automated results? How do they evaluate confidence in their own
conclusions? How are decisions about collecting more information
influenced by mission constraints? What are the implications for the
allocation of effort between ATR devices and human users?

Current approaches to decision aiding have typically offered either too much
help or too little; they have emphasized either adaptation to the problem (i.e., com-
patibility with "correct" or "optimal" decision models or expert rules) or adaptation to the
user (i.e., providing tools and displays at the user's request with little guidance as to
how to use them).  Less attention has been paid to the challenge of simultaneously
providing flexibility and guidance, i.e., adapting to the user and to the problem.  As a
result, aids that truly integrate human and computer decision processes have evolved
(if at all) by trial and error.  It should not be surprising, under these circumstances, if
users become both less confident in the system's output and less able to utilize their
own knowledge and abilities. A result may be the drift toward a level of complete
automation in which the human has virtually no role at all.

1.4 Phase I Objectives

This report summarizes the results of Phase I of a Small Business Innovative
Research contract on Human Performance Issues in Automatic Target Recognition.
Our focus is on the cognitive aspects of human target recognition performance, and
enhancement of the human contribution to so-called automatic target recognition (ATR)
systems.
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This research reflects two basic principles: (i) that human participation in
automatic target recognition processes can enhance overall system performance, and
(ii) that the design of effective interactive recognition systems must be based on
appropriate research from cognitive science: in knowledge representation and
categorization, the executive control of cognition, and human decision errors. The
overall objective of Phase I is to investigate the feasibility of experimental research that
tests these principles.

Our more specific Phase I goals are: (1) to develop hypotheses about
recognition performance in an ATR context based on the cognitive science literature,
(2) to develop interactive display concepts based on those hypotheses, and (3) to
suggest an experimental plan that tests both the hypotheses and the display concepts.
The experiments themselves will be carried out in Phase II of the project.

To become familiar with the ATR environment, we have met with researchers,
system designers, and with potential ATR users:

• Researchers (and the project's sponsors) at the U.S. Army Human
Engineering Laboratory, Aberdeen Proving Ground, Maryland;

• Researchers working on human factors, ATR test and evaluation, and multi-
sensor fusion at the U.S. Army Night Vision and Electro-Optics Directorate,
Fort Belvoir, Virginia;

• Engineers working on multi-sensor fusion systems at the Westinghouse
Electric Corporation, Electronic Systems Group, Baltimore, Maryland; and

• Active-duty helicopter pilots (Apache and Delta) in the U.S. Army 18th
Airborne Corps, Fort Bragg, North Carolina.

1.5 Overview

In Section 2.0 we describe our basic approach to decision aiding and interface
design. This approach is both Personalized and Prescriptive: We emphasize adaptation
to an individual user's cognitive capabilities and knowledge, while at the same time
guarding against errors or pitfalls to which his preferred approach may lead.

In Section 3.0 we apply the Personalized and Prescriptive Aiding framework to
ATR interface design. We (a) provide a psychological framework for modeling human
target recognition performance, (b) derive specific hypotheses about human target
recognition performance based on that framework, and (c) describe ATR interface
concepts based on those hypotheses. The design concepts cover four areas:

• the display of image data

• the display of ATR conclusions,

• the display of uncertain conclusions, and

• strategies for operator-ATR task-sharing, especially user verification of ATR
results
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Section 4.0 outlines an experimental plan for testing both the performance
hypotheses and the display concepts described in Section 3.0.
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2.0 PERSONALIZED AND PRESCRIPTIVE AIDING

Design of displays to support decision making has often veered between two
extremes: technology-driven and status-quo-driven. In the first case, the problem-
solving strategy is determined by a technology, such as mathematical optimization,
decision analysis, or a favored artificial intelligence reasoning method, without regard
for the user. In the second case, the users' current methods are simply automated
without regard to whether they are the best way to solve the problem.

An alternative approach to display design, called Personalized and Prescriptive
Aiding, is jointly user-driven and problem-driven. The designer's goal is (1) to adapt the
system to the cognitive capabilities and preferences of the user, without necessarily
duplicating the status quo, and (2) to solve the problem effectively, but without
excluding the user's potential contribution (Cohen, Leddo, and Tolcott, 1989; Cohen, in
press).

Personalized and Prescriptive Aiding involves the following components:

• Understanding the decision making processes and strategies of potential
users, including individual differences. This may involve interviews,
observation of performance, simulator tests, or formal experiments.

• Understanding the problem and effective methods for solving it. This may
involve mathematical modeling, elicitation of expert knowledge, or a
combination of expert judgment and analysis, depending on the problem.

• Comparison of user decision making strategies with effective methods, to
identify the strengths and weaknesses of different user strategies.

• Design of displays and user-system dialogues that facilitate the strengths
and guard against the weaknesses of a user's approach. Such systems
support user-preferred problem-solving strategies, while providing prompts
and other safeguards against potential pitfalls associated with those
strategies. The result should be a system which performs better than either
the user or a completely automated system.

In Section 3.0 we will explore the application of these methods to the design of
interactive ATR displays. In the remainder of this section, we discuss some of issues
pertaining to personalization and to prescriptive support, respectively.

2.1 Personalization and Adaptive Flexibility.

There is evidence in a variety of contexts that people use different decision-
making strategies in different tasks and at different stages in the same task (e.g.,
Payne, 1976; Wright and Barbour, 1977; Svenson, 1979; Russo and Dosher, 1981). A
strategy is any consistent pattern of actions in response to perceived conditions, where
the actions may include information gathering and information evaluation, and the
conditions may include the results of previous actions. For example, in the face of
uncertainty, some decision makers prefer to evaluate actions with respect to the worst-
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case possibility, while others prefer to evaluate options against average or expected
outcomes (Cohen, 1987).

There is little evidence that the same individual is consistent across tasks in the
decision making strategies that he employs (e.g., Libby and Lewis, 1977; Sage, 1981;
Hammond et al., 1984).  Decision makers may well differ in such cognitive styles as
"intuitive" and "analytic," but there has not yet been a reliable mapping of such coarse
traits onto consistent patterns of information input and output (Huber, 1982). Many
variations in strategy are determined by features of the task, rather than the individual.
For example, decision makers are more likely to screen options with respect to cutoffs
or goals when there are a large number of options to consider, but are more likely to
look at tradeoffs among goals when there are only a few options (Payne, 1976).
Hammond and his group have shown how differences in the way information is
presented can lead (in a very reasonable way) to processing strategies that appear
intuitive or analytic.

Huber (1982) argued that a system which attempts to infer and model enduring
cognitive characteristics of a user and impose an appropriate decision making strategy
on him is both impracticable and undesirable. It is not likely to be very successful in
predicting a consistent strategy across widely varying tasks and situations. And when it
is wrong, user frustration is likely to be high, even if the user can override the system's
choice.  Lehner, Mullin, and Cohen (1988) point out the difficulty users face when the
system unpredictably (and unjustifiably) shifts display or processing modes.

A more promising avenue to explore is a system which can flexibly and quickly
accommodate user strategies for adapting to different kinds of tasks.

Flexibility to accommodate individual differences is not sufficient in and of itself.
A vast number of logically possible strategies could be made equally easy. But such a
system is more likely to overwhelm users with too many choices than it is to facilitate
performance. A more reasonable objective is to identify a relatively small subset of
strategies (like worst case versus expected case evaluation, or evaluation with cutoffs
versus tradeoffs) that are (a) most often utilized by decision makers in a particular
domain and (b) which appear to be adaptive. Decision aids may then be tuned to
facilitate selection by the user from this smaller group of strategies. Such aids are
adaptively flexible in their responsiveness to likely user needs and task demands. They
adapt to the problem at the same time as they adapt to the user.

The "user model" (Lehner, et al., 1987) that is incorporated within such a system
at any given time consists of (a) its knowledge of the decision strategy currently being
employed by the user, (b) knowledge of how the user has executed the strategy and
the results of applying it so far, and (c) a set of adaptive interface functions which
channel and/or prompt the user to undertake appropriate new actions within the
strategy.  Knowledge of the currently employed strategy is obtained either explicitly by
direct user choice or implicitly by system observation of the user's pattern of interaction
with the system.  Neither (a), (b), nor (c) is very expensive computationally, and none of
them needs to involve "artificial intelligence" in any very sophisticated sense.
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2.2 Cognitive Interface Dimensions

A small set of cognitive interface dimensions can be used to define (at a very
general level) the strategies that decision makers can adopt while interacting with a
computerized aid.  Each of these interface dimensions can be personalized to
accommodate user strategies. Generic dimensions of personalization that pertain to
object recognition, together with examples from the ATR context, are the following:

• Level of aggregation of displayed information: Should relatively raw data be
displayed (e.g., video inserts, or chips, of target of interest), intermediate
conclusions (e.g., labeled feature templates showing the ATR's perceptual
analysis of the object), and/or final conclusions (e.g., a classification of the
object as a tank)?

• Generality versus specificity of conclusions: Should a target be labeled by
the ATR as a T672, a tank, a tracked vehicle, or merely as an object of
interest?

• Amount of supporting data: What is the spatial and temporal extent, size and
resolution, of the displayed data? Should all evidence for and against the
conclusion be displayed, only the most crucial evidence, only evidence that
confirms (or disconfirms) the recommended conclusion, or only the crucial
evidence within certain spatial, temporal, or resolution-based constraints?

• Alternative possible conclusions: Should all possible conclusions be
displayed (e.g., the target may be a truck or a tank), conclusions above a
certain probability, only the single most likely conclusion, or only the worst-
(or best-) case conclusion?

• Selection of objects: How should the user's and the system's attention be
directed? Should objects be selected based on proximity to own platform,
threat to own platform, mission tasks, inconclusiveness of ATR analysis,
inconclusiveness of user analysis, or some combination of the above?

These dimensions pertain not only to system displays but also to user inputs.
Individuals differ in the information or decisions that they prefer to provide, have time to
provide, or feel confident providing, e.g., in level of generality/specificity, level of
aggregation, amount and type of information, and precision of judgment.

We turn now to ways in which decision aids may complement and improve user
strategies, rather than simply adapting to them.

2.3 Prescriptive Aiding:  Channeling and Advisory Prompting.

Decision aids that are tailored exclusively to a particular decision maker's
preferred strategy may miss opportunities  to improve decisions. Traditional decision
aids, on the other hand, often require users to adopt radically different techniques of
problem solving (e.g., based on normative models or strategies preferred by designers
or other users). In doing so, they may throw out the baby - user knowledge and
experience - with the bath water - user errors or inefficiency.  Personalized and
prescriptive decision aiding attempts a less radical, more "surgical", correction of user
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errors and inefficiencies. It facilitates the user's overall approach to the problem, when
it appears basically reasonable, but guards against specifically identified shortcomings.
It promotes relatively minor amendments to preferred approaches that may produce
significant increases in their efficiency and accuracy.

Two types of prescriptive methods are utilized: channeling and advisory
prompting.  The difference between them is largely one of tactics:

• Channeling is implicit and proactive. It encourages users, in advance, to
adopt variants of their own preferred strategies that are less susceptible to
errors, by structuring the display of information in such a way that those
variants become natural and simple to execute. Channeling may be
appropriate when prior research suggests that errors commonly result from
certain strategies (e.g., ways of representing a problem, generating options,
assessing uncertainty, evaluating outcomes, or making choices). Channeling
can be built into the dialogues corresponding to those strategies, to increase
the chance that the user will adopt amended versions of the strategies that
avoid all or most of the errors.

• Advisory prompting is explicit and reactive. Advisory prompting is based on
real-time monitoring of the user's actions, projection of their possible
outcomes, and comparison with the system's model. A prompt occurs if the
discrepancy is above a threshold of significance, i.e., if the user's strategy
appears to the system to be leading to significantly suboptimal choices. The
system may also monitor tasks performed by the computer and prompt
where a human contribution might improve results. Thus, in advisory
prompting the computer senses weaknesses in a strategy, whether its own
or the user's, and offers (or requests) help.

 Channeling occurs, for example, when a menu announces the availability of
information about X (e.g., imagery based on other sensors) in a situation where users
may tend to request only Y (e.g., imagery based on only a single sensor); or when
information about X (e.g., the most likely identification) is automatically provided
whenever Y (e.g., the worst-case identification) is requested.

Advisory prompting occurs, for example, when the user is alerted that
information he has not requested to see (e.g., imagery from a second sensor) appears
on this occasion to lead to significantly different conclusions from information he has
requested to see (e.g., imagery from a single sensor).

Figure 1a summarizes the rationale for Personalized and Prescriptive aiding.
User-preferred strategies may reflect experience and knowledge that is not captured in
automated analytical models of a problem; analytical models may incorporate
efficiencies and avoid errors in a way that is not possible in human approaches.

Figure 1b illustrates the complementarity between automated model and user
strategy that Personalized and Prescriptive aiding tries to bring about. The goal of
personalization is to effectively tap user experience and capabilities. The goal of
channeling and prompting is to foster variants of the user's preferred approach that
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correct the specific shortcomings while retaining the advantages (in terms of knowledge
and experience) of the preferred approach.

The balance between personalized and prescriptive components varies with the
application and, for a given application, with the context in which it is used. Essentially,
prescription is more dominant in high workload situations where the computer takes the

Automated Models

User-preferred
methods

Analytically correct
outcomes

Outcomes based on

and experience
user knowledge

Figure 1a. Analytical methods and user strategies may have
complementary strengths and weaknesses.

Automated model

User-preferred

method

Variant of user

method

Personalization

Channeling

Prompting

Outcomes that

reflect efficiency

user knowledge

avoid errors,

and tap

Figure 1b. Collaboration between automated model and user
method, through personalization, channeling, and prompting.
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lead. Personalization is predominant in high stakes, low workload situations, where the
human takes the lead. We turn now to some implications of Personalized and
Prescriptive Aiding for automation and the allocation of cognitive tasks between users
and computers.

2.4 Allocation of Cognitive Tasks and Subtasks

Traditionally, task allocation in human-machine systems has been according to
the purported strengths of each (e.g., Fitts, 1951).  Such methods have for the most
part produced a fixed allocation of broadly defined activities, e.g., assigning numerical
computation and long-term data storage to the computer and option generation to the
human.  As noted in Chinnis, Cohen, and Bresnick (1984) and Cohen, Brown, Seaver,
and Ulvila (1982), this approach fails in application to computer-assisted reasoning.
First, it is not fine-grained and flexible enough: rapid variations in task demands and in
decision-maker expertise from task to task, or subtask to subtask, are not captured.
Secondly, it is too machine-oriented: resulting task assignments may not form a
meaningful or organizationally acceptable pattern for human users; users may be
unprepared to take over in case of machine dysfunction.  Finally, it is too conservative:
novel approaches to human-computer collaboration (e.g., personalization, channeling
and prompting) may be overlooked.

If static generalizations regarding human-machine superiority are inadequate,
what sort of guidelines for cognitive task allocation might take their place?  An
important first step is to make a distinction (e.g., Sheridan, 1987) between (a) primary
responsibility for the performance of a task or subtask and (b) monitoring that
performance and intervening in case of trouble.  For example, Wiener (1988), in an
aviation context, proposes a matrix in which primary performance of a task (which he
calls "controlling") may be either manual or automated, and in which the monitoring
function may also be either manual or automated.  If both task performance and
monitoring are automated, the operator is likely to suffer boredom, complacency, and
erosion of confidence.  If both are manual, on the other hand, there will be fatigue, high
workload, and failure to detect critical conditions.  Wiener thus proposes two primary
modes of task allocation:  (1) operator performing and computer monitoring; and (2)
computer performing and operator monitoring.  This scheme, however, does not
address three questions:

• When each mode is appropriate, and who should decide.

• What the computer should be monitoring when the user is in control of the
task.

• What the pilot should be monitoring when the computer is in control of the
task.

We will discuss the first question in Section 2.4.1, and the second and third questions
in Section 2.4.2.
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2.4.1 Control over task allocation

A simple hypothetical example may shed some light on control over task
allocation. Suppose that a given task (e.g., target recognition) can be performed under
a variety of conditions that affect the relative advantage of the operator and the
automated device. Such conditions might include type of target, distance of the target,
weather conditions, presence of countermeasures, and so on. In table 1, columns 1
and 2 assume that the relative expertise of the user and the aid on a particular task or
subtask depends on which of six different (equiprobable) situations is the case.  In
some situations (A, B, F) the user is better; in others (C, D, E) the aid is better. Unless
some complementarity of this sort exists, there is no point in introducing cooperative
processing between user and machine at all.

Table 1. A hypothetical task allocation problem.

PERCENT CORRECT

1 2 3 4 5 6

Situation User alone Aid alone
Ideal
allocation

Random
allocation

Ideal
allocation +
50% error

Random
alloc. + 50%
error

A 90 40 90 65 45 42.5

B 80 60 80 70 40 50

C 20 90 90 55 90 50

D 60 70 70 65 70 50

E 50 80 80 65 80 52.5

F 40 30 40 35 20 25

Overall 56.7 61.7 75 59.2 57.5 45

Notes: Overall percent correct (last row) assumes situations are equally likely.
Random allocation assumes user and aid perform task 50% of the time in each situation.
"50% error" in columns 5 and 6 assumes user accuracy is 50% of accuracy in column 1.

When the user performs the task manually in all situations, the percentage of
correct answers is 56.7% (column 1). When the task is always performed automatically,
the percent correct is 61.7% (column 2).  While the aid is, on average, better than the
user, there is a significant opportunity for synergy: An ideal allocation of the task
according to relative expertise in each situation yields a percent correct of 75.0%
(column 3). This is considerably better than the 61.7% achievable by the aid alone.

Suppose the user must determine which tasks (e.g., targets) he will process and
which will be handled by the automated device. The problem, of course, is that the user
(in most cases) cannot instantly know which of the six situations he or she is in.
Making that determination may require some independent problem solving:  examining
characteristics of the system's performance, assessing one's own capabilities, and/or
partly performing the task itself (Lehner, Mullin, and Cohen, 1988).  If the user makes
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poor override decisions, overall performance may be worse than in a system that did
not permit override at all. A random override policy in this example yields performance
that is better than the user alone, but worse than the aid alone (column 4). Moreover,
the process of deciding when and where to override will cost time even if the decisions
about whether to override are always made correctly. The result, in a high workload or
time critical environment, will either be reduced accuracy by the user when he does
override or a delayed response. If we assume a 50% decrement in the user's accuracy
in the task when he overrides, an ideal allocation policy produces an overall percent
correct of only 57.5% (column 5). This is significantly short of the 61.7% achievable by
the aid alone. (Of course, because of the time penalty, the allocation policy would no
longer be ideal; the user should in fact hardly ever override.) Finally, a not unlikely
possibility is poor override decisions and serious decrements in user task performance
due to the time consumed by the override decisions. This leads to the worst overall
performance: 45% correct (column 6).

On the surface, these considerations support complete automation of tasks
whenever the system on average outperforms the user. The task of monitoring a
system's performance and occasionally overriding it can be virtually as demanding as
performing the task (Curry, 1985; Wiener, 1985). But more considered lessons are also
possible:

1. In conditions of low workload or little time stress, the user may be effective at
discriminating situations in which he or the aid has an advantage. User
control of task allocation between the user and an ATR may make sense, for
example, when there are only one or two high priority targets, at relatively
long ranges.

2. Under conditions of high workload and high time stress, it may still make
sense to allocate some tasks to the user. But the most effective way to
accomplish this is for the computer to take the primary responsibility for
allocation of tasks. This requires that the computer be well calibrated with
regard to estimates of its own accuracy.

Experimental data in an Army air defense identification-friend-or-foe context (Cohen, et
al., 1987) support these conclusions. In this experiment, subjects sometimes had
access to cues not programmed in the automated algorithm. The ability to override
automated conclusions improved performance when workload (i.e., the number of
targets) was low, but not when workload was high. Nevertheless, when workload was
high, performance could be improved by a guided override capability. In this condition,
the computer monitored its own confidence in the identification and prompted the user
only when certainty was low.

The two modes of interaction identified by Wiener (computer performance with
human monitoring, and human performance with computer monitoring) need to be
supplemented by a third: computer task performance with computer monitoring. In this
mode, monitoring the task and intervening in the task are distinguished. The computer
monitors itself and alerts the user when it determines that the user might make a
significant contribution. The goal is to achieve a more nearly optimal allocation of tasks
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without the severe performance penalty incurred when the user is responsible for both
monitoring the aid and intervening.

2.4.2 User and Computer Mutual Monitoring

The example in Table 1 assumes, for convenience, that tasks are discretely
allocated between an automated aid and a user. But it is possible to blend user-
computer performance in a more fine-grained and dynamic way. User and computer
may perform different components or subtasks of the same task. They may even
perform the same components or subtasks and fuse or reconcile the outputs. The
distinction in the last section between computer performance and human performance
may be better described as a distinction in balance of initiative.

Personalization, channeling, and prompting may be regarded as techniques to
blend user and computer expertise within subtasks of the same task. But they work
somewhat differently depending on whether the user or the aid has the balance of
initiative.

Figure 2 illustrates the flow of information and control in a Personalized and
Prescriptive interface. The process is personalized in two primary ways: First, adaptive
user strategies determine what information the system displays, e.g., level of
aggregation, generality versus specificity of conclusions, amount of supporting data,

alternative conclusions (as discussed in Section 2.2 above). Secondly, the user
provides whatever inputs (or modifications of system outputs) that he chooses, to
whatever degree of completeness or precision. The system fills in whatever gaps are
left over, under the constraints of the user's inputs.

Personalized

System display
User inputs

or modifications System fills gaps

Channeling

Constrain future
inputs

Prompting

Alert for problems
with inputs

Encourage
complementary

displays

Alert for other
relevant data

Personalized

Figure 2. Personalization, Channeling, and Advisory Prompting during display
and user input phases.
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Channeling and prompting shape each of these two personalized functions to
produce more optimal outcomes, providing non-obtrusive ways for the system's model
to influence the user's thought processes. For the display function, channeling
encourages the selection of information that typically complements information selected
by the user. For the user input function, channeling helps the user keep track of the
implications of inputs he has provided, of system conclusions he has accepted, and
any constraints these place on future inputs.

Prompting also applies to both personalized functions. In the display process, it
alerts the user if information that he has not requested has significant implications for
the present problem. (One occasion for prompting would be when other operators with
whom the user must communicate are viewing different information.) In the input
process, it alerts the user regarding potential problems (e.g., inconsistencies, tradeoffs)
in the conclusions he has adopted.

The advisory function itself can be personalized as well as prescriptive: (a) As
noted above, it does not require users to abandon their natural modes of problem-
solving.  Rather, it recommends actions that resemble or mesh with adaptive user-
preferred procedures. For example, some ATR users, under conditions of low workload
and time stress, may prefer to view relatively unprocessed sensor data rather than
system conclusions regarding target classification. The system monitors the information
they view and infers the target classification that would be arrived at based on that
data. If other data exist, not viewed by the operator, which has different implications for
classification, the user is prompted regarding that data. Unless he asks for it, however,
the operator is not shown the system conclusion. Thus, users are permitted to continue
working at the level of concrete data that they prefer. The system functions as a sort of
peripheral vision, notifying them of important factors (at the same level of
concreteness) that they may have missed. (b) Advisory prompts only occur when the
difference between a user-preferred strategy and the solution regarded as optimal by
the system is large enough to matter; if differences do not matter, the user is left alone
to work the problem his own way.  The user himself may determine the frequency with
which he receives advice, by determining the size of the discrepancy that would set off
a prescriptive prompt. (c) Finally, it may be up to the user whether to accept the
system's advice.

The basic structure of Figure 2 is the same regardless of whether the computer
or the user has the balance of initiative. But there can be a large difference in the
degree of personalization, and the nature of the channeling and prompting. Under
conditions of low workload, high stakes, or non-routine tasks, a balance of initiative in
favor of the human may be appropriate. The user solves the problem in the way he
prefers; so the degree of personalization in both system display and user inputs is high.
The primary function of channeling and advisory prompting is to back the user up by
guarding against potential errors. Thus, what the computer should be monitoring when
the user is in control is the user's decision strategy and the potential errors associated
with it.

Under high workload conditions and with relatively familiar and routine tasks, the
most appropriate allocation mode may involve a balance of initiative in favor of the
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computer. In this case, the degree of personalization of both displays and user inputs is
less. The amount and type of information displayed will be determined more by the task
demands and by system confidence in its own outputs (the system is likely to be better
calibrated regarding its own accuracy in relatively routine tasks). Channeling uses prior
system conclusions (e.g., that the object of interest is a tracked vehicle) to constrain
user inputs. The user's inputs fill in the gaps left by the system (for example, the user
determines what type of tracked vehicle the object is). The advisory function in this
case requires the computer to monitor its own problem-solving activity, to assess
shortcomings (e.g., incomplete data, conflicting cues), and to prompt the user when his
contributions are likely to be significant. Thus, what the user should be monitoring
when the system is in control is, at least in part, the system's evaluation of its own
performance.

Within this framework, human versus computer initiative, and the relative
contribution of computer or human to a particular subtask, can be a matter of degree
and may shift flexibly as circumstances dictate. Our hypothesis is that displays which
take into account adaptive user processing strategies should be more readily utilized,
should be understood more quickly and accurately, should be more conducive for
eliciting on-the-spot user knowledge, and should lead to overall more effective system
performance.
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3.0 COGNITIVE PROCESSES IN TARGET RECOGNITION

The starting point for the design of ATR-human interfaces is the set of natural
processes and skills that people utilize in recognition. Automated devices that are
incompatible with such processes (or that overlook their potential weaknesses) may fail
to realize the full potential of user-system synergy. In this section, we examine a series
of topics from research in cognitive psychology that seem to have important
implications for how human-ATR interfaces should be designed. In each section, after
discussing the relevant cognitive research, we try to extract the relevant implications.
These implications are stated in the form of research hypotheses. In many cases they
are supported by our interviews with attack or scout helicopter pilots or by research in
other domains. But in all cases, they should be regarded as preliminary and tentative,
subject to more rigorous empirical investigation.

The theoretical framework to be utilized in this section draws upon and
integrates two research topics in cognitive science: (i) recognition skills that utilize
flexible, structured knowledge representations, and (ii) the role of self-monitoring and
self-regulation in strategies that facilitate and verify recognition, control the allocation of
attention as a function of workload and goals, and make understanding possible in
novel situations.

In Section 3.1 we look at implications of a cyclical, iterative model of visual
recognition for the display of visual (and non-visual) data by ATR devices. In Section
3.2, we examine research on verbal categorization for its implications regarding the
display of ATR conclusions. In Section 3.3. we turn to research on mental models and
explore its implications for the display of uncertain ATR conclusions. Section 3.4 looks
at strategies for verifying the success of recognition and their implications for prompting
users about ATR uncertainty.

3.1 Cycles of Recognition and the Display of Data

Recognition, in the most general sense, occurs when diverse stimuli elicit a
consistent response (Neisser. 1967). In the special case of tactical battlefield ATR
systems, recognition involves the categorization of images or image components as
tracked or wheeled vehicles, tanks or armored personnel carriers or trucks, T-72s or T-
81s, friend or foe, etc.

At least in the near-term, users of ATR systems will need access to sensor
information in order to validate or supplement ATR conclusions. Current models of
human visual recognition may be relevant to the design of interfaces that provide such
information. We will focus on three key features of recognition performance:

• The use of flexible knowledge representations reflecting correlational
structure in the domain and internal structure in the stimulus.

• The iterative, dynamic character of recognition, combining top-down and
bottom-up processes.
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• The utilization of qualitatively different types of information, even within
visual processing.

In all three respects, current models of perceptual recognition contrast
dramatically with traditional models. For example, according to template-matching
models of recognition, an object is recognized by finding a match between the sensory
input and a set of prestored representations. Problems with this approach are well-
known: (1) An enormous number of different templates would have to be stored in long-
term memory in order to cover the natural variability among stimuli falling within the
same category. Template-based systems tend to be non-robust: If there is no template
corresponding to a novel stimulus, no categorization can be provided. (2) Processing is
rigidly bottom-up, with no role for the active direction of attention in order to iteratively
resample the stimulus. Both of these problems reflect the fact that template theories fail
to represent structure: either the spatial relations within a stimulus or the structure of
similarities and dissimilarities among stimuli.

Defining-attribute or feature-matching models improve in some respects on
template models. According to defining attribute models, recognition occurs when an
object possesses a set of criterial features. Feature models reduce the required number
of templates to a small number of features, which reflect dimensions of similarity and
dissimilarity among stimuli. The similarity structure posited by such theories, however,
is more reflective of artificial laboratory stimuli than the real world. First, in natural
categories, recognition can occur even though no single feature or set of features is
common to all instances of the category; different combinations of features may be
sufficient for the same categorization response. Secondly, real-life features vary in
weight; the presence of a particular feature may be a strong category indicator, while
many other positive indicators would be required in its absence. Thirdly, membership in
the category itself is not all-or-none, but appears to be graded; exemplars differ in their
perceived typicality with respect to a category. Finally, spatial relationships among
features may be essential for appropriate categorization, but these are neglected.

Feature theories emphasize a bottom-up flow of information from stimulus to
feature vector to category. This is a natural consequence of the structural assumptions
of this framework. First, since a single, unique set of features is both necessary and
sufficient for category membership, there is no rationale for top-down processes that
sample portions of the stimulus information and redirect attention if the initial sample
proves inconclusive. Second, there is no representation of the spatial relations among
the features in the stimulus to guide such iterative sampling.

Figure 3 represents a more recent view of recognition, based on Neisser, 1976.
It stresses flexible knowledge structures called schemas and the cyclical nature of the
recognition process. Like templates, schemas represent prototypical objects or events
to which the current stimulus is compared. Like feature models, the schema for a
category contains attributes which are characteristic of that category. The attributes,
however, may have different weights or importance, and the schema may also specify
characteristic relationships among the attributes. Membership in the category is
determined by overall similarity to the prototype, not by a specific set of necessary and
sufficient features.
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Schemas combine bottom-up and top-down processing. When an object
matches a sufficient subset of the schema's attributes, the schema is activated, leading
to expectations regarding the as yet unobserved features; the schema may thus direct
attention to these features or activate exploratory procedures to test for their presence.

A somewhat more detailed view of this cycle reveals the qualitatively different
types of information and processing strategies that might be exploited in schema-based
recognition. While it would be premature to declare any particular picture definitive,
Figure 4, adapted from Kosslyn and Koenig (1992), is based on both
neurophysiological and behavioral evidence. These authors summarize evidence for
the existence of separate structures and pathways that underlie the modules in Figure
4. First, a stimulus-based attention shifting mechanism draws one's eyes to large
changes in the visual field. A visual buffer preserves stimulus information in a spatial
structure corresponding roughly to retinal activation. An attention window scans the
visual buffer and sends information to two visual pathways for further processing.
These two pathways have been referred to as the what and the where systems,
respectively. The first deals with distinctive object properties, which are used both to
organize the input into regions and to identify objects. A separate subsystem within this
pathway utilizes motion both to segment the input and to identify objects through their
distinctive movements. The what pathway involves the activation of stored patterns (or
visual schemas) that recognize objects by matching the properties and motions of the
input.

Samples

Directs

Modifies

Object

(available
information)

Schema Exploration

Figure 3. The perceptual cycle (from Neisser, 1976).
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The second major pathway (concerned with where rather than what) encodes
spatial relations among parts of the stimulus. One subsystem in this pathway computes
metric (or continuous) spatial relations between objects or their parts for the purpose of
guiding movement. Another subsystem encodes categorical (or discrete) spatial
relations between objects or their parts (e.g., the head is at the top of the body). The
categorical subsystem provides a flexible basis for recognizing objects whose parts
may be positioned or oriented in novel ways. The categorical relations among parts or
objects may remain constant while the precise details or their metric relations vary.

Associative memory combines information from the object properties system and
the spatial system, encoding the relative locations of patterns (properties and
movements) with respect to one another and the observer. This permits recognition of
objects based on spatial relationships among features, or between the target object and
other objects. Higher levels of associative memory also encode features from other
sensory modalities, as well as expectations based on prior knowledge. A schema (e.g.,
corresponding to tank) which best matches this range of inputs may be adopted as a
perceptual recognition response.

The information look-up subsystem plays a key role in top-down processing.
Based on a preliminary recognition response in associative memory, it utilizes metric
and categorical spatial relations to predict additional properties or relationships for the
hypothesized object type. It uses these predictions to direct shifts in attention to
locations where the properties or relations are expected to be observed.

A final aspect of Figure 4 concerns visual imagery. There is considerable
evidence (Kosslyn and Koenig, 1992; Kosslyn, 1980) that imagery utilizes some of the
same mechanisms as visual perception. Images may be projected onto the visual
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Figure 4. Subsystems used in high-level vision (adapted from Kosslyn and
Koenig, 1992).
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buffer, scanned by the attention window, and processed by the same encoding
subsystems that analyze perceptual inputs. There is also evidence that imagery may be
used in some cases to support perceptual recognition. When highly degraded inputs
prevent immediate recognition, an image of a candidate object may be activated on the
visual buffer, then transformed in various ways to look for a possible match (Lowe,
1987). The dotted lines in Figure 4 represent the top-down processes by means of
which the information look-up system (utilizing information in associative memory)
directs the activation of patterns in the visual buffer.

This framework emphasizes the qualitatively different types of information that
may be utilized to achieve object recognition under different conditions. More elaborate
strategies are called upon as simpler processes fail to achieve a match between inputs
and schemas:

• Basic properties: In some cases, elementary features of the visual stimulus
(e.g., edges, surfaces, and textures) may be sufficient for immediate
recognition. The overall shape of an object may be perceived prior to more
detailed features (Navon, 1977). For example, a boat-like shape indicates an
armored personnel carrier, a truck-like shape indicates a truck; the profile of
a low turret and long gun tube may uniquely identify an object as a T62 tank,
while the profile of a large turret and medium gun tube identify it as an M60
tank; a triangular pattern of hot spots may indicate a ZIL truck; and so on.

• Parts and spatial relations: In other cases, a more detailed perceptual
analysis of the object, in terms of its parts and their spatial relations, may be
required for recognition. For example, a hot spot may be identified as the
hood as opposed to the rear exhaust, by observing that its relationship to
other features locates it at the front of the vehicle; the number of wheels may
discriminate an M60 from a T62; the slackness of its tracks may distinguish
a PT7 from other tanks; etc. Spatial relations with respect to other objects
may also contribute to recognition, e.g., the standard pattern of deployment
of surface-to-air missile launchers and radars, or the assemblage of trucks,
buildings, and antennas at an HQ.

• Iterative looking: If the total input from an initial look does not determine a
strong recognition response, an operator may look again. In this second
look, the operator will be guided by the expected spatial relationships among
the parts of known objects. For example, suspecting an M-35 truck, he may
look for a high, hot exhaust pipe; if it is not found, he may switch to the
hypothesis that the object is a ZIL, which has no such exhaust.

• Mental images: For cases of highly distorted or unusual visual inputs, the
operator may use visual imagery to generate and transform templates that
can be matched to the stimulus. For example, he may imagine how a ZIL
would look from an unfamiliar aspect by mentally rotating it; he may imagine
the appearance of an M60 with its turret oriented in an unfamiliar way; he
may imagine the appearance of one M60 partially occluding another M60;
and so on.
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• Non-visual information: In cases where visual input is highly degraded, very
brief, incomplete, or otherwise inconclusive, information from long term
memory or other senses may determine recognition in higher-level
associative memory. For example, an operator may utilize ELINT data or
prior intelligence regarding the presence of tanks rather than trucks to
conclude that a visually degraded target is a tank. In some cases,
extraneous information of this sort may influence what is "seen" in a top-
down fashion (e.g., Palmer, 1975). An operator may actually perceive a very
brief, highly degraded, or incomplete image of a truck as a tank because of
prior expectations (Bliss, 1974); the presence of a typical surface-to-air
missile deployment pattern may cause him to see the characteristic features
of a SAM in an object that is in fact something else; the presence of some
visual features associated with a ZIL may cause the operator to fill in others
that are not in fact visible; and so on.

Implications for ATR interface design: Display of imagery data.  A standard
display design for target recognition systems includes a large-view imagery display
(e.g., based on FLIR or optical sensors) plus small video windows or "chips" that
contain larger scale (zoomed in) images of selected objects of interest. The models of
human visual processing considered above suggest some preliminary concepts for how
data should be displayed within these small video windows by automated target
recognition systems. The precise nature of the user-ATR interaction, however, will
depend on the balance of initiative between user and automated system.

Computer initiative.  Under conditions of relatively high workload or time stress,
and in relatively routine tasks (where the ATR is expected to be well-calibrated
regarding its estimation of its own accuracy), the primary initiative will be with the
computer (as discussed in Section 2.4 above). In this case, the most likely user
strategy is to evaluate and possibly override the computer's conclusions. It makes
sense, then that the size, number, and nature of the image chips be designed to
communicate the basis for an ATR recognition conclusion in the simplest way possible.
Such displays, which correspond to the way the perceptual system segments and
processes data, will allow operators to quickly and effectively validate the ATR's
recommended classification. This process of validation will interfere minimally with the
operator's ability to "see the battlefield" as a whole and to perform his other tactical
tasks.

Hypothesis 1:  If confident ATR recognition is possible based on elementary
features of the stimulus (e.g., overall shape, a distinctive pattern of hot spots), the
default display size for the video chip can be relatively small. If confident ATR
recognition requires analysis of the stimulus into parts, the default size of the chip
should be larger. (Other aspects of the video chip display might also be optimized
either for perception of elementary features or analysis of parts: e.g., contrast,
smoothing, filtering, and edge enhancement.)

Hypothesis 2: If recognition depends on a characteristic movement (or lack of
movement) of the object, the default chip should repeat a brief video sequence showing
the movement (or lack of movement).
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Hypothesis 3:  The default chip should include the spatial context of the object
of interest if and only if confident ATR recognition depends on that context, i.e.,
relations of the target to other objects.

Hypothesis 4:  Multiple chips for the same object over time should be displayed
by default if and only if they reveal crucial features not visible in a single chip.

Hypothesis 5:  A template or prototype of the relevant object type should be
displayed only if recognition of the object requires the assumption of some
transformation: e.g., that the object is viewed from an unusual aspect, that its parts are
unusually oriented, that one object is partially occluded by another, and so on. The
displayed template should be transformed to produce the closest match.

Hypothesis 6:  Non-visual information should be displayed by default only if
visual information is insufficient for recognition of the object.

The above hypotheses concern default displays in high workload situations
where the ATR is reasonably confident of its own classification. Hypotheses 1 through
6 represent channeling devices whereby the interface directs the user's attention to the
most critical features of the stimulus. They provide the most highly diagnostic
information to the user regarding the classification. These devices are also
personalized in their conformity to human perceptual processes. (When the ATR is not
confident in its conclusion, a quite different approach to data displays may be
appropriate; these will be discussed below in Section 3.4.)

Even when the ATR is confident in its conclusions, however, users may not
always share that confidence. Some users on some occasions may wish to explore the
justification for a classification more deeply. This is in effect a form of iterative looking,
sampling additional aspects of the stimulus when an initial sampling is unsatisfactory.
Thus, an additional element of personalization may be desirable. The user may have
the option of requesting alternative types of video displays for a given target. The menu
of alternatives from which users choose should reflect the same natural perceptual
processes. Options available to operators should correspond to the phases of visual
recognition:

Hypothesis 7:  Operators should have the option of adjusting chip size at two
levels, to optimize for recognition of basic features of the object or for parts of an
object.

Hypotheses 8:  Operators should be able to select the spatial context of the
object, to include related objects.

Hypothesis 9:  Operators should be able to select the temporal context of the
object to verify the presence or absence of motion.

Hypothesis 10:  Operators should be able to request multiple chips for the same
target at different points in time.

Hypothesis 11:  Operators should have the option of displaying a template of a
relevant object type in order to compare it to the image. The template should be
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capable of user-specified transformations regarding its aspect, occlusion by other
object-types, and orientation of its parts.

Hypothesis 12: Operators should have the option of requesting the display of
non-image information regarding a target, e.g., ELINT data or prior intelligence.

Human initiative:  Under conditions of high stakes and low workload, e.g., with a
small number of potential targets at a sufficiently long range, or in non-routine tasks,
the primary initiative may be with the user. In this situation the relative priority of
personalization and prescription will be reversed. The user will employ his own
problem-solving style, with the system serving as an advisor or critic:

Hypothesis 13: Rather than the system determining default displays (as in the
computer initiative mode of interaction), the user should specify the types of displays
he wants either in general or for a specific target. The choices available to the user
should be  based on the natural phases of perceptual recognition, as indicated in
hypotheses 7 through 12.

Hypothesis 14: The system should indicate by channeling which aspects of the
target seem most critical in its own recognition model. For example, in a menu of
display options (reflecting hypotheses 7 through 12), the recommended viewing mode
based on the system's model could be highlighted.

Hypothesis 15:  The system should prompt the user if the classification of the
target that would result from the user's preferred viewing mode is significantly different
from the classification arrived at by the system's model.

3.2 Basic Categorization Levels and the Display of Conclusions

The outcome of the perceptual processes described in Section 3.1 is a
categorization response, e.g., a label that describes the object being recognized.
Recent research findings on how people verbally categorize objects may be relevant to
the way in which automated recognition systems can most effectively display their own
conclusions to human users.

The purpose of categorization is prediction and control. If an object can be
categorized based on a sampling of its features, predictions can be made regarding
additional features of the object and appropriate responses. Predictions might also be
made regarding the features of other objects of the same type. The usefulness of
categorization thus depends on objects clustering in terms of shared features
(Anderson, 1990) -- or, on correlational structure among features across objects.
Categories tend to reflect this correlational structure, grouping together objects that
share many features and distinguishing objects that share few features (Rosch et al.,
1976).

If prediction is the purpose of categorization, then people should be more likely
to use categories that lead to better predictions. Often categories can be arranged
hierarchically: e.g., vehicle, tank, T62. Rosch et al. (1976) proposed that in everyday
hierarchies (such as furniture, chair, armchair; animal, dog, collie) there is often an
intermediate level, called the basic level, at which prediction is most effective. Suppose
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people are asked to list the features that they associate with various categories.
Objects that belong to the same basic-level category (e.g., chairs; dogs) share many
common features. Most of these properties disappear, however, at the more abstract
levels in such a hierarchy (e.g., furniture; animal), where exemplars have far fewer
common properties. On the other hand, moving to a more specific level does not
produce a comparable increase in features. Most of the properties that collies share
are also shared with other dogs.

A comparable phenomenon appears to occur in hierarchies of battlefield
classifications. Knowing that something is a tank tells an operator much more than
knowing that it is a vehicle; but knowing that it is a T62 adds relatively little additional
information. Tank is thus likely to be a basic-level category in this hierarchy.
(Exceptions will be noted below; for example, where the task of discriminating friend
from foe depends on a more detailed classification.)

Informativeness is, of course, maximized with the most specific categories, but
there is a huge increase in the sheer number of categories required to achieve rather
small gains in the number of features. Rosch and her colleagues account for basic-
level categories in terms of a balance between informativeness (many common
features) and efficiency (using as few different categories as possible).  Corter and
Gluck (1992) formalize these ideas in terms of a measure that trades off the
predictability of features from the category (informativeness) against the predictability
of the category from features (efficiency).

Experimental data (Rosch et al., 1976, and others) confirm that people are more
likely to use basic-level categories in spontaneous naming of objects. They are also
faster in verifying that an object belongs to a basic category than to a more abstract or
more specific category. (For example, verifying that a robin is a bird is faster than
verifying that it is a robin or an animal.) Basic-level category names are the earliest to
be acquired by children learning language (Anglin, 1983). Finally, experiments with
artificially created objects and category labels confirm that the correlational structure of
features influences the labels that subjects tend to learn and use (Corter and Gluck,
1992).

Other observations suggest that the notion of a single, fixed basic level is
oversimplified. Rosch et al. (1976) themselves had noted that the basic level depends
on expertise; increasing familiarity with a domain  (i.e., knowledge of more features)
can shift the basic level to more specific categories. It is also likely that tasks requiring
distinctions at a more refined level can shift the basic level to more specific categories
(Cruse, 1977).

Joliceur, Gluck, and Kosslyn (1984) raised a more fundamental problem. They
found that verification that an object belongs to a basic-level category is fast only if the
object is a typical member of that category. Unrepresentative exemplars are more
quickly identified by a more specific category name. For example, a robin is a typical
bird, and is quickly verified to be a bird.  But an ostrich is not a typical bird, and it is
faster to verify that an ostrich is an ostrich than that an ostrich is a bird. Instead of a
single basic level, each object may have its own favored level of categorization.
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This result forces a revision of the basic-level concept, but it supports the
fundamental idea that categories are selected for efficient prediction. An atypical
member of a category (such as an ostrich) does not share as many features with other
members of the category (e.g., birds) as do typical members (robins, sparrows). For
that reason, categorizing an ostrich as a bird is less useful than categorizing a robin as
a bird. It does not as confidently support inferences from some of the features of the
ostrich to other features of the ostrich. And it does not as confidently support
predictions from features of the ostrich to features of other birds.

Familiarity and goals, like atypicality, can prompt the simultaneous use of
different levels of categorization for members of the same class. We may classify
people on a baseball field as players, coaches, and umpires, while classifying people in
the stands as men or women. We identify our own acquaintances and colleagues
(whose behavior we try to understand and predict in detail) by their individual names.

Some authors have stressed the importance of shape for basic-level categories.
Barsalou (1991) argues (a) that shape is more rapidly extracted during visual
processing than other information, and (b) that most members of a basic-level category
(e.g., birds) have the same shape. Members of higher level categories (e.g., animals)
have many diverse shapes, while more specific categories (e.g., sparrow, robin) are
associated with more detailed visual information than simply shape. This account links
basic-level concepts to fixed features of visual processing. But it does not
accommodate the apparent role of goals and familiarity in determining the favored level
of categorization. It does not explain why categorization may stop at the basic level
(i.e., a shape-based categorization) in some cases, but proceed to a more specific level
in others. More recently, Barsalou (1992) has suggested a compromise view: Initial
categorization may be determined by shape, while subsequent categorization is
determined by informativeness and efficiency.

In what follows, the basic level of categorization refers to the level in a hierarchy
which is generally (but not necessarily always) preferred across all the objects in a
domain. The favored level of categorization refers to the level that is preferred for a
particular object at a particular time. The favored level may not be the same as the
basic level if the object is atypical, highly familiar, or part of a task that requires more
detailed prediction.

Implications for Display of ATR Conclusions.  The existence of basic-level
concepts, or favored levels of categorization, can be empirically explored in the domain
of battlefield target recognition. Experienced personnel can be asked to list features
associated with objects at different levels: e.g., vehicles, structures, aircraft; tracked
vehicles, wheeled vehicles; tanks, armored personnel carriers, trucks,
automobiles/jeeps; T62s, T72s, etc. A significant increase in the number of features at
a particular level, with no comparable increases at more specific levels, suggests the
existence of a basic level. Atypical or highly familiar objects may show a relatively large
increase in features at more specific levels while typical or less familiar objects do not.
To confirm the existence of basic or favored categories for different objects, pictures of
those objects can be shown and subjects asked either to name the objects or to verify
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category labels. Spontaneous naming should involve the favored category label, and
verification times should be fastest for the favored category label.

Displaying ATR conclusions at the favored level may facilitate human-ATR
interaction. The favored level for a given object corresponds to the category label that
is most effective in predicting features of that object; it is also the label that people tend
to generate in their own classifications. Thus, providing ATR conclusions at the favored
level has both prescriptive and personalized characteristics. The relative importance of
personalization and prescription will depend on the balance of initiative between user
and automated system.

Computer initiative.  Under conditions of high workload and time stress, the
ATR will select the default level at which to report its classification conclusions. The
chosen level should maximally facilitate user verification of the ATR conclusion by
reference to displayed data.

User verification of ATR conclusions might take place in two ways: (a) The user
first looks at the data, independently classifies the target, and then compares his
classification conclusion with the ATR's. Or (b) the user first looks at the ATR
conclusion, generates an image of what the data should look like if the ATR conclusion
is correct, and then compares his image with the data. In either case, display of ATR
conclusions at the favored category level should facilitate performance: (a) If the user
looks at the data first to generate his own classification, his categorization is likely to be
at the favored level. Comparison with the ATR conclusion will be quicker if the ATR
conclusion is also at the basic level. (b) If the user looks at the ATR conclusion first,
then generates an image, the image he generates is likely to be a typical exemplar of
the category label used by the ATR. If the ATR conclusion is too general, there is no
single typical image corresponding to the class, and the strategy of matching an image
to the data is likely to result in a mismatch even if the classification is correct. If the
ATR conclusion is too specific, generation of a typical image and comparison with the
data will be more effortful than necessary.

Hypothesis 16:  ATR conclusions should in general be reported at the basic
level rather than at more general or more specific levels. We expect that the basic level
of categorization will correspond to tank and armored personnel carrier, in contrast to
vehicle (too general) or T62 (too specific).

Hypothesis 17:  When the target object is atypical or unrepresentative of the
basic-level category, the favored level for recognition will be more specific.

Hypothesis 18:  If an individual object or a specific object class is highly familiar,
or very frequent in a particular battlefield, the favored level for recognition will be more
specific.

Hypothesis 19:  ATR conclusions should also be reported at the level required
for performance of the task. If the goals of the current mission require discrimination at
a more specific level, recognition conclusions should be reported at that level as well
as at the basic level. If the mission requires discrimination at a more generic level than
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the basic level, conclusions should be reported at the generic level as well as at the
basic level.

Hypothesis 20:  In some cases, direct recognition at the favored level may not
be possible, but recognition at a more specific level is. If part of an object is occluded,
or if the object is at an unusual orientation or aspect, normal shape recognition
processes may fail. The object may be identified by a more detailed analysis of its parts
and their features or relationships (as discussed in Section 3.1 above). For example,
most trucks might be identifiable as trucks by their common shape. But if the overall
shape of a particular object happens to be obscured, identification of a hot, high
exhaust pipe may permit its identification as an M35 (hence, indirectly, as a truck). If
recognition of an object requires a more detailed analysis, then conclusions should be
reported at the level corresponding to the features that were used. To facilitate
verification by the user, the object in the above example should be reported as an M35
rather than as a truck.

These hypotheses concern default displays that channel user attention to the
appropriate level of analysis of imagery data. They are also personalized in that they
correspond wherever possible to user-preferred levels of description. As in Section 3.1,
we have assumed that the ATR is reasonably confident in its conclusions at the
recommended level of classification. We discuss issues pertaining to uncertainty in the
next section.

Users may differ in their familiarity with targets or in their judgments of typicality.
Moreover, as noted in the previous section, on some occasions they may wish to
explore the basis for an ATR conclusion more deeply. Thus, an additional element of
personalization may be desirable:

Hypothesis 21:  Users should be able to request conclusions at a more detailed
level than the default display. Such requests should automatically be accompanied by
changes in the data display (see previous section), so that information supporting the
more detailed classification level can be observed.

Similarly, when users request alternative, more detailed data displays, as
discussed in hypotheses 7 through 11, classification conclusions should automatically
be reported at the level of detail supported by the requested display.

Human initiative.  Under conditions of low workload and time stress, the roles of
personalization and prescription will be reversed:

Hypothesis 22: Rather than the system determining the default level at which
conclusions are reported, the user should specify the level of categorization he prefers.

Hypothesis 23:  The system should indicate by channeling which level of
categorization is favored according to its own recognition model. For example, in a
menu of options (high level, intermediate level, detailed level), the favored level might
be highlighted.

Hypothesis 24:  The system should prompt the user if the level of categorization
he selects is insufficiently detailed to accomplish the current mission.
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3.3 Mental Models and the Display of Uncertain Conclusions

In the battlefield environment uncertainty is inevitable. The available sensor and
intelligence data may not unambiguously determine a categorization response at the
desired level of specificity. Standard approaches to uncertainty could be utilized in
these cases. Such approaches provide displays of alternative possible classifications
together with numerical probabilities: e.g.,

Tank - 67%
APC - 20%
Truck - 13%.

There is abundant evidence, however, that such displays may be neither desired by,
nor optimal for, human users of ATR systems. We interviewed six active-duty helicopter
pilots at Fort Bragg, North Carolina, regarding features of a potential ATR-human
interface.  Of four pilots who commented on the desirability of displaying alternative
possible classifications, only 1 pilot responded positively. Of five pilots who commented
on the desirability of displaying a numerical confidence level for the most likely
classification conclusion, only 1 responded positively. (The positive answers were
given by different pilots.)

There may be good reasons for the pilots' lack of enthusiasm for traditional
uncertainty displays. Notice, first, that tank, APC, and truck may each by itself be a
basic-level concept, i.e., each of them represents a set of objects characterized by a
correlated set of features. But the weighted average of a tank, an APC, and a truck is
certainly not a basic-level "category." It is not consistently correlated with perceptual
features or actions. A pilot cannot visualize, anticipate the actions of, or prepare for a
67% tank, 20% APC, 13% truck.

Additional insight may be provided by recent cognitive research on the use of
mental models in reasoning (Johnson-Laird, 1983; Johnson-Laird and Byrne, 1991).
According to Johnson-Laird (l983), what distinguishes a mental model from other
representations is a close structural isomorphism between the model and the state of
affairs it represents. Each object in the model represents an object or set of objects in
the world, and relations in the model are analogous to relations among the real objects.
Numerous facts can be combined with one another in the same mental model
representation without the need for the separate, explicit statement of each fact that is
characteristic of logical or probabilistic models. The implications of the combined facts
can then simply be recognized or read off the representation without the need for
logical deduction or manipulation of formal devices that play no symbolic role.

Perhaps the simplest example of a mental model is a map, which uses symbols
and spatial relations to represent objects and their spatial relations.  Suppose a pilot
knows that howitzer A is west of tank B, and tank B is west of howitzer C, but needs to
know the relation between A and C. In a rule-based system, he must represent these
beliefs by separate propositions, and then apply a general rule stating the transitivity of
"to the west of." But in a mental model representation, such as a map, he places A, B,
and C in a single model that satisfies both known constraints:
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A ----- B ----- C

The relationship between A and C can now be directly recognized. The relation "to the
left of" in the mental model automatically preserves the transitivity of the real-world
relation "to the west of."

The relations represented by mental models need not be spatial, but may (for
example) be temporal, causal, or conceptual; the relations used in the representation
may be, but need not be, the same type as the relations being represented (although
they must be isomorphic).

Mental model reasoning is often embodied in mental images. We saw in Section
3.1 above that image-based reasoning may play a role in target recognition, by
generating prototype images and transforming them until they match the sensor data.
The results of target recognition may then help in the construction of more
comprehensive mental models of the battlefield. For example, knowing the types of
objects on the battlefield is a pre-requisite for visualizing the degree of threat from their
sensors and weapons. Image-based mental models might be used by a pilot in a
variety of tasks: i.e., estimating areas where he is vulnerable to anti-air threats and
areas where is out of range or masked by terrain, planning a route to avoid the anti-air
threats, planning locations and tactics for masking, unmasking, and remasking,
estimating locations where he has a good chance of hitting the target, and actually
navigating the planned route and executing the engagement. Mental model reasoning
may thus play a significant role throughout tactical battlefield situation understanding.

Unfortunately, mental models run into difficulty in the case of uncertainty. A
single model cannot display a direct mapping to the existing state of affairs when we do
not know what that state of affairs is. Experimental data suggest that problem difficulty
increases with the number of separate mental models or possible states of affairs that
must be represented (as opposed to the number of steps that would be required by a
logical deduction; e.g., Byrne, 1992). Generation, retention, and evaluation of multiple
models quickly exceeds human capabilities.

Suppose, for example, that the pilot knows only that howitzer C is east of
howitzer A, and that tank B is also east of howitzer A. This cannot be represented in a
single mental model. There are two possible models, which vary in the relation between
B and C:

A ---- B ---- C

A ---- C ---- B

The pilot must keep both of these possibilities in mind if he is not to mistakenly infer
that C is east of B (or that B is east of C). If there are a large number of indeterminacies
of this sort, a full mental model representation becomes combinatorially intractable.

The requirement of isomorphism between model and reality can be relaxed in
various ways to accommodate uncertainty (cf., Johnson-Laird, 1983). Each approach
has advantages and disadvantages:
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(1) Simultaneously display elements from more than one mental model; e.g.,
represent uncertainty about the locations of military units by multiple symbols for the
same object in the different possible locations:

A ---- (C) ---- B ---- (C)

Similarly, we can represent uncertainty about unit identity by multiple symbols
corresponding to alternative possible classifications (e.g., tank or howitzer or truck).
This design option compromises the natural isomorphism between the spatial
representation and a possible real situation. By treating different uncertainties
independently, it also fails to capture interactions, e.g., the implications for tactics if
object X is a truck and object Y is a howitzer, or if object X is a howitzer and object Y is
a truck, if both are howitzers, or if both are trucks. It may be effective when only a very
few distinct alternative possibilities are important for the current decision.

(2) Display a single less precise mental model; e.g., represent uncertainty about
the locations of military units by spheres or ellipses:

A ---- (B C)

Similarly, we can represent uncertainty about unit identity by a more general category
label (e.g., vehicle) indicating what is known with confidence about the unit. Depending
on the decision context, even more highly aggregated representations could be used:
for example, the display of lethality contours instead of individual threats.  The same
lethality might represent any of a large number of combinations of locations and
capabilities of enemy forces.  Representations of this kind are not at the favored level
of categorization; they do not communicate the information that is typically needed for
decisions about avoiding threats, unmasking, and engaging targets. They do not give
people a feeling of confidence regarding their understanding of the situation. But they
may be of value when the current decision or action does not in fact depend on more
precise information.

(3) Assume a single model and revise it later if necessary; e.g., select a single
threat location (or identity) from among those that are possible:

A ---- C ---- B

This preserves the isomorphism between the representation and a possible situation at
a favored level of representation. Indeed, human reasoning does often seem to be
assumption-based: A single model is tentatively adopted (often, the worst case),
subject to revision in case of new data (Cohen, 1989; Johnson-Laird, 1983; Doyle,
1979; Reiter, 1980). Dynamic adjustment in response to feedback and new information
replaces exhaustive up-front analysis (Connolly and Wagner, 1988). The danger, of
course, is that the decision maker may lose track of the assumptions that have been
made and feel an unwarranted sense of certainty regarding the represented possibility
(e.g., Einhorn, 1980).

Among the assumption-based strategies that people seem to adopt are:
assuming the worst case, assuming that a familiar sensor or source is reliable until
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proven otherwise, assuming that a new source is unreliable until proven otherwise, and
assuming that a piece of data means what it usually means.

A rather large literature confirms that people do not integrate all possibilities the
way standard normative methods dictate. For example, research by Cohen, Leddo, and
Tolcott (1988) found that attack submarine commanders estimated ambiguous
quantities (such as the range to a target or the probability of being counterdetected by
the target) by selecting one concrete possibility rather than by combining diverse
possibilities into a weighted average. For example, they assumed that the worst-case
(i.e., the closest) range estimate was correct and all others wrong, and they assumed
that the target had the best possible sensor capability rather than an "average"
capability, when deciding how long they could safely approach an enemy submarine. A
worst-case planning strategy may make sense: It guarantees that the selected option
will produce an adequate outcome no matter what the true situation. Unfortunately, it
can also lead to overlooking important opportunities: options that are only slightly
worse in the worst case but significantly better if the worst case is false.

Assumption-based reasoning can also lead to overconfidence. People often
seem to suppress awareness of alternative possibilities once they are able to construct
a single mental model of how an event could occur. For example, people consistently
overestimate the probability of expected events, even in areas where they are experts
(Kadane and Lichtenstein, l982).

Implications for the display of uncertain conclusions.  ATR displays must not
only support target recognition; they must also be compatible with the other key
decisions (e.g., route planning, navigation, targeting and engagement) that pilots make
in order to carry out their mission. Explicit displays of alternative recognition
conclusions (especially with numerical probabilities) may detract from the pilot's ability
to construct effective, transparent mental models of the battlefield within which he must
act. Perhaps for these reasons, the pilots we interviewed were almost unanimously
opposed to such explicit uncertainty displays.

Computer Initiative.  Under conditions where the computer takes the initiative,
three design questions must be addressed: (1) How to display uncertain ATR
recognition conclusions? (2) When and how to prompt regarding the existence of
uncertainty itself? (3) How much image and non-image data should be displayed? We
address the first of these issues in this section, and the other two in the section that
follows.

In Section 3.2 we recommended that ATR conclusions be reported down to at
least the basic level, and that conclusions should be even more specific (i.e., at the
favored level) if demanded by the atypicality of the object, its familiarity, the
requirements of the mission, or the need for unusually detailed analysis of the data. But
what if the ATR is significantly uncertain at the level of specificity that would normally
be appropriate?

Recent research suggests that the accuracy of an ATR system influences its
perceived value to pilots (Becker, Hayes, and Gorman, 1990). In one experiment, pilots
saw little value in a system with a correct detection rate below .7 or a false alarm rate
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below .167 per square degree. In our own interviews, we found large individual
differences in the confidence thresholds that pilots thought appropriate. Preferred
thresholds for the display of recognition conclusions ranged from 51% to 95%. Some
pilots wanted to see ATR conclusions no matter how uncertain (thus setting a threshold
at 51%), while others preferred not to be bothered with any conclusions that were not
virtually certain (thus setting the threshold at 95%). There was also variability as a
function of the scenario and mission. A lower threshold for reporting conclusions (e.g.,
60%) might be appropriate for deep attack missions, where no friendlies would be
expected. A higher threshold (e.g., 90%) might be required for a close-in battle, where
friendlies and hostiles are intermixed.

What then should be the threshold for displaying ATR conclusions? We argue
that there is no single answer. The most effective criterion for displaying recognition
conclusions will depend on the situation. In particular, it depends on: (1)  the expected
cost of a recognition error (e.g., the likelihood and cost of shooting a friendly) and (2)
the time available for making a decision.

In the hypotheses that follow, we postulate an ATR interface with a minimal
"intelligent" component that is capable of gauging these two variables in a fairly coarse
and qualitative manner. For example, high stakes situations include discriminating
friends from foes in close battles, and discriminating significant threats (e.g., anti-air
artillery) from non-threats. An example of a low stakes recognition problem involves
discriminating different types of targets from one another when all are acceptable for
engagement. Available time might be assessed by the ATR as a simple function of
distance to threats and threat weapon ranges. The following hypotheses are
summarized in Table 2 below.

Hypothesis 25:  When stakes are low, classification conclusions should be
personalized according to the preferences of the pilot, regardless of the available time.
As noted above, some pilots prefer ATR conclusions only down to the level of
specificity at which the ATR is confident. For these pilots, the ATR will display a
generic category (e.g., vehicle) when further specification (e.g., tank versus truck)
doesn't matter - for example, because the vehicle is too far away to be a threat, or in a
location where the mission precludes engagement. Such a display preserves the
isomorphism of a mental model representation without providing a spurious sense of
certainty. Other pilots prefer displays down to the favored level (e.g., tank), even if the
ATR is relatively uncertain. These pilots may be more effective framing a mental model
at a consistent level of description that matches their knowledge.

Hypothesis 26: In high stakes situations, i.e., where information at the favored
level is needed for mission tasks, the appropriate display depends on the available
time. If time stress is not severe, then the ATR should display classification conclusions
only down to the level of specificity at which it is confident. This enables the pilot to
provide an independent judgment regarding the object's classification. Prior exposure
to the ATR's uncertain conclusion may influence the way the pilot visualizes the object,
and result in less accurate recognition performance.
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Hypothesis 27:  Suppose that information at the favored level is required for
mission tasks, but time stress is severe. The pilot is engaged in other tasks, and/or the
target is a threat at close range. In this case, the ATR should display a single
conclusion at the level of specificity required by the task. The displayed conclusion is
arrived at in part by data and in part by assumption. For example, a plausible strategy
is to display the worst-case recognition result as long as it is reasonably likely given the
data. Such a display enables the user to construct a simple mental model of the
situation, and also guarantees a minimum outcome of his decisions. In this situation,
the requirement for timely action outweighs the advantages of independent recognition
judgment by the pilot.

These displays channel the user's attention under conditions of moderate to high
stakes. Under low time pressure, they encourage him to provide an independent
judgment. Under high time pressure, they encourage him to adopt the most appropriate
recognitional assumption. Table 3 summarizes the recommendations regarding display
of conclusions.

Time Stress Low Time Stress High

Stakes Low Personalized display of conclusions - generic or specific
(Hyp. 25)

Stakes Moderate Generic conclusion
(Hyp. 26)

Favored-level conclusion
(Hyp. 27)

Stakes High Generic conclusion
(Hyp. 26)

Favored-level conclusion
(Hyp. 27)

Table 3. Display of uncertain conclusions.

Additional elements of personalization, however, can increase the synergy
between human and ATR:

Hypothesis 28: The user should have the option of displaying the alternative
possible conclusions at whatever level of specificity he desires. This capability permits
pilots to check their own independent conclusions against the conclusion of the ATR,
when the initial ATR display was generic (Hypothesis 26), or to explore alternative
possible assumptions when the initial ATR display involves an assumption (Hypothesis
27). In designing an in-flight situation assessment aid for the Air Force, we found that
pilots preferred a display that assumed the worst-case when there was conflicting
evidence regarding the identity or location of a threat, but also wished to have the
option of viewing best-case or most-likely-case displays (Cohen, Tolcott, and McIntyre,
1987).

In the introduction to this section, we listed three ways in which mental model
displays could be modified to accommodate uncertainty: (1) simultaneous display of
alternatives, (2) display of less precise models, and (3) tentative assumption of a single
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precise model. Hypotheses 25 through 28 spell out different conditions under which
each of these approaches might be appropriate.

3.4 Verification Strategies and Uncertainty Prompts

Reasoning with mental models, as we observed in the last section, has both
strengths and weaknesses. When generic mental models are used to represent
uncertainty, they may fail to provide necessary information; and precise mental models
that are based on assumptions may prove to be misleading or false. To guard against
these potential pitfalls, mental models may be combined with strategies for critiquing or
verifying the adequacy of the model. ATR-human interfaces can be designed to support
such verification strategies.

A growing body of research on expert problem solving may provide some insight
into the nature and role of these verification strategies. The initial emphasis in this field
was on general purpose problem-solving strategies, such as breaking a complex
problem down into simpler components or working backwards from goals to means
(e.g., Newell and Simon, 1972). In the past two decades, however, interest has focused
on skills that are domain-specific and knowledge-intensive rather than general-purpose
and analytical. Empirical studies comparing novices and experts in fields such as
physics, chess, and computer programming have supported a view of expertise as the
accumulation of direct responses to familiar situations (e.g., Chase and Simon, 1973;
Larkin et al., 1980). Experienced problem-solvers "recognize" the problem and "see"
what to do. Expert recognition is effective because of the character of the knowledge
upon which it is based. Recent research has emphasized the structure of expert
knowledge rather than simply its quantity: for example, many studies suggest that
recognition by experts occurs in terms of fundamental domain concepts rather than
superficial features of a problem (Chi et al., 1981; Shoenfeld and Herrman, 1982;
Weiser and Shertz, 1983; Adelson, 1984; Larkin, 1981). This is consistent with our
earlier discussion of object recognition (Section 3.2) in which we emphasized the use of
categories that capture the correlational structure of the environment.

There is also evidence that experts are more skilled than novices in strategies
that control how recognition is achieved and validated.  (Larkin, 1981; Glaser, 1989;
Brown and DeLoache, 1978). These strategies increase the flexibility of expert
performance and enhance its ability to deal with novel situations, where data are
incomplete or conflicting. Thus, while experts may be said to "recognize" familiar
problems, the process of recognition itself is by no means simple or invariant, but is
subject to a variety of choices based on intermediate results of the process.

One type of strategy increases the chance of successful recognition. Experts
change their representation of the problem until it makes contact with their knowledge,
i.e., until it becomes "familiar." According to Larkin et al. (1980), a sketch of the
superficial objects and relations in a physics problem is often constructed and
examined in order to determine the next step: If the depicted system is familiar, the
expert may proceed directly to the equations required for solution. If the system is
unfamiliar, the expert constructs an idealized representation (i.e., a free-body diagram),
which is then used in the generation of solution equations. In extremely difficult
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problems, moreover, experts appear to shift to a more novice-like strategy of means-
ends analysis (Larkin, 1977). These strategies are consistent with our discussion of the
use of imagery in object recognition (Section 3.1): When an object is not immediately
recognized, experts may generate and transform templates (e.g., corresponding to
possible articulations of the object's parts, or occlusion by other objects) until a match
is achieved. Just as problem solving is now being seen as a kind of recognition, object
recognition can be seen, for some purposes, as a form of problem solving.

Strategies also play a role after the problem has been recognized and
(apparently) "solved." Physics experts were found by Chi et al. (1982) to utilize the
abstract physical representation of the problem to verify the correctness of their method
and result, e.g., by checking whether all forces are balanced, whether all entities in the
diagram are related to givens in the problem, etc. Experts are highly practiced in
deciding how much and what kind of checking is required. Similarly, in medical
diagnosis, Patel and Groen (1991) found that experts generated accurate diagnostic
hypotheses early, "and spent the rest of the time evaluating in order to confirm and
refine the diagnosis...," while novices had difficulty evaluating their hypotheses. In
mathematics, novices, unlike experts, often fail to verify their results against prior
knowledge (Riley, Greeno, and Heller, 1983). These strategies extend our discussion
of the iterative processes in visual perception (Section 3.1): Additional kinds of
information (e.g., relationships among parts, relationships to other objects, non-visual
data) may be consulted even if recognition has been achieved based on earlier
samplings, to the extent that the initial recognition is not conclusive.

Under time constraints, experts attempt to consult the most important information
first. For example, in an Army air defense identification-friend-or foe context, Cohen,
Leddo, and Tolcott (1988) found that as target density increased, experienced
operators shifted to strategies that emphasize breadth over depth. They examined
fewer classification cues per target, while continuing to examine all contacts. Such a
strategy assures at least some high-value information about each potential threat.

Experts and novices also appear to differ in the way they verify information from
external sources such as advisors or computer-based aids. Cohen (1992) found
dramatic differences between experienced and inexperienced commercial airline pilots
in how they handled dispatch advice in the face of weather uncertainty. These findings
may have implications for the way Army pilots should respond to uncertain ATR
conclusions.

In Cohen's (1992) experiment, active-duty commercial airline pilots had to make
a now-or-never decision to divert or not to divert to a third airport in the face of an
uncertain weather condition moving in on the original destination and alternate. The
potential severity and degree of uncertainty of the weather were varied. The company
dispatch advised the pilots either to divert or to continue (dispatch advice was a
between-subjects variable, and was orthogonal with respect to the seriousness of the
weather). Dispatch advice had no effect at all on the decisions of pilots who had less
than 20 years of commercial flying experience. They looked at the weather information
and made a decision, either adopting a worst-case strategy or trading off potential risks
against potential gains. By contrast, dispatch advice had a significant effect on the
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decisions of pilots who had more than 20 years commercial flying experience. Many of
these pilots appeared to take dispatch advice as a starting point and look for potential
problems. If none were found, they followed the advice. This strategy allowed them to
efficiently allocate their attention to relevant information (For example, if dispatch
recommended continuing, they looked only at worst case predictions regarding the
destination and alternate. If dispatch recommended diversion, they looked at best case
predictions and if those were good, at worst case predictions). The strategy also
allowed them to take advantage of dispatch advice without following it blindly.

A similar verification strategy might be effective in Army pilot interactions with an
ATR. Particularly under high workload conditions and relatively routine tasks (where
the ATR is accurate and well-calibrated regarding its own accuracy), the most efficient
strategy may be to take the ATR conclusions as a starting point and look for problems.
In that case, the ATR's assessment of confidence in its own conclusions assumes great
importance. Uncertainty serves as an alert that directs the pilot's attention to the
recognition task per se and to the recognition of particular targets, causing him to
sample data efficiently in a search for potential problems.

Implications for the Display of Uncertainty Prompts.  There are two primary
reasons for explicitly alerting the user of an ATR to the existence of uncertainty:

1. To affect decisions directly. For example, when a target is identified as a foe
but could be a friend, recognition confidence is important in deciding
whether to engage immediately or to spend more time and accept more risk
collecting additional data. When a target is identified as a non-threat but
could be a threat, recognition confidence is important in deciding whether to
continue with a route that puts the aircraft within range of that target or take
more time to avoid it. Avoidance of false alarms and misses is thus a crucial
consideration in the design of ATR-human interactions.

2. To orient the user's attention to a recognition task where he may be more
successful than the ATR. As discussed above, pilots might use the ATR as a
starting point, and attempt to verify or critique results that the ATR regards
as uncertain.

Traditional uncertainty displays, which include all alternative conclusions
together with numerical probabilities, are not warranted by either of these needs. With
respect to (1) discouraging immediate engagement or routing decisions, traditional
displays add little or nothing to the information that the classification of a hostile or a
threat is uncertain. With respect to (2) orienting the pilot's attention, they merely delay
the pilot from actually attending to the object that needs to be recognized.

Hypothesis 29:  Uncertainty prompts should be binary: A conclusion is either
uncertain or it is not. The threshold for display of such a prompt, however, can vary with
the situation.

Hypothesis 30: Uncertainty indicators should not interfere with visual
examination of the target, since an important function of such prompts is to direct the
pilot's attention to the stimulus. Interference may occur due to blinking the target or
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enclosing the target within a rectangle (which may distort perception of the target in
context). Appropriate indicators might include distinctively shaped symbols, blinking
symbols, or distinctively colored symbols placed adjacent to the target.

The display of uncertainty prompts reflects a tradeoff between the potential costs
and likelihood of recognition errors and the time available for making a decision:

Hypothesis 31: If time stress is low, the ATR should provide an uncertainty
prompt for the user whenever the likelihood and the cost of an error are moderate to
high.

Hypothesis 32: If time stress is high, uncertainty prompts should be provided
only if the likelihood and the cost of a recognition error are high. The alternative
possible recognition results must have major implications for the success of the
mission.

MacMillan (1992) speculates that a pilot might use one of two possible
verification strategies: scanning for possible targets identified by the ATR (checking for
false alarms) and scanning for possible targets that have been missed by the ATR
(checking for misses). The prompts described above help the user allocate his attention
in a reasonable way between these two extremes. Instead of focusing on just false
alarms or just misses, he might be on the look-out for a false alarm with regard to one
target, and a miss with regard to another. The occurrence of an uncertainty prompt is
keyed to the actual likelihood and cost of different kinds of classification errors for each
individual target.

Nevertheless, we expect that false alarms will receive more attention than
misses in some battlefield situations, and that misses will receive more attention than
false alarms in other battlefield situations. In a close-in battle, there is expectation that
friends and hostiles will be intermixed. If the ATR incorporates this type of information
in its reasoning, the calculated stakes will be highest, and the expected costs of errors
greatest, for targets that the ATR classifies as hostile but which could be friends. These
kinds of targets will be most likely to get uncertainty prompts, and the interface will
therefore guide the user to monitor, in effect, for false alarms. In deep battles, by
contrast, few friends are expected. The stakes will be highest, and the costs of errors
greatest, for targets that the ATR classifies as non-threats (e.g., trucks or structures)
but which could in fact be threats (e.g., tanks, anti-air artillery). These kinds of targets
will be most likely to get uncertainty prompts, and the user will be guided, in effect, to
monitor for misses.
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The following table summarizes the implications of these hypotheses regarding
prompts for uncertainty, along with the previous hypotheses regarding display of
uncertain conclusions, as a joint function of time stress and the expected cost of a
recognition error. Relevant hypotheses are in parentheses.

Implications for the Display of data.  A final design issue, arising when the
ATR is uncertain of its own conclusions, concerns the data that should be displayed to
the user. In Section 3.1 we discussed appropriate displays of imagery (e.g., in video
windows or chips associated with specific targets) and non-imagery data to support
rapid user validation of ATR conclusions. The basic principle in that discussion was
that displays should be as simple as possible, following a natural human visual
processing sequence, while still being sufficient for validation of the automated
recognition conclusion. If the user questioned the system conclusion, he could "look
again," by requesting more detailed or more comprehensive displays. When the ATR is
uncertain in the first place, however, and if the conclusion matters for the mission at
hand, the user's role may go beyond validation. The user is now actively looking for
problems with the ATR's conclusion, and the user's own judgments are more likely to
significantly enhance the accuracy of the classification. To support this potential user
contribution, more extensive data displays will be required. For the user to go beyond
the ATR, he must have access to data that is not selectively filtered through the ATR's
recognition process.

The purpose of the uncertainty prompts described above was to direct the user's
attention to recognition problems where he might do the most good (within the overall
context of battlefield goals). The most effective ATR data display will therefore reflect
the same tradeoffs between the stakes of the decision and the available time that were
relevant for displays of prompts:

Hypothesis 33: In just those situations where the user is prompted regarding
uncertainty (i.e., low time stress and moderate to high stakes, or high time stress and
high stakes; see Table 3), the ATR should display all data that might have any bearing

Time Stress Low Time Stress High

Stakes Low Personalized display of conclusions - generic or specific
(Hyp. 25)

Stakes Moderate Generic conclusion +
prompt
(Hyp. 26, 31)

Favored-level conclusion
(Hyp. 27, 32)

Stakes High Generic conclusion +
prompt
(Hyp. 26, 31)

Favored-level conclusion +
prompt
(Hyp. 27, 32)

Table 3. Display of uncertain conclusions and prompts.
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on the classification of the target. In particular, data of each qualitative type described
in Section 3.1 should be displayed if any signal is detected in the corresponding data
type. For example, a large chip size should be displayed if there is any detectable
differentiation among the parts of the object (even if the ATR cannot determine their
relevance for the classification). The spatial context should be displayed if any
detections occur in the vicinity of the target object (even if the ATR cannot discern their
relevance). The temporal context should be displayed if any movement of the target
object is detected. Multiple snapshots of the target should be displayed if any change in
the target is detected. Any available non-imagery data (e.g., ELINT or prior
intelligence) should also be displayed.

Hypothesis 34: In all other situations (i.e., when stakes are low, or when stakes
are moderate but time stress is high), the ATR should display only the data types that it
has actually utilized to support its conclusion, as described in Section 3.1.

Hypothesis 35: As in Section 3.1, the user should have the option of requesting
any additional information of any type.

Under some conditions, the ATR might support a slightly more extensive
problem-solving process by the user. At the user's request, it might provide appropriate
templates for comparison with the displayed data:

Hypothesis 36: In cases where time stress is low and stakes are high,
channeling should make it easy for the user to view alternative target-type templates
(e.g., for tank, armored personnel carrier, truck) and compare them for a match to the
stimulus. The user should have the option of transforming the templates in order to
improve the match to the stimulus. Transformations might include altering the aspect of
the templated object, altering the orientation of its parts, or visualizing one object type
occluding another.

Table 4 summarizes these hypotheses concerning data display:

Time Stress Low Time Stress High

Stakes Low Display only supporting data (Hyp. 34)

Stakes Moderate Display all potential
signals + template options
(Hyp. 33, 36)

Display only supporting
data (Hyp. 34)

Stakes High Display all potential
signals + template options
(Hyp 33, 36)

Display all potential
signals
(Hyp. 33)

Table 4. Display of data under ATR uncertainty.

Human initiative:  When time is more ample (e.g., because there are very few
potential targets and they are at relatively long ranges), human initiative and a higher
degree of personalization may be appropriate. Under these conditions pilots would
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choose the kind of data as well as the types of conclusions that are displayed. Of the
six pilots we interviewed, four expressed a preference for ATR displays based on
confidence, while two preferred ATR displays based on a particular level of
categorization regardless of confidence.

Hypothesis 37: Pilots should be able to set the threshold of confidence required
for an ATR conclusion. The ATR will then present conclusions down to the level of
specificity permitted by its confidence (but not more specific than the favored level).
Generic category labels (e.g., vehicle; target) will be used when the ATR is uncertain.

Hypothesis 38: For these pilots, prompts should be presented when
categorization to a more specific level is required for successful performance of the
mission.

Hypothesis 39: Alternatively, pilots should be able to set the level of
categorization at which the ATR displays its conclusions. The ATR will then present
conclusions at that level regardless of uncertainty.

Hypothesis 40: For these pilots, prompts should be presented when there is
significant uncertainty at the user-specified level of categorization and when the
uncertainty might result in costly errors.

Note that the role of prompting in the two cases is complementary. When the
pilot chooses to display conclusions in terms of confidence (Hypothesis 36), prompting
occurs with reference to level of categorization. For example, suppose the pilot wants
conclusions displayed only if they achieve a 90% confidence level. If only vehicle can
be displayed at the desired level of confidence, the ATR may prompt that a decision
between tank and truck is required for the mission. On the other hand, when the pilot
chooses to display conclusions in terms of category level (Hypothesis 38), prompting
occurs with reference to confidence. For example, suppose the pilot wants conclusions
displayed at the level of tank. The ATR may identify an object as a tank, but alert the
pilot that the relevant object is known with high confidence only as a vehicle.
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4.0 EXPERIMENTAL PLAN

In this section we lay out a preliminary plan for testing the key hypotheses from
Section 3.0. In accordance with the Personalized and Prescriptive aiding methodology
(Section 2.0), each cycle of research will proceed in two phases. The first phase tests
fundamental ideas about human information processing in the context of tactical
battlefield target recognition. These ideas, about how humans naturally perceive and
classify objects, handle uncertainty, and monitor for false alarms and misses, underlie
the hypotheses about human-ATR interface design. Based on the results of these
experiments, then, the interface design hypotheses will be revised and/or fine-tuned.
(Some of these hypotheses concern adaptation to user strategies and others concern
protection against potential pitfalls of those strategies.) In the second phase of each
research cycle, the interface concepts will be tested directly, to assess their likely
impact on overall user-ATR performance.

In Section 4.1 we describe an approach to performance measurement that can
be used both in the study of cognitive processes and in the evaluation of interface
design concepts. The measurement procedure captures tradeoffs that threaten to
confound assessment of performance quality, both between time and accuracy and
between false alarms and misses. At the same time it provides a tool for investigating
the qualitative character of user information processing strategies.

Section 4.2 describes the experimental tasks to be performed by subjects. These
tasks correspond to the specific areas that we plan to investigate, which were
discussed in Sections 3.1 through 3.4. They include: the sequence of stages in visual
information processing (Section 4.2.1), favored levels for classifying objects (Section
4.2.2), use of mental models and assumptions in handling uncertainty (Section 4.2.3),
and verification strategies that monitor for misses and false alarms (Section 4.2.4).

Section 4.3 presents an overall plan and schedule for research. The research is
divided into two parts, corresponding approximately to the first and second years
respectively. The first year will focus on the display of data and conclusions (discussed
in Section 4.2.1 and 4.2.2), while the second year will focus on displaying uncertainty
and ATR prompts to support user monitoring (discussed in Sections 4.2.3 and 4.2.4).
Each year will comprise a full cycle of research, beginning with underlying cognitive
principles and concluding with ATR interface designs.  Finally, Section 4.4 discusses
experimental stimuli, the experimental environment, and subjects.

4.1 Measures of Performance

4.1.1 Recognition Accuracy

In target recognition, the observer categorizes a target by assigning it to one of n
classes (e.g., tank, APR, truck). In simple detection tasks, by contrast, the observer
assigns a stimulus to one of two classes: signal (e.g., target) versus noise (no target).
In detection, only two kinds of errors are possible: missing a target that is present and
reporting a target that is not present. In target recognition, the number of possible
confusions among n classes totals n(n-1). Despite these differences, some of the same
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methodological issues arise in assessing detection and recognition performance. A
brief discussion of detection will thus serve as an introduction to the assessment of
recognition performance.

Measures of detection performance that focus on only one kind of error (misses
or false alarms) may misrepresent the quality of performance, by overlooking changes
in the other variable. Observers can achieve higher accuracy with respect to either type
of error by accepting a higher rate of error of the other type. Neither measure by itself,
therefore, adequately captures the underlying ability of the observer to discriminate
between targets (signals) and non-targets (noise).

Signal detection theory (SDT) is a powerful method for dealing with the tradeoff
between false alarms and misses in detection performance (Green and Swets, 1966).
Signal detection theory has two components: (1) The representation of the internal
effects of the stimulus as a random variable on a single underlying dimension. The
internal effects of signal and noise are usually assumed to form independent Gaussian
distributions, with the mean of the signal distribution offset from the mean of the noise
distribution by a fixed amount. The distance between the means of these distributions,
called d', is a measure of the observer's ability to discriminate targets from non-targets.
(2) The application of decision theory to these internal representations. The internal
effect of any particular stimulus has a certain probability of coming from the signal
distribution and a certain probability of coming from the noise distribution. The ratio of
these two probabilities is the likelihood ratio for that stimulus, expressing its value as
an indicator of a signal. Based on the expected overall frequency of signals and noise,
and the costs of the two different kinds of possible errors, the rational observer
establishes a threshold on the underlying continuum. If the internal effect of a stimulus
falls above this threshold, it is reported as a signal; if the internal effect falls below the
threshold, it is reported as noise. The criterion for reporting a signal is called β; shifts in
β reflect changing tradeoffs between misses and false alarms in different situations.

Estimates of d' and β can be derived from a Receiver Operating Characteristic,
or ROC curve, which plots hits against false alarms. ROC curves can be generated by
several methods: (a) by varying payoffs and costs for hits and false alarms; (b) by
varying the prior probabilities of signals and noise; (c) under a single payoff and
probability condition, by assuming normal, independent equal-variance distributions;
and (d) under a single payoff and probability condition, by asking observers for
assessments of confidence in the presence of a signal.

Recognition tasks are far more complex than simple detection tasks. (We
assume in this research that a target has been detected. In principal, however,
detection and recognition could be regarded as a single, even more complex
recognition task; i.e., "no target" could be included as one of the classes to which a
stimulus might be assigned.) In recognition, potential tradeoffs between different kinds
of confusion errors occur between every pair of classes to which a target may be
assigned. For example, an observer can always increase his chance of correctly
identifying tanks if he is willing to accept an increase in the chance that he will
misidentify APRs and trucks as tanks. At the same time, he can increase correct
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identifications of trucks relative to APRs by allowing an increase in the number of APRs
misclassified as trucks. The observer's ability to discriminate can also vary between
different classes, independently of his biases: For example, he may be better at
discriminating trucks from tanks and APRs than he is at discriminating tanks and APRs
from one another.

In principle, signal detection theory could be extended to recognition with
multiple categories. In place of a single decision dimension, there must be a space
defined by separate axes for each category. Multivariate distributions would correspond
to the internal effects of each category within this space, and also to the internal effect
of no target. Confusability between categories would be determined by the distance
between the means of their corresponding distributions. Prior probabilities of different
categories, and the costs of different kinds of confusion errors, might influence the way
observers partitioned this space into decision regions corresponding to each category.

The analysis of experimental data in terms of a generalized SDT model is
prohibitively complex (e.g., Broadbent, 1971). However, a variety of alternative
techniques exist that under many conditions (e.g., assuming normal and symmetrical
internal sensory dimensions) produce very close approximations to the SDT analysis.
These techniques also accomplish the basic goal of distinguishing the effects of
discriminability from the effects of decision criteria in multi-category tasks. Some of
these alternative techniques also offer advantages in their interpretability in terms of
underlying psychological processes.

The best known technique of this kind is the Biased Choice Model described by
Luce (1956, 1977). According to this model, the probability of a response in the
presence of a stimulus is a joint function of response bias and similarity to the stimulus
associated with the response. More formally, the probability p(i,j) of a response j in the
presence of stimulus i is proportional to the bias b(j) in favor of response j, and the
similarity η(i,j) between classes i and j. Recognition performance can thus be
characterized by a matrix:
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It is assumed that similarity is symmetric, that the similarity of a stimulus with itself is 1,
and that the sum of the b(i) is 1. The following equation describes response
probabilities:

p i j
b j i j

b j i j
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Bishop, Fienberg, and Holland (1975) provide a maximum likelihood method for
estimating the parameters of this model, and assigning confidence intervals to the
parameters, from a confusion matrix describing the number of responses of each type
to stimuli of each type.

Another approach to modeling recognition performance also provides a good
approximation, under certain conditions, to signal detection results, but is based on a
specific process model. The Informed Guessing Model (Pachella, Smith, and
Stanovich, 1978; also, related models by Broadbent, 1971, and Townsend, 1971) is a
special case of the biased choice model, in the sense that it fits only a subset of the
data that might be fit by the less restrictive biased choice model.

According to the Informed Guessing Model, when a stimulus is presented, a
number of perceptual events may or may not occur in a probabilistic manner, each of
which narrows down the class of possible responses to the stimulus. These events
might correspond to detections of relevant features of the stimulus, or use of prior
evidence about the stimulus. After the set of possible responses has been narrowed in
this way, the observer guesses from the set of surviving responses. Response biases
influence these guesses. If no information about the stimulus is extracted, the
confusion set (from which the observer guesses) consists of all the possible stimulus
categories. If the confusion set is narrowed down to one stimulus class, no guessing is
necessary.

The probability of response j to stimulus i is:

Responses

1 2 3 ... n

1 b(1) b(2)η(1,2) b(3)η(1,3) b(n)η(1,n)

2 b(1)η(1,2) b(2) b(3)η(2,3) b(n)η(2,n)

Stimuli 3 b(1)η(1,3) b(2)η(2,3) b(3) b(n)η(3,n)

...

n b(1)η(1,n) b(2)η(2,n) b(3)η(3,n) b(n)
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g is the probability that insufficient information was extracted from the stimulus to rule
out any class of stimuli. ξ(i,j) is the probability that enough information was extracted
only to narrow down the possibilities to i or j. B(i) is the bias in favor of response i.
Again, similarity is assumed to be symmetrical, i.e., the probability of any particular
confusion set is the same regardless of which stimulus actually led to that confusion
set. The sum of the bias parameters equals 1. Finally, the sum of the probabilities of all
the confusion sets containing any particular stimulus class must equal 1:
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Notice that the probability of a correct response can be more directly
represented as a sum of "true discriminations" and various kinds of guesses:
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This leads to a simple correction for guessing or bias, in which p(i,i) is replaced by ξ(i)
as a measure of the ability to discriminate i from other stimuli.

Maximum likelihood methods for assessing the parameters of the Informed
Guessing Model are described in Pachella, Smith, and Stanovich (1978).

The Biased Choice Model and (in a more explicit way) the Informed Guessing
Model permit examination of the similarity structure among a set of stimuli, and
investigation of how that structure might change over the time course of visual
processing. Moreover, the bias parameter in these models permits examination of
assumptions that observers make in the absence of conclusive evidence.

4.1.2 Recognition Speed

We observed in the last section that exclusive focus on false alarms or misses
may lead to incorrect conclusions about the quality of performance. A similar tradeoff
can occur with respect to speed and accuracy. Observers are able to reduce errors (of
either kind) by spending more time to process a stimulus. Conversely, observers can
improve their reaction time to a stimulus by accepting a degradation of accuracy. Thus,
an exclusive focus on accuracy measures alone (or speed measures alone) may also
produce a misleading characterization of performance quality. For example, a
manipulation that improves accuracy may do so only by increasing time; if so, no
overall improvement in quality can be inferred. Speed is particularly important in
battlefield target recognition. A large number of targets, or the urgency of a potential
threat, may prevent the pilot from processing stimuli to the maximum level of accuracy.
The most significant contribution of ATRs may in fact be in situations where the
operator himself does not have adequate time to fully process a stimulus.
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A speed-accuracy operating characteristic is a plot of accuracy against the
amount of time spent processing. One way to obtain such a characteristic is to impose
a penalty that increases with delay, and to impose costs for inaccuracy, and to vary the
relative size of the two kinds of penalty. In the battlefield target recognition context, a
penalty for delay might correspond to an increasing chance of being fired on as the
aircraft remains exposed. Penalties for inaccuracy include the costs of firing on friends
or the costs of missing threats. Another way to obtain a speed-accuracy operating
characteristic is simply to impose a response time-window (Reed, 1976) or deadline
(Pachella and Pew, 1968) on the observer, and to measure accuracy as the window or
deadline is varied.

Increasing the time deadline (or decreasing the penalty for delay) should
improve accuracy but have no effect on response bias. Thus, in terms of the accuracy
models described in the previous section, d', η , or ξ should change as a function of
time, but β, b, or B should not. This constitutes a check on the construct validity of the
accuracy model.

A plot of overall accuracy (e.g., percent correct classifications) against time can
help validate an ATR design. If accuracy with an ATR is as good as accuracy without
an ATR at all response times, and better at some of the response times, then we can
safely conclude that improvements in accuracy occur without increasing the time
required for processing the stimulus.

Perhaps the most important contribution of the speed-accuracy methodology
recommended here is the insight it will provide into the qualitative time course of
perceptual processing. By plotting the specific components of accuracy (e.g., the ξ(i,j)
and the ξ(i)) against time, we get a series of snap shots of processing, revealing which
features of a stimulus set are extracted early and which are extracted late, and how
recognition processing might be qualitatively affected by the introduction of an ATR.
Such an analysis can be an important and innovative input into the design of the ATR
interface.

4.1.3 Engagement Task Performance

Recognition does not take place in a vacuum. It occurs in the service of other
decisions, such as selecting a target or avoiding threats, upon which battlefield success
depends. Selection of an appropriate target in particular depends on accurate and
timely classification. A major concern of this research will be to test hypotheses about
improving recognition performance in this larger context: We will ask how displays that
improve recognition speed and accuracy can be optimized to improve the chances of
successful engagement.

The simplest relationship between classification and engagement decisions
occurs when a single target is detected, and the operator must decide whether or not to
engage it based on its classification (For example, engage it if it is an enemy tank;
otherwise, do not). Two kinds of error are possible: Killing a non-target (a false alarm)
and failing to kill a target (a miss), and each is associated with its own cost and
probability. In this situation, a straightforward analysis is possible, e.g., within Signal
Detection Theory (cf., Section 4.1.1 above). The operator should engage if the
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likelihood ratio (i.e., the probability of the evidence given it is a target divided by the
probability of the evidence given that it is not a target) exceeds a decision criterion. The
decision criterion is determined by the costs of the different kinds of errors and the
relative prior probabilities of targets and non-targets (cf. MacMillan, 1992). In this
situation, the engagement decision simply is the classification decision.

A more challenging situation arises when the operator encounters multiple
possible targets, but has only one engagement opportunity -- e.g., because of limited
weapons or the danger of prolonged exposure. He must therefore select the best target
for engagement. This case is more difficult for two reasons: (1) Multiple targets afford
more opportunities for error. If ATR classification accuracy is 90%, and the subject
must prioritize four possible targets, the probability of classifying all 4 targets correctly
is only 66%. The probability of classifying 10 targets correctly is 35%. Even when
classification accuracy is high for individual targets, the probability of selecting the best
target for engagement can be surprisingly low. (2) Each potential target adds another
type of potential error. Even if the operator engages an acceptable target, there is the
possibility that he missed a greater or more immediate threat, possibly to his own
survival.

In this situation, the operator can benefit if he rapidly and accurately integrates
information from all the potential targets.

To assess engagement decision performance, we use the following paradigm:

N potential targets are presented on each trial. One of these is to be selected for
engagement based on its classification and the associated degree of threat. For
example:

• the mission is to engage tanks that pose a threat to friendly forces; there are
several tanks at roughly the same distance; but they differ in their weapon
range, hence, in the immediacy of the threat they pose. A unique one of
these objects is the best target for engagement, because it has the longest
weapon range, on any given trial.

• the mission is to engage hostile vehicles; there are several tanks in the
vicinity; but only one is hostile.

The observer is given varying periods of time, T, to respond, as in the deadline method
described in the previous section. One simplification in this paradigm is that the
observer cannot choose to remask and then pop up again to collect more information.
He must choose a target, or choose not to engage, based on the information collected
within the given time.

A simple measure of performance in this context is the probability of selecting
the best target for engagement plotted as a function of the available time. (Another
possibility would be to leave time unconstrained, and measure the time required to
achieve a given level of accuracy.) This engagement paradigm will be used to test
interface concepts with respect to display of data (Section 4.2.1), display of conclusions
(Section 4.2.2), and uncertainty handling (Section 4.2.3).
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The probability of choosing the best target will depend not only on the observer's
ability to classify targets, but on the way he goes about allocating his attention in the
more complex engagement task. In Section 4.2.4 below, we describe some simple
verification strategies, heuristically model their effects on engagement performance,
and describe research to explore their implications for ATR displays.

4.2 Experimental Procedures

4.2.1 Sequence of visual processing

The first set of experiments addresses the question of how much and what type
of supporting data should be provided for subjects regarding targets classified
automatically by the ATR. In Section 3.1 we proposed a set of design concepts based
on a model of the processing of visual and non-visual information. According to that
model, recognition begins with crude or global features of a stimulus and progresses to
an analysis of its component parts and their relations, spatial relations of the object to
other objects, visually transformed models of the object, and non-visual information.
Hypotheses 1 through 6 draw implications of this model for the display of data about
targets.

These hypotheses apply to situations in which the user is relatively confident in
ATR conclusions, e.g., when the ATR's declared confidence is high and the ATR is
well-calibrated in assessing its own uncertainty. (We consider situations where
uncertainty is crucial in Sections 4.2.3 and 4.2.4 below.) For such targets, the interface
design should be optimized to facilitate rapid validation of the ATR conclusion.
According to hypotheses 1 through 6, the basis for an ATR conclusion should be
communicated in the simplest way possible, i.e., by means of information that is
extracted early in visual processing -- as long as such information makes the
conclusion sufficiently probable. Hypotheses 7 through 12 provide the operator options
for exploring additional information if he chooses.

The experimental approach to this topic proceeds in two phases: first,
verification in a realistic target recognition context of the basic hypotheses about
psychological processes; second, validation of the suggested ATR interface design
concepts.

Procedures to assess psychological processes. We propose a quite general and
powerful method for analyzing the stages of visual and non-visual processing, based
on the speed-accuracy tradeoff tools described in Section 4.1.

Are global target features extracted before detailed parts? To answer this
question, we need a stimulus set that is structured with respect to both a global and a
detailed feature. For example, consider a simple set of four stimuli, in which only two
relevant features are visible - the overall shape of the object and the number of its
wheels:
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General Type Specific Type Global feature Detailed feature

APC BMP boat shape 6 wheels

APC BTR boat shape 4 wheels

Tank M60 tank shape 6 wheels

Tank T62 tank shape 4 wheels

Subjects will be asked to identify the specific type of these stimuli, i.e., respond
to each stimulus from the set of categories, BMP, BTR, M60, and T62. Moreover, these
responses will be subject to a response deadline. For example, in one block of trials,
the subjects must respond within 350 milliseconds; in another block of trials, they must
respond within 550 milliseconds; and so on. Different types of confusion errors can
then be plotted against the amount of time available for processing the stimulus.

If overall shape is extracted before a detailed feature like the number of wheels,
there should be more confusion errors between BMP and BTR and between M60 and
T62, than between any other pairs of stimuli (e.g., BMP and M60, BMP and T62, etc.).
This difference, moreover, should be greatest for brief processing durations, and
diminish or disappear for longer processing durations.

The performance measurement models discussed in Section 4.1 permit a
rigorous analysis of this effect. For example, using the Informed Guessing Model, we
can plot the probabilities of different confusion sets (the ξ(i,j) and the ξ(i)) against time.
Our prediction corresponds to the hypothetical results in Figure 5 (based on actual data
with other kinds of stimuli, reported in Pachella, Smith, and Stanovich, 1978). In these
data, confusions between stimuli that differ in overall shape are entirely accounted for
by being in the pure guessing state. Thus, at any given time an observer is at one of
three levels of processing:

1. the confusion state consisting of all four categories, i.e., he has extracted no
relevant information,

2. one of the confusion states BMP+BTR or M60+T62, i.e., he has extracted
only overall shape information, or

3. one of the four states consisting of a single category, i.e., he has extracted
overall shape information and detailed part information.

As the time available for processing increases, the probability of being at level 3
increases and the probabilities for levels 1 and 2 decline.
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Note that in this example, overall shape is correlated with general type: Tanks
have a similar shape, as do APCs. On the other hand, there is no type label that
corresponds to the detailed feature, four wheels, or the detailed feature, six wheels.
Thus, it might be claimed that the reliance on overall shape earlier in visual processing
is due to its association with familiar labels rather than to a characteristic of visual
processing as such.

But this objection would not invalidate the importance of the finding that overall
shape is processed early. In fact, it is exactly what would be expected based on the
discussion in Section 3.2, where we noted that basic level categories (e.g., tank, APC)
are often associated with a common shape. The reason for the priority of shape may,
therefore, be its association with basic-level categories. The causality, however, might
run in both directions: One reason for basic categories could be their association with
shape. In any case, the fact that overall shape is processed early would retain its
importance for ATR interface design.

Nevertheless, there are elementary visual features that may be processed early
but which are not associated with type labels. Thus, the association of early processing
with labels can be tested by selecting sets of stimuli that are structured in the
appropriate way. For example, the pattern of hot spots in a FLIR image of a T62 (tank)
and a BTR (APC) may be similar; the pattern of hot spots for a BRD (APC) and a ZIL
(truck) may also be similar. We predict that salient patterns of hot spots will often be
processed early even if the resulting confusion sets do not correspond to labeled
categories.

Our discussion has focused for illustrative purposes on the priority of overall
shape versus detailed parts of an object in recognition processing. The same basic
procedure, however, can be used to test the priority of processing other sources of
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information regarding a target. Sets of targets and response categories will be
structured in appropriate ways so that specific discriminations among target categories
can only be made by the observer's use of object motion, spatial context, previous
sightings of the same object, parts that are articulated or oriented in an unusual way
(therefore, presumably requiring internal transformation of a template), and non-visual
information. The occurrence of appropriate confusion sets will then indicate, as in the
example above, which discriminations have been made early and which have been
made late in the course of recognitional processing.

Finally, we will be alert to the possibility of individual differences in the priority of
different types of visual and non-visual information. These differences may result from
differences in experience; our interviews, for example, suggested that less experienced
pilots may tend to focus more on details than on global properties. Differences might
also arise from the types of experiences to which different pilots have been exposed:
e.g., night versus day flying, short-range versus long-range weapons, or theaters where
different target properties assume importance for classification.

Procedures for validating ATR design concepts. The results of the experiments
on visual processing will be used to fine-tune and revise our hypotheses regarding ATR
interface design. These hypotheses will then be implemented in an interactive
computer mock-up of an ATR interface. The display concepts will be directly tested by
means of this mock-up.

Whereas the initial experiments were narrowly focused on the perceptual
components of target recognition, the interface validation studies will widen the scope
and increase the ecological validity of the experimental environment. They will place
subjects in a relatively realistic simulated battlefield context, which replicates at least
some of the actual tasks and mission priorities of Army helicopter pilots. The relevant
performance measure in this context is not only recognition accuracy per se, but the
way ATR displays support or disrupt engagement prioritization. Moreover, the time
constraints imposed in this study are not artificially associated with individual targets,
but with overall accomplishment of the engagement prioritization task. Finally, these
tests will address not only effects on performance, but also effects on confidence and
user preferences.

The tests will involve recognizing and prioritizing targets for engagement.
Subjects will be presented with 5 or 6 targets that have been detected and classified by
the ATR with a high degree of confidence (e.g., 90%). The subject's task involves
validating the ATR classification and selecting one of the targets for engagement based
on the classification. The time available to perform the task will be varied, e.g., from 2
to 40 seconds. Mission engagement priorities will involve the type of target (e.g.,
enemy tanks) or a combination of target type and battlefield location or activity. Target
detections and classifications will be indicated by the ATR at the level required by the
mission, for example, by a symbol placed adjacent to the target in the large-view
imagery display. In a certain percentage of the cases (e.g., 10%), the ATR
classifications will be incorrect in a way that is relevant to engagement priorities.



54

Three conditions will be compared which differ in how video windows or chips
are used to provide additional information about the potential targets:

1. No additional information is displayed about the targets.

2. Selected additional information is displayed, in accordance with the ATR
interface design hypotheses. In other words, information is displayed in the
sequence of natural visual processing, until enough information is available
to classify the target.

3. Full information about each target is displayed (e.g., large size chips, spatial
context, past sightings that provide additional cues, transformed templates,
and non-visual data).

The primary performance measures will be the frequency with which subjects
select the appropriate target for engagement as a function of the amount of time
available for the task. A secondary measure is user confidence in the selection of
targets. Speed-accuracy predictions are illustrated by the hypothetical data in Figure 6.

The most salient fact about Figure 6 is a simple tradeoff: The better a condition
does under extreme time stress (i.e., when the time for the task is only 5 seconds), the
worse it does when there is more time available. The reason is straightforward: The no-
information condition provides nothing to distract the operator in time-stressed
conditions, but it also provides nothing to help him, if he does have some time, to
confirm or disconfirm the classification conclusions of the ATR. Thus, the maximum
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accuracy achievable by the no-information condition is limited by the original
classification accuracy of the ATR. This is attained rather quickly (we have assumed
about 1 second per target for optimal performance.) The full-information condition, by
contrast, provides too much information in time-stressed conditions; this results in less
efficient selection and utilization of the crucial information (including the basic ATR
conclusions) and lower accuracy. On the other hand, given enough time, the full-
information condition allows the user to second-guess and possibly improve the
accuracy of the ATR classification. Optimal performance, however, takes much longer
to achieve (we have assumed about 8 seconds per target).

The selected-information condition is less disruptive than the full-information
condition when time is scarce, and is more useful than the no-information condition
when time is available. While the no-information condition may outperform it at
extremely brief task durations, and the full-information condition may outperform it
slightly at unusually long task durations, we expect that the selected-information
display may do best at the majority of task durations in between.1 The argument for
utilizing the selected-information display, then, is based on the highly favorable tradeoff
it achieves between speed and accuracy.

The number of targets, may be varied to explore the robustness of any
conclusions regarding the superiority of selected-information displays. The larger the
number of targets, the less information observers can utilize regarding each target.
This would be predicted to increase the relative advantage of the no-information
condition with respect to the full information condition. (Later, when we turn to our
discussion of verification strategies (Section 4.2.4), we will explore another crucial
variable, ATR accuracy. The less accurate the ATR, the more advantage there will be
in displaying fuller information for selected targets.)

We expect that confidence judgments by pilots will roughly correspond to
accuracy. In the no-information condition, we expect confidence to be low, since pilots
in our interviews have consistently expressed a desire to take a more detailed look at
targets selected for engagement. We also expect confidence to be low in the full-

                                           
1 Figure 6 is based on a specific verification strategy: examining all information about each

target before going on to the next target (described in Section 4.2.4 below). In the no-information
condition, the maximum success rate for selecting the most appropriate target is 79%, based on ATR
classification accuracy of 90% per individual target plus the possibility of guessing when targets are
misclassified and more than one target appears eligible for engagement. In the selected-information
condition, we made the somewhat arbitrary assumption that ATR errors could be corrected 40% of the
time when there was sufficient time to examine all the information; when fed into the model, this resulted
in a maximum engagement success rate of 87%. In the full-information condition, we assumed that if all
the information were examined, ATR errors could be corrected 60% of the time; this resulted in a
maximum success rate for that condition of 92%. Finally, we made assumptions about the rate of
examining targets with different amounts of information: 1 target per second for the no-information
condition, .6 targets per second for  the selected-information condition, and .13 targets per second for the
full-information condition. Similar conclusions could be derived from other verification strategies and a
fairly wide range of parameter values.
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information conditions, when pilots are presented with large quantities of information
which they have insufficient time to examine. Finally, we expect preference by pilots
among these conditions to follow along the same lines.

Hypotheses 7 through 12 in Section 3.1 deal with pilot options to display more
information for specific targets. An additional condition, therefore, might be: Selected
information plus pilot options. We predict that affording pilots the opportunity to explore
questionable classifications in more detail may result in higher accuracy, especially
when time is available. This effect would be more pronounced, also, the less accurate
the ATR.

The pilot-options condition offers a more fine-grained measure of pilot
preferences. By tracking the actual information requests of pilots, we can validate our
hypotheses about the sequence of processes in recognition. We can also look for
effects of individual differences as well as the effects of differences in the validity or
importance of different types of cues.

4.2.2 Level of categorization

The question to be addressed in this set of experiments concerns the
appropriate level of generality or specificity at which ATR conclusions should be
reported to users. In Section 3.2 we proposed design concepts based on theories in the
area of verbal categorization. According to those theories, there is a basic level in
hierarchies of linguistic terms, which people are quickest to learn, are more likely to use
in naming objects, and are fastest to verify. Concepts at the basic level tend to capture
the correlational structure among features across objects, without unnecessary
proliferation of category terms. The basic level may shift as a function of expertise.
Moreover, category terms at more specific levels are more likely to be used for objects
that are atypical members of the basic-level category, for objects that are highly
familiar, and when the goals of the task dictate a more detailed description. We
described these effects in terms of a favored level of categorization. Hypotheses 16
through 20 describe how displays of ATR conclusions might vary as a function of these
variables. Hypothesis 21 provides users with the option to display conclusions at other
levels when they chose to do so.

We propose two phases of experiments: first, verification in the target
recognition context of hypotheses regarding favored levels categorization; second,
validation of the suggested ATR interface design concepts.

Procedures to test psychological model: A number of experimental procedures
will be used to verify the role of basic and favored level concepts in target recognition:

(1) Generation of attributes: Subjects will be presented with category names
(e.g., vehicle, tracked vehicle, tank, T62) and asked to generate as many features of
the category as possible. As concepts become more specific, more features should be
associated with the category label. The increase in number of features should be
relatively great going from a more general level concept to the basic level. But the
increase in number of features should be relatively small in going from the basic level
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to more specific levels. For example, the following features might be associated with
tracked vehicle, tank, and T62, respectively:

Tracked vehicle Tank T62

Tacks Tracks Tracks

Wheels inside tracks Wheels inside tracks 4 wheels inside tracks

Tank shape Low profile tank shape

Turret Low turret

Gun Large gun

Exhaust hot spot Exhaust hot spot

Engine hot spot Engine hot spot

Knowing that an object is a tank implies a lot of information about that object - far more
information than is implied by knowing only that it is a vehicle. The additional
information that the object is a T62 does not produce a comparable increase in
information. For the most part, the new information consists of refinements and
constraints on the features already associated with tank: e.g., while all tanks have
guns, a T62 has a relatively large gun. The same pattern recurs in the hierarchy
wheeled-truck-KRAZ:

Wheeled vehicle Truck KRAZ

Wheels Wheels Wheels

Truck shape Truck shape

Cab Cab

Cargo Large cargo

Front engine hot spot Front engine hot spot

Differential hot spot Differential hot spot

Bridging unit bet. cab & cargo

Figure 6 illustrates this effect (We have given .5 credit for attributes that are only
refinements of existing features).
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(2) Judgments of typicality. A category and a list of instances of the category will
be presented (e.g., tank - T62, M60, PT7; truck - KRAZ, M35, ZIL; etc.). Subjects will be
asked to judge the typicality of the instances as members of the category on a scale
from 1 to 100. We predict that instances will tend to be judged non-typical when they
represent a larger than average increase in the number of associated features in
procedure (1) above.

(3) Spontaneous naming. Subjects will be presented with images of objects and
asked to classify them. They will be permitted to select a classification response from
any desired level of generality (e.g., wheeled, truck, KRAZ). With no further constraints
on the task (e.g., in terms of mission), we predict that the most commonly used labels
will be from the basic level, as defined in (1) above. The more atypical the object, the
more likely subjects will use more specific labels, as in (2) above.

(4) Verification times.  Subjects will be given images of objects together with ATR
classifications of those objects and will be asked to verify the ATR classification. We
predict that verification times will be fastest when classifications are at the basic level,
as defined in (1), or - for atypical objects - when classifications are at a more specific
level, as defined in (2).

We will be alert to the possibility of individual differences in the basic level, as a
function of different amounts of experience as well as differences in the tasks and
missions making up that experience. Such differences should be reflected consistently
by findings in procedures 1, 2, 3, and 4.

Procedures for validating ATR interface concepts. The results of the experiments
on verbal classification will be used to fine-tune and revise the hypotheses regarding
ATR interface design. These hypotheses will be implemented in the computerized ATR
mock-up and directly tested.
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The basic experimental context will be the same as described in Section 4.2.1
above. The tests will involve a realistic battlefield task: recognizing and prioritizing
multiple targets for engagement. Subjects will be presented with 5 or 6 targets that
have been detected and classified by the ATR with a high degree of confidence (e.g.,
90%). The subject's task involves validating the ATR classification and selecting a
single target for engagement based on the classification. The amount of time available
for the task will be varied, e.g., from 2 to 40 seconds. A fixed amount of visual and non-
visual data about each target will be displayed.

We propose to manipulate the following variables:

• the mission, and thus the level of categorization that is relevant for
engagement decisions,

• the level of categorization of the ATR conclusion,

• the frequency of occurrence and typicality of category instances,

• the level of detail of the data that must be consulted in order to classify the
object, and the associated level of categorization.

Let us initially consider only the first two variables (i.e., the favored level will be
the same as the basic level of categorization). The mission-related categorization level
will be either generic, basic-level, or specific. The level of categorization of the ATR
conclusion may also be generic, basic-level, or specific. In addition, the ATR
conclusion can be reported both at the basic level and at the mission-required level (if
they are different). Thus, we have the following combinations of these two variables:

Mission ATR Conclusions

Generic Generic Basic-level Specific Generic + Basic*

Basic-level -- Basic-level* Specific --

Specific -- -- Specific Basic + Specific*

(In this study, the ATR conclusion will always be at least as specific as the mission
level: There is little point in testing conditions where the ATR is capable of confidently
classifying a target at the mission-required level, but chooses not to.)

The asterisks represent predicted best performance: i.e., the level of ATR
conclusion that we expect to be optimal for the indicated level of mission (Hypotheses
16 and 19). A common element of these three predictions is display of conclusions at
the basic level. We expect that basic-level displays, regardless of the actual mission
requirement, will facilitate the observer's validation of ATR conclusions. If he looks at
the data first, spontaneous generation of a category label for comparison with the ATR
conclusion tends to involve the basic level. If he looks at the label first, production of a
mental image for comparison with the data is also most effective at the basic level.

If the mission-required level and the basic level differ, however, an additional
step is required. When the mission requires classification at a more generic level than
the basic level, the next step is simply verbal: e.g., recalling that a tank is a vehicle.
When the mission is more specific than the basic level, the next step may involve
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additional processing of the data, e.g., to discover what kind of tank is present. Display
of the mission-level categorization by the ATR in addition to the basic level supports
this subsequent step in processing.

We now consider the third and fourth variables listed above. These can cause
the favored level of categorization to be different from the basic level. If a specific type
of tank occurred far more often than any other in a particular battlefield setting, the
specific label (e.g., T62) might become the favored level for that type of tank. We
predict that performance will tend to be better with specific labels for highly frequent
instances (Hypothesis 18). Similarly, a highly atypical instance of a basic category may
be more appropriately labeled at a specific level (Hypothesis 17).

In some cases, as pointed out by Hypothesis 20, recognition of the object cannot
take place at the basic level. Because of a degraded image, occlusion, an unusual
aspect or orientation, etc. processing to a more detailed level of classification must take
place first, and identification at higher levels must be inferred from the more specific
category. We propose to examine this situation under two levels of mission:

Mission ATR Conclusions

Basic-level Basic-level Specific Basic + Specific*

Specific -- Specific* Basic + Specific

Asterisks represent our predictions regarding the best level to display ATR
conclusions for the given level of mission. If the mission requires classification at a
specific level, and the data also demand classification at a specific level, there is no
point in displaying the basic level conclusion. Spontaneous naming in response to
these atypical data will tend to be at a more specific level rather than at the basic level;
and imagery in response to a basic-level label would not be useful in verifying the
ATR's conclusion with these data.

According to Hypothesis 21, users might have the option of requesting
conclusions at more detailed levels. Another test might involve providing users this
option, in conjunction with the automatic display of the corresponding, more detailed
visual and non-visual data (Hypotheses 7 through 12). We predict that this capability
will improve the operator's ability to detect and correct ATR errors, especially under
conditions where ample time is available.

4.2.3 Mental Models and Uncertainty

The questions to be addressed by this set of experiments concern how ATR
conclusions should be displayed when the ATR is uncertain. In Section 3.3 we gave an
account of reasoning with mental models that stressed the isomorphism between such
models and the world. Crucial conclusions (e.g., about avoiding threats) can simply be
read off such models without explicit inferencing. In cases of uncertainty, a single
isomorphic model does not exist at the required level of specificity. Different methods
exist for preserving isomorphism in this situation: for example, adopting a more generic
description of the situation, or assuming that one of the possible representations is the
case. Hypotheses 25 through 27 specify design concepts for dealing with ATR
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conclusion uncertainty through a combination of generic and assumption-based
displays. Hypothesis 28 provides for the additional option of explicitly displaying
alternative possibilities.

We will first address experimental tests of the basic psychological constructs,
and then move to tests of the proposed ATR interface concepts.

Procedures to assess mental model reasoning: Experiments in this phase will
explore the role of assumption-based reasoning when target classification is uncertain.
The performance measurement paradigms described Sections 4.1.1 and 4.1.2 lend
themselves naturally to this task. In Section 4.2.1 on visual processing, we discussed
how these paradigms could be used to explore the probability of different kinds of
confusion errors as a function of time. In that research we were most concerned with
similarity parameters, ξ(i,j). In this study, by contrast, our primary focus is the bias
parameter, B(i). The B(i) determine how decision makers make choices about
classification conclusions when the conclusions are not fully constrained by data.
Consistent effects regarding these parameters indicate a systematic policy of adopting
assumptions.

We will investigate (i) whether such systematic assumption-adoption policies
exist, and (ii) what determines the types of assumptions that are made. In particular, we
will ask whether, and under what conditions, assumptions are based on the worst-case
(or best-case) classification, the most likely classification, specific categories of targets,
or the classification most conducive to accomplishing a task.

To answer these questions, the experimental design will have the following
features: Individual targets will be presented for classification, e.g., at the level APC,
tank, truck. The data provided for some of the targets will be inconclusive regarding the
required level of classification, e.g., some of the stimuli could be either APCs or tanks,
either tanks or trucks, or either APCs or trucks. Several contextual variables that might
affect assumptions will be varied orthogonally:

1. Mission goal in terms of specific categories of targets, e.g., kill APCs versus
kill trucks versus kill tanks.

2. Mission priorities in terms of the relative costs of missing a hostile or killing a
friendly, e.g., a close battle where friendlies and hostiles are mixed versus a
deep battle where only hostiles are expected.

3. The relative frequency of the different possible target types (e.g., APC, truck,
tank).

4. The threat to own aircraft represented by one of the target types, e.g., the
range of a tank's gun.

Classification data will be analyzed (as described in Section 4.1.1) for the role of
bias in confusion errors. Systematic effects on bias will then be tested for the following
variables:

• Specific categories of targets: For example, do subjects tend to classify
targets that might be either trucks or APCs as APCs?
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• Worst-case or most dangerous: Are subjects more likely to resolve
uncertainty in favor of tank in conditions where tanks are more dangerous to
own aircraft than in conditions where tanks are less dangerous to own
aircraft?

• Mission success: Are subjects more likely to assume that a target is a truck if
the mission calls for engaging trucks, and more likely to assume the target is
an APC if the mission calls for engaging APCs? Are subjects more likely to
assume that a target is a friendly if the cost of killing friendlies is relatively
high, and more likely to assume a target is a hostile if the cost of missing
hostiles is relatively high? Are assumptions less systematic (i.e., more
random) in low-stakes discriminations (e.g., between enemy APCs and
trucks) than in high-stakes discriminations (e.g., between friendlies and
hostiles)?

• Base rates: Are subjects more likely to classify a target as a truck in
conditions where trucks are relatively more frequent than in conditions
where trucks are relatively less frequent?

We will investigate the possibility of individual differences in the likelihood of
each of these assumption-adoption policies. For example, more experienced operators
may respond more systematically to variables such as mission success, danger, and
base rate than do inexperienced subjects.

Procedures to test ATR interface hypotheses: The results of the experiments on
assumption-based classification will be used to fine-tune or revise the ATR interface
design hypotheses. In particular, under conditions of high stakes and high time stress,
when conclusions are uncertain at the level of specificity required by the mission,
Hypothesis 27 proposes that conclusions be displayed at the required level of
specificity, based in part on assumptions. The experiments discussed above will
determine the types of assumptions that might plausibly be utilized in these displays.
The hypotheses regarding display of uncertain conclusions will be implemented in an
interactive ATR mock-up and tested.

The test environment will be the engagement decision paradigm discussed in
previous sections. A mission will be described, and 5 or 6 targets will be presented with
the task of using the ATR displays to select the most appropriate target for
engagement. Time stress will be manipulated by varying the time available for making
the engagement decision (e.g., from 2 seconds to 40 seconds). The stakes of the
decision will also be varied; for example:

• Low stakes: discriminating the preferred target (e.g., trucks) from among a
set of acceptable hostile targets

• High stakes: discriminating the most dangerous threat in terms of its
weapons range, or discriminating friends from foes.

A proportion of the ATR target classifications in each trial will be uncertain at the
level required by the mission. The following ATR display conditions will be varied for
these uncertain targets:
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• Generic conclusions: display of a conclusion only down to the level of
specificity at which the ATR is confident.

• Assumption-based conclusions: display of a conclusion at the required level
of specificity based on assumptions.

• User choice: users select whether generic conclusions or assumption-based
specific conclusions will be displayed.

There is as design tradeoff between the display of assumption-based versus
generic conclusions. Assumption-based displays optimize the use of classification
conclusions for engagement decisions. Generic displays optimize the opportunity to
improve those conclusions before using them. The appropriate resolution of this
tradeoff depends on the time available to make the engagement decision:

We predict that assumption-based conclusions will result in more effective
engagement performance for high time-stress conditions (Hypothesis 27). Assumption-
based conclusions enable operators to use the limited available time to construct a
single coherent mental model of the situation. The ability to quickly visualize the
battlefield may be crucial, for example, in selecting a target based on the danger posed
by threat weapon range.

On the other hand, we predict that generic conclusions will lead to better
performance in low time-stress conditions (Hypothesis 26). In this case, time is
available for the user to make a significant contribution to genuine (rather than
assumption-based) reduction of uncertainty. His independent judgment of target
classification, based on his own examination of the data, will enhance overall
performance, and still allow time for construction of a mental model.

Finally, in low-stakes situations, we predict that the choice of how he allocates
his time can be left to the user. In these situations, the user may be in the best position
to gauge the relative advantages of immediately visualizing the battlefield in order to
make engagement or routing decisions, versus reducing the uncertainty of
classification (Hypothesis 25).

A final orthogonal manipulation will involve the user option of viewing alternative
possible conclusions at any level of specificity. Viewing alternative possibilities may
help some users in low time-stress situations in their efforts to resolve uncertainty. It
may also help users visualize alternative pictures of the battlefield in engagement
planning (Hypothesis 28).

4.2.4 Verification Strategies

This set of experiments examines how operators sample information to
accomplish difficult classifications and to verify uncertain conclusions. Experienced
problem solvers in a variety of fields appear to have more effective data collection
methods than less experienced problem solvers. One strategy that seasoned operators
might adopt under time stress involves emphasizing breadth rather than depth, i.e.,
sampling a limited amount of crucial information about each target rather than full
information about only some of the targets. Another strategy involves using the ATR



64

conclusion as a starting point and selectively examining data that might pose problems
for it. We will test hypotheses both about prompting users regarding ATR uncertainty
(hypotheses 29 through 32) and about the way ATRs should display data (hypotheses
33 through 36).

Research will proceed in two phases: an investigation of unaided data sampling
and verification strategies, and a test of the ATR design hypotheses that support those
strategies. Unlike the previous topics, both phases of this research will utilize a
multiple-target, engagement paradigm, rather than the single-target classification task.

Procedures for investigating verification strategies. The basic paradigm for these
studies involves presentation of multiple targets, statement of a mission, and selection
by the subject of the best target for engagement. Target data will not be automatically
displayed. Rather, subjects will be able to request data of any sort about any target
through an interactive interface. The requested data might include, for any target:

• ATR classification conclusions

• small zoomed-in video chip (for viewing overall shape and pattern of hot
spots)

• large zoomed-in video chip (for viewing parts and relations among parts)

• zoomed-in video chip of objects in spatial proximity

• non-visual information about the target

• a visual template transformed to match the target (e.g., in terms of occlusion
by other objects or unusual articulation or orientation of parts)

Independent variables will include the following: time available to make the
engagement decision, the number of targets, the level of ATR conclusions (appropriate
for the mission requirement versus more generic than the mission requirement), and
features of the targets that may be known by the operator but which are not available to
the ATR. Such features might be used in resolving classifications for which the ATR is
uncertain. The relevant feature will be varied among the possible data sources: It might
involve overall shape or hotspots, spatial relations of parts, context of other objects,
non-visual information, or appearance under conditions of occlusion or unusual
orientation of parts.

Two major dependent variables will be utilized: success in selecting the optimal
target for engagement, and the pattern of information requests over targets. We will
use the pattern of information requests to identify the data sampling strategies that
subjects adopt under different conditions of workload (i.e., time and number of targets),
different levels of ATR results, and different types of information available to the
human. We will use engagement decision performance to evaluate the relative success
or failure of the different strategies that have been identified.

Heuristic models will be developed to account for the success or failure of
different sampling strategies. These models will relate performance in this paradigm to
the experimental variables and to the speed-accuracy models of recognition
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performance developed previously. We now illustrate how such models can be used to
generate predictions and explain findings.

 Imagine, for example, a scenario with four targets. The mission is to engage the
greatest threat. Each target is a hostile tank, but one is the most dangerous because it
has a long-range gun while the others have short-range guns. Thus, the relevant level
of classification is the specific type of tank, since this is correlated with degree of
threat.

The probability, E(T), that the observer will select the best target for engagement
after T seconds in the engagement task, depends on the probability, C(t), that the
observer will classify a given target correctly at the relevant level of specificity, after t
seconds of focusing on that individual target. The exact relationship between E and C
depends on the mapping from T to t: How much time, t, will the subject spend on an
individual target given that he has a total of T seconds to perform the engagement
task? This mapping, in turn, will depend on the strategy observers adopt for sampling
information about targets within the allotted time, T. For illustrative purposes, we will
discuss two kinds of strategy: information-centered and target-centered.

Information-centered strategy: The observer first examines a particular type of
information about each target, then examines another type of information about each
target, and so on. This strategy results in an approximately equal amount of information
being examined about each target. But under time constraints, it can result in the total
omission of some types of information. An example of this strategy would be consulting
the full screen view of each target, then (if there is time) going back to look at a
zoomed-in video chip of each target, then (if there is more time) going back to look at
non-visual information about each target, etc. In an ATR context, a variant of this would
involve first scanning the ATR classification of each target, then (if there is time) going
back to look at the video chip, then looking at non-visual information, and so on.

With the information-centered strategy, the time spent per target, t, would be
expected (to a first approximation) to be proportional to T/N, i.e., the total time for the
engagement task divided by the number of targets:

Eq. 1                                                 t = q(T-a)/N.

The proportionality allows for allocation of some of T (represented by a) to other tasks:
e.g., constructing a mental model that compares the different targets in terms of threat.
It also allows for an inefficiency or overhead in processing targets (represented by the
slope q<=1.0). Such inefficiency might be caused by the more stressful engagement-
decision context as compared with the simpler classification task. A more interesting
potential source of inefficiency involves display design. Presentation of large quantities
of less useful information may impede the operator's ability to extract the information he
needs.

 Suppose that at a given time T into the engagement task, the observer has
spent the equivalent of t seconds observing each target. Speed-accuracy operating
characteristics for classification indicate that the expected classification accuracy for an
individual target, based on t seconds of processing, is Ct. (I.e., there is chance Ct that
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the operator will classify a long-range weapon platform as a long-range platform, and a
chance Ct that he will classify a short-range weapon platform as a short-range
platform). What is the probability that this operator will correctly chose the best target
for engagement?

The probability, E(T), of selecting the best target for engagement is a function of
(i) accurate classification of the best target and (ii) possible inaccurate classification of
one or more of the inappropriate targets, plus guessing:
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In equation 2, Ct represents the probability of accurately classifying any individual
target in the respect that is relevant for engagement, based on the information that is
sampled about that target in time t (t is related to T by equation 1 above). The equation
makes the simplifying assumption that if more than one target is classified as
appropriate for engagement, the observer selects among them randomly.2

As the number of targets increases, engagement performance declines for two
separate reasons: First, classification accuracy Ct decreases as the time allocated to
each target declines. In addition, however, the chance of at least one classification
error rises simply because there are a larger number of targets (even if  Ct remained
constant). For example, if adequate time is available for fully processing a single target,
suppose individual-target classification accuracy is 90%. With four targets, even if Ct
stays at 90%, the probability of making the right engagement choice E(T) falls to 77%.
Suppose (more plausibly) that when four targets are presented, the probability of
correctly classifying an individual target falls to 80%. Then the probability of making the
right engagement choice is only .49.

Target-centered strategy. Another strategy that observers might adopt is target-
centered. In this strategy, the observer examines all the information about a target
before going on to examine all the information about the next target, and so on. Under
time constraints, this strategy can result in the complete omission of some targets.
                                           

2 CN-1-k(1-C)k represents the probability of one way that k of the N-1 targets that are not in fact
appropriate could be misclassified as appropriate for engagement. The best target can be selected only if
it is classified as appropriate for engagement, so Equation 2 assumes that the best target is correctly
classified. Thus, CN-1-k(1-C)k is multiplied by C, resulting in the expression CN-k(1-C)k in each term.
The observer guesses from among k incorrectly classified targets and 1 correctly classified target.
1/(k+1) thus represents the chance that he will pick the actual best target from this set.

The equation assumes that the operator will not engage if no target is classified as meeting the
highest standard for engagement. This would happen if the best target is misclassified (as inappropriate
for engagement), and all the other targets are correctly classified (as inappropriate for engagement). This
assumption is probably appropriate for the hostile/friendly engagement criterion: If every target is
classified friendly, there is no engagement. But in other situations (e.g., killing the greatest threat among
a set of hostiles), the operator might randomly select a target for engagement from among all the targets
when one appears to be no greater threat than the others. In that case, a term must be added to the right
side of equation 2 to represent the chance of accidentally selecting the best target from the whole set:

CN-1(1-C)(1/N)
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With the target-centered strategy, the number of targets, n, that an observer is
able to examine depends on T, the amount of time available for the engagement
decision, and on t*, the amount of time it takes to fully process the information provided
for an individual target (i.e., to achieve asymptotic classification accuracy):

Eq. 3                                      n = min(N, q(T-a)/t*).

Here again, a represents time that might be allocated to other activities than classifying
individual targets, and q<=1.0 represents a potential inefficiency in using the time that
is left.

With this strategy, there is a major difference between performance with targets
that have been examined and targets that have not been examined. If a target has
been examined, the expected classification accuracy equals the maximum (or
asymptotic) classification accuracy, Ct*, achievable with the given information. If a
target has not been examined, we assume that it will not be engaged.

Suppose the best target for engagement happens to be in the examined set.
Then the probability of correctly choosing it after time T, E*(T), is given by equation 2
for the information-centered strategy, but substituting  Ct* for  Ct, and substituting the
actual number of targets examined in the available time (n as a function of T, according
to equation 3) in place of the total number of targets, N:
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But the best target may not be in the examined set. This strategy assumes that there is
no dependable prior information by means of which the operator can select the most
promising targets for examination. Thus, the best target has approximately the same
chance of being examined as any other target, and the chance that the examined set of
targets includes the best target is n/N. The final probability, E'(T), of selecting the best
target for engagement is just the chance of both examining the best target and
selecting it from the examined set:

Eq. 5                                         E'(T)= E*(T) n/N.

The target-centered strategy degrades rapidly as the number of targets
increases. E*(T) is not affected (since it assumes that the best target is examined), but
the chance of examining the best target, n/N, will decline rapidly. Suppose, as in our
previous example, that only a single target is presented, and there is adequate time for
processing it; individual-target classification accuracy E*(T) is 90%. If four targets are
presented, E'(T) falls to 24%.

The relative advantages of the information-centered and target-centered
strategies may depend on the circumstances. The information-centered approach will
be better whenever E(T) is a bigger proportion of E*(T) than n is of N: i.e.,

E/E* > n/N

from equations 2 and 5 (omitting the argument T for convenience). Under time stress,
e.g., for small values of T or large values of N, the information-centered strategy has an
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advantage: The initially sampled data for each target will generally be the most
valuable, and thus E will be relatively large; on the other hand, because of the limited
time, or the large number of potential targets, n/N will be small. On the other hand, in
non-stressed situations, i.e., for large values of T or small values of N, E converges on
E* and n/N converges on 1; thus, the two approaches might tend to become equivalent.

Why would the target-centered strategy ever be used? One reason could be
processing efficiency, reflected in the parameters a and q in equations 1 and 3. Unlike
the information-centered strategy, the target-centered strategy permits a complete
evaluation of each target before going on to the next one. All that need be retained in
memory is the result of classifying each examined target (appropriate or inappropriate
for engagement). The information-centered strategy, by contrast, requires retention of a
running summary of the evidence for each target through repeated iterations. We thus
predict greater use of information-centered strategies for time-stressed conditions, and
greater use of target-centered strategies for non-time-stressed conditions.

In fact, operators might not use a a pure target-centered strategy very often.
They will not ususally have to select targets randomly for examination without any prior
indication of their relative value. Graphical displays, for example, place all targets in a
common spatially represented situation. At a minimum, then, common information is
generally available across all targets about their spatial locations relative to one's own
aircraft, and their spatial relations to one another. Such information enables the
operator to crudely prioritize the targets for examination. A more effective variant of this
strategy, then, might be a hybrid, in which the same basic information is first extracted
about all targets, then (if time permits), the most significant targets are subjected to a
more exhaustive examination.

A particularly interesting hybrid strategy is possible when the user is interacting
with an ATR. In the selective critiquing strategy, the observer first examines the ATR
conclusion regarding each target (an information-centered approach), then proceeds to
examine additional information about targets whose ATR classification seems
questionable in respects relevant for engagement (a target-centered approach). This
strategy usually results in sampling at least one piece of information on each target (the
ATR classification), but can result in no further information about some targets.

We predict that more experienced operators will adopt the selective critiquing
strategy. Its advantages are: (a) the ATR classification is a relatively valuable piece of
information, and all targets are initially sampled with respect to that information; and (b)
complete information is efficiently sampled about targets where the user's attention can
do the most good. This strategy involves some risk-taking: i.e., that the operator can
intelligently select targets for detailed examination. A bad choice could result in no
additional attention paid to important targets, e.g., friends about to be engaged or
threats about to be missed. Some predictions in this respect are possible: Experienced
operators will be highly adaptive to the demands of a particular situation in their use of
this strategy. They will be influenced by mission priorities in their selection of targets for
detailed attention, choosing targets that involve potential false alarms when the cost of
killing a non-target exceeds the cost of missing a foe and choosing targets that involve
potential misses when the opposite is the case. Moreover, in sampling additional
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information, experienced operators will give priority to types of information that are
relevant to classification but not processed by the ATR.

We predict that the skills of relatively inexperienced operators will be less
developed in both these respects. Inexperienced decision makers tend to adopt fixed
procedures rather than adapt their strategies to the particular demands of a situation.
We thus predict that inexperienced operators will be less likely to use a selective
critiquing strategy, and more likely to adopt the less risky information-centered strategy,
in which some information is collected about all targets.

Procedures for testing ATR interface design concepts: In the next phase of
experimentation, we will test the ability of the ATR interface to support efficient user
verification strategies. The same engagement decision task will be utilized, but
additional features of the ATR interface will be introduced as independent variables.
The effects of these features will be examined under different conditions of stakes and
time stress.

The following variables will be investigated for conditions where the ATR is
significantly uncertain:

• Prompting versus no prompting. Prompts will be developed based on the
likelihood and cost of  recognition errors. Thus, in the prompting condition,
prompts may alert users to potential misses, and in other cases alert them to
potential false alarms.

• Display of all signals versus full information versus supporting data. In the
all-signals condition, the ATR determines if there is any information content
in a given category of information before displaying it. For example, if the
parts of the object are discernible, a large-scale video chip will be displayed;
if any objects are in spatial proximity to the target, a view of the surrounding
objects will be displayed. The ATR does not evaluate the importance of the
information, leaving that to the operator. In the full-information condition, all
categories of information are displayed regardless of information content. In
the supporting-data condition, only information used by the ATR to arrive at
its conclusion are displayed.

• Mission priorities, emphasizing cost of false alarms (e.g., friendlies and
hostiles mixed in a close battle) versus emphasizing cost of misses (e.g.,
deep battle with only hostiles).

• Stakes, or costs of errors (e.g., the potential danger of a missed threat, the
cost of a killed friend)

• Time to accomplish engagement decision (e.g., 2 to 40 seconds).

Hypotheses 31 and 33 predict that ATR prompts and the all-signals display
condition will combine to facilitate use of an efficient and adaptive selective-critiquing
strategy under conditions where there is adequate time to carry it out (low time stress)
and where the costs of errors make examination of additional data worthwhile
(moderate to high stakes). Hypothesis 32 and 33 predict that the selective-critiquing
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strategy may also be valuable under high time stress, in conditions where the stakes of
an error are high enough that it is worth the chance of missing a potential target.
Finally, Hypothesis 34 suggests that supporting data only should be displayed with low
stakes or high time stress and moderate stakes.

Subsidiary manipulations might include comparison of numerical uncertainty
indicators with binary indicators (uncertain versus certain). Hypothesis 29 predicts that
binary prompts will lead to more efficient engagement decision making. We might also
compare various ways of symbolizing uncertainty in the same context (Hypothesis 30).

4.3 Tasks and Schedule

The proposed research will be carried out in four sets of studies. Experimental
sets 1 and 2 will be performed in the first 15 months of the project, and sets 3 and 4 will
be completed in the second year:

Set 1: Includes the basic psychological research on stages of visual processing
(Section 4.2.1) and on levels of categorization (Section 4.2.2).

Set 2: Includes tests of the ATR interface design hypotheses regarding display
of data (Section 4.2.1) and ATR conclusions (Section 4.2.2).

Set 3: Includes the basic psychological research on mental models in reasoning
about uncertainty (Section 4.2.3) and on verification strategies (Section 4.2.4).

Set 4: Includes tests of ATR design hypotheses regarding display of uncertain
ATR conclusions Section 4.2.3) and display of prompts and data under uncertainty
(Section 4.2.4).

Note that each year involves a cycle of research beginning with basic
psychological processes that have implications for ATR design (sets 1 and 3), and
proceeding to the ATR design implications of those processes (sets 2 and 4). The first
year (sets 1 and 2) focuses on more elementary processes (visual recognition and
verbal categorization) and their implications, while the second year (sets 3 and 4)
examines the consequences of introducing uncertainty, i.e., the more advanced
processes of reasoning with mental models and verifying ATR conclusions. Figure 8
diagrams some of the relationships among the sets of studies.

Each set of studies will embed four subtasks:

1. Detailed experimental design

2. Implementation of experimental environment (preparation of stimuli and
programming of software)

3. Data collection

4. Analysis and Conclusions

Figure 9 provides a complete schedule of tasks and deliverables.
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4.4 Subjects and Equipment

Experiments will be run, as much as possible, with active-duty Army helicopter
pilots. All subjects will all have experience in tasks involving target recognition,
although the degree of experience may vary from subject to subject.

Subjects will be obtained at Fort Bragg, NC, and at Fort Hood, TX, through
cooperative relationships we have established with researchers at the U.S. Army Night
Vision and Electro-Optics Directorate, Fort Belvoir, VA. Brian Gillespie has been an
extremely helpful point of contact at NVEOD for arranging subjects. LTC Gary Botts
was our point of contact at Fort Bragg for the Phase I interviews.

Experiments will be implemented on an IBM desktop computer and high-
resolution color monitor. A likely software environment is Windows and C.

We will attempt to use realistic image stimuli to the greatest extent possible,
within the constraints of the experimental designs. Realistic stimuli with a great variety
of salient features and degrees of uncertainty are available from NVEOD. We have
ascertained that these stimuli can be displayed on CTI computer equipment. Clare
Walters is our point of contact.

Basic Psychological Processes ATR Design Hypotheses

Visual Processing

Verbal Categorization

Display of data

Display of conclusions

Mental Models

Verification Strategies

Display of conclusions

Display of prompts and data

Set 1

Set 2

Set 3

Set 4

Figure 9. Relationships among experimental sets.
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Figure 9 here
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