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SUMMARY

In work reported here, Decision Science Consortium, Inc. (DSC)

has examined the application of the decision analytic concept

of value of information to the design of information systems.
Automated data base systems play an increasingly prominent role in
a variety of areas - including Command, Control, Communications,
and Intelligence tCBI], Indications and Warning (I & W), and
business management. However, a basic problem of data base

design has not been solved: what information should be included
in the system, and what subset of that information should be
preasanted to a user, so as to best achieve the objectives of the
relevant organization? A common characteristic of systems in
current use is that they often provide vast guantities of partially
relevant data, while failing to identify the information which the
decision maker actually needs to solve his problem.

Current evaluation technigques for information systems appear to
bypass this problem altogether. Ewvaluation in terme of data-
processing parameters, like channel capacity or memory size,
ignores the ultimate objectives of the system and seems to assume,
simply, that more information is better. Direct assessment of
information guality, in terms of such attributes as relevance and
accuracy, fails to ensure that the actual impact of information on
decisions (hence, on ultimate obijectives) is considered. Multi-
attribute utility models similarly have not explicitly reguired
consideration of how information is used in decision making.

The concept of Value of Information (VOI) implies that information
has value to the extent that it can alter decision and improve
payoffs. However, the application of VOI technigues, as they
now stand, to information svstems is prohibitively complex. These
technigques presuppose a highly structﬁrﬂd'decisinn problem, in
which infnrm&tiﬂn, the uncertainties to which it pertains, and
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the options available to the decision maker are all specified

in detail. Moreover, they assume that the decision maker will
behave optimally in the light of the information he receives.
Complex, multipurpose information systems, on the other hand, are
expected to operate in a variety of environments, some of which
cannot be predicted in advance. And, they must serve users who
cannot always conform to established normative ideals.

The aim of the present work is to devise modifications of standard
VOI techniques which make them simple enough and realistic enough
to apply to information system design, while retaining a basic
reference to the impact of information on decisions. In doing so,
we proceed by steps of (roughly) increasing simplification:

lj] Explicit reference to all the information in a data base can
be cmitted from a VOI analysis if acts are modeled as events

(Brown, 1975). Assessment heuristics are presented which facilitate
modeling acts as events in this (or any other) context. By means

of these heuristics, a system designer can examine tradeoffs
between the information value of a system and its usability.

(2) The same heuristics allow the designer to accommodate non-
optimal uses of information and to evaluate decision aids which
support inferential and decision making processes.

(3) The manner in which information affects judgments concerning
critical events need not be explicitly modeled, It is shown that
modeling acts as events may reduce the cost, in terms of credibility,
of omitting this part of a VOI analysis. A convenient form of
asgessment, when critical events are not modeled, is in terms of

the expected cost of errors (or opportunity less). The application
of this notion when acts are modeled as events, however, raises
special difficulties, which are dealt with.
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(4) If certain assumptions are acceptable, the options facing a
decision maker need not be specified in a VOI analysis. Information
may be evaluated in terms of the overall probability that it will
cause a decision maker to switch from an otherwise preferred option,
and the expected swing in utility if he does so.

{5) The information walue and usability of a system can be dis-
tinguished, within this evaluation technigque, by decomposing the
probability of switching options. The result is a multiattribute
utility model which has well-defined attributes and a well-motivated
rule for combining them, and which refers explicitly to the impact
of information on decisions. This approach extends, once again,

to the modeling of non-optimal behavior and to the evaluation of
inference and decision aids,

We turn next to the application of these concepts to the interaction
with a system by a particular user. The objective is to program
into the data base "intelligent"™ real-time information selection

for the user. We outline an interactive procedure which focuses

the user's attention on the potential decisional impact of infor-
mation and which guides him to the data categories of most per-
.tinence. Again, a variaﬁy of levels of simplification arﬁ eXplored.
Procedures for mapping critical events, about which the user is
uncertain, onto data categories are also examined.
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1.0 INTRODUCTIOR

1.1 The Heed for Goal-oriented Information System Design

There iz a curious paradox in the current status of auvtomated
information systems - whether in Command, Control, Communications,
and Intelligence (C3I), Indications and Warning (I & W), or
business management. On the one hand, as Zani (1979%) notes
regarding management information systems (MIS); they "have not
really been designed at all. They have been spun off as
by=-products of automating or improving existing systems...." It
might be supposed that such a bottom-up approach would result in a
fairly painless infiltration of information systems into
pre-existing organizations. Yet, this has been far from the case.
In many instances, the introduction of systems in this way has
produced controversy and failed to satisfy initial expectations
(&:g., Miller, 1980; Beard, 1977; Swanson, 1974}.

A consensus seems to be emerging that a more active design process
is reqguired if information systems are to be optimally exploited:

¢ Andricle (1980} argues that the focus in c3 on "timely,
rapid, survivable; and secure" delivery of information
reflects lack of appreciation for what is done with the
information after it is delivered, i.e., how commanders
cognitively process it in order to make decisions.

e Gorry and Morton (1971) describe how management
information systems have focused on technigues
for automating routine cperations rather than

“support of problem-solving and strategic planning.

e Mintzberg (19_ ) argues that management information
systems tend either to flood users with data or else
summarize and average to the point of blandness. There is
no intelligent selection of the details needed for
decision-making.



¢ BShlaim (1976) stresses that analysis and interpretation
have lagged behind the sheer production of data in the
area of monitoring and warning,

e Miller (1980) cites severe organizational and
institutional resistance to the implementation of command
and control projescts.

Az a result of such considerations, the Deputy Assistant Secretary

of Defense has recently urged that Command and Control systems be
designed and evaluated explicitly in terms of their contribution to
mission success (Von Trees, 1980). 2Zani (1379%) similarly concludes
that MIS design should begin with a fundamental analysis of manage-.
ment decision functions. Finally, Daly and Andriole (1979) stress
that Indications and Warning system design must refer to the purposes
for which warnings are sought.

1.2 The Information System Evaluation Problem

Unfortunately, the implementation of a goal-oriented design
process for information systems runs into techical problems.
Systems for the management and display of information should help
decision makers achieve their objectives by making better

decisions. In contrast to transportation systems or weapon
systems, information systems do not (necessarily) change the world
in which action occurs, but have their principle impact on the
cognitive processes that lead to action. Yet a conspicuous gap in
the technology of design is an understanding of the relationship
between information and decisions. As a result, evaluation of
information systems has typically omitted reference to the
decisions the systems are presumably designed to support.

In general, a viable technigue for assessing systems must be both

practical and relevant. It must involve attributes which are
realistically measurable and which at the same time reflect
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a system's potential contribution to ultimate objectives. In the
case of information systems, practicality is frequently achleved
by measures which ignore this distinctive character of
information, and whose relevance is therefore doubtful.

1.3 The Concept of Value of Information and Current Technigues

In the work reported here we take the opposite tack. We start
with an analysis which focuses on the decisional impact of
information, although its shortcomings from the point of view of
practicability are rather severe. We then explore wavys in which
the analysis can be simplified and modified in order to arrive at
an operative evaluation technigque for the data base content of

information systems.

The starting polint suggested by this strategy is the decision
analytic concept of Value of Information (VOI). The essence of
the VYOI concept is that information has value only to the extent
that it can alter decisions; with a resultant change in expected
payoffs. As we have implied, the direct application of current
YOI technigues presents problems, since even the evaluation of a
gsingle data item in a single scenario may reguire an unmanageable
number of assessments (Raiffa and Schlaifer, 196l). Quite apart
from practicality, however, there are more troubling and
fundamental objections to the straightforward use of VOI as it now
stands.

. VOI applies to the value of performing an experiment. The
experiment is expected to reduce uncertainty concerning an event
relevant to the decision maker's cholice of action. In order to
assess VOI; therefore; one must have specified the experiment; the
uncertainty to be reduced, the potential bearing of the experiment
on the uncertainty, and the choices which may be affected. In
other words, the problem must be highly structured. A second
assumption is that the decision maker's choices subsequent to
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receipt of the information will be rationally predictable on the
basiz of that structure. B

Thase demands are not typically satisfied:

# Information systems will be expected to operate in a very
large and not very well specified set of scenarios. c3
gsystems, for example, must deal with contingencies
determined in part by our adversaries., Options and major
uncertainties may not be known in advance.

& Users may diverge from established normative theories in
the manner in which they handle information. Political
factors guite unrelated to organizational goals often
distort the flow of information in organizations (Huber,
1980a, 1980b). Limitations of time, cognitive capacity,
anéd knowledge prevent individuals from making the
normatively correct use of information presupposed by VOI.

A corollary of the fact that users do not always behave optimally
is that information systems may help them to behave more optimally.
Such systems may in fact provide assistance in structuring the
preblem, i.e., in generating options and identifyving important
parameters; as well as in drawing inferences and prioritizing
actions. Traditional VOI technigues do not apply directly to the
evaluation of this type of information.

A common element in these considerations has been the guestion of
appropriate structure. The structure presupposed by traditional
VOI may be unknown in advance, disregarded by the decision maker
at the time of action, or supplied to him at that time by the
information system. ' This common element is our startihg point.
Generalizations of vOI which handle it might produce at the

game time a significant simplification of the reguired assessments
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and computations. The objective of the research reported here is
to pursue that possibility, in order to discover practicable
evaluation techniques for information systems which nonetheless
retain the VOI concept with its explicit reference to decisions.

1.4 Preliminary Distinctions

It will be useful at this point to set boundaries on our present
concerns and to mark some distinctions which will figure in the
application of VOI to information systems.

(1) First, the items to be evaluated are the content of the
information system (and to a lesser degree the manner in which
information items are displayed), in contrast to the hardware and

software configuration.

{2) A truly general evaluation method, however, will allow these
items to be either experiments or facts. An experiment is an
observation which has a number of possible outcomes. For example,
the application of VOI to a forecasting model involves the issue
of what indicators to include, where each indicator is a variable
which can assume a range of levels. Experiments play a role in
other contexts as well--e.g., in command and control, the wvalue of
different kinds of information about the location and identity of
hostile platforms in the immediate wviecinity.

Facts, on the other hand, are constants and are {in principle)
knowable in advance of their selection for use in a decision
context. The particular outcome of a previously performed
experiment is a fact. Facts may concern past events (e.g.,
international crises), but also include theoretical and historical

generalizations.



Some data base systems consist exclusively of facts; an example

is Executive Aids for Crisis Management (Mahoney, et al., 1978;
Spector, et al., 1978) which consists of historical facts

about international crises organized according to actions,
objectives, problems, and other descriptors. More usually,

there is a mix of facts and experiments. The designer of a combat
center, may decide to include within the data base continuously
updated information on threat locations, as well as standing
intelligence on threat capabilities.

Many facts to be considered for inclusion in an information
system will be initially unknown to the system designers (e.qg..
the specifics of threat capabilities). The decision of whether
or not to include these facts in the data base must,; therefore,
involve two phases: first, whether to expend the resources
required to make them available; second, whether or not to
include the output of the first phase (known facts) in the
data base system. "Unknown facts"™ may, in the initial phase,
either be characterized in terms of a variable the actual level
of which is uncertain (e.q., weapon range)--or else by means of
a more generic category (e.g., "the events leading up to the’
Suez Crisis"). 1In the former case, unknown facts are treated
analogously to experiments.

In general, experiments or facts may be considered one by.one
for exclusion or inclusion in a data base--or €lse they may be
grouped into larger categories. At the limit, the entire
contents of a proposed data base can be evaluated as a single
unit. Grouping of items will be necessary when the items
interact in their impact on decisions--as, for example,

when one item cannot be interpreted properly in the absence

of another.

{(3) Another important distinction among information items
concerns the level of analysis which they represent. Certain



items may provide higher-order information regarding the
implications of other data for judgment and/or action. For
example, in EWAMS (IPPRC, 1979; DOI, 1978) the number of
bilateral interactions of a given type between two countries
serves as the basis for an inference regarding the likeliheod
of a crisis. 1In this case, both levels of analysis are
available to the user: datum and inference,

Az another example, in submarine command and control raw bearing
measurements are used to estimate the range of a target. Target
range may in turn figure (together with facts about adversary
capabilities) in still higher-order inferences concerning the
probability of being within threat weapon range (Cohen and Brown,
1980). A still higher-order inference might regard the action
(e.g., fire now or continue to approach) which maximizes expected
utility. An important issue in the design of such a system is the
gselection of levels ko be presented: To what degree does the user
require evidence as well as conclusions? To what degree will the
presentation of conclusions mark an improvement over the
inferences the user would have drawn on his own from the evidence?

(4) A different kind of distinction concerns the time at which
information is evaluated. We consider that walue of information
can be computed and information choices made at either [(or both)
of two stages: system design or system use. We begin by assuming
a hypothetical "Universal Data Base" containing all information
items which are of any relevance whatscever. (This iz a rather
loosely defined and open-ended set, since it contains all possible
inferences from its members.) The first stage of selection
(Figure 1-1) reguires the selection of a subset of the Universal
Data Base to serve as the "Actual Data Base" for a given system.
This selection is performed by the designers of the system with
its intended users in mind. The second stage of selection
produces a subset of the Actual Data Base to serve as a "Virtual
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Data Base" tailored to the requirements of a current decision in a
gepecific scenario (Figure 1-1). This stage directly invelves a
user of the system (although proviszion for such specification is a

task for the system designer).

Information evaluation technigues may be applied at either

lor both) of these stages. We refer to the interaction of the
designer with such a technigue as the "designer dialogue™, and the
interaction of the user as the "user dialogue". Somewhat
different constraints affect choices at these two levels. When
the user of a C2 system selects a virtual data base (e.g., the
contents of a display screen or of core memory), his major
limitations are likely to be time and cognitive capacity. Other
considerations might include the number of display surfaces and
the personnel available to record and analyze the information

selected.

The system designer must consider these same factors in a general
way, especially if a user-controlled stage of selection is not
provided for. But additional factors enter into the designer
dialogue, e.g., limits on the size of long-term storage devices, and

the costs for research and development.

(5) A final demarcation of our interest concerns how information
items are to be evaluated. Information has many effects: it may
simply satisfy curiosity, and it may increase confidence in one's
previous decisions or in those of someone else. These effects are
certainly not to be ignored. But our central focus here, as
implied by our interest in VOI, will be on information's
decisional impact. The measures which we develop can, we assume,
ba combined subsecuently with other aspects of value, within the
context of a general multi-attribute utility model.
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1.5 Outline of Report

Chapter Two examines information system evaluation techniques in
current practice. It consists of three parts. In the first, we
look at technigues which seem practicable but which do not
explicitly refer to decisien making. In the second, we examine
the YOI concept and shortcomings Ef current VOI technigues. And,
in the third, we describe some recent modifications of VOI which
hold promise for the application to information systems. These
modifications were originally designed to handle non-optimal or
not fully modeled decizion making (Brown, 1975) and the evaluation
of decision analysis (Brown and Watson, 1975).

Chapter Three reports the major results of the study. It turns
out that the modifications of VOI mentioned above make a
significant contribution to the problem of applying VOI to
unspecified scenarios and, in general, to the goal of a simple,
practical evaluation technigque in system design. Some additional
madifications are suggested to further simplify the technigue and
reduce the degree of specification regquired. These modifications
in turn are shown to contribute toe the methodology for evaluating
decision analysis and for representing non=-optimal behavior.

Chapter Four applies the foregoing results to the on-=line
gselection of information by system users. A considerable increase
in system flexibility and in accommodation to individual
diffefennes can be achieved by applying VOI concepts to the
interaction between user and system in a particular decision
problem, rather than merely at the system design stage.

Finally, an Appendix explores some possible applications of fuzzy
set theory to the problem of information evaluation.
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2.0 BACEGROUND RESEARCH

Two purpeoses motivate the development of an evaluation method-
ology applicable to information systems. Such a methodology

can help set priorities for the allocation of resources among
diverse options - e.g., command and control, weapons, and

force levels. On the other hand, it can lead to the improvement
of information system design for a given expenditure of re-
sources. In both cases, the role of an evaluation technique is
in the measurement of a proposed system's contribution to
ultimate objectives, or utility.

Currently practiced technigques differ in the features of infor-
mation systems which serve as indicants of ultimate valus. AS

a consequence, they differ (a) in the clarity of the relationship
between such features and utility, and (b) in the number and
difficulty of the reguired assessments. A brief survey cof avail-
able technigues will show that the obijectives of validity and
practicability tend to conflict, and that it is difficult teo
achieve an acceptable level on both at once.

2,1 Hon-Decision Oriented Approaches

In this section we will briefly survey four approaches to in-
formation system evaluation. WNone of these approaches involves
expliecit reference to decisions., They differ according to the

avowed criteria of evaluation:

Data-processing parameters
Information gquality
Multi-attribute utility
Uger information selection
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2.1.1 Data-processing parameters. In the area of C3I, Com=-

munications technology has traditionally taken the lead. Ewalu-
ation of CEI systems has tended to focus on properties of in-
formation transmission and storage. The availability of well=-
developed theories in this area has encouraged the use of measures
like channel capacity, connectivity, memory size, and computation
spead. In some methodologies (e.g., TRI-TAC, described in

Miller,;, 1980}, these measures are combined by a weighting scheme

inte a single index of communication performance.

Unfortunately, the measure of worth deriving from this approach
makes no reference to the real objective of the system: wiz.,
mission accomplishment. To assume that communication performance
reflects such an objective in a straightforward, or even
monotonic, fashion is to accept on faith that "more information
is better". This is to ignore human cognitive and organizational
constraints which dictate a need for information filtering and
decision aiding (Andricle, 1980).

Moreover, it is hard to see how meaningful weights could be
assigned, and an appropriate balance struck, between such com-
peting claims as memory size and computation speed without reference
to the uses of the system. For example, a system designed to
calculate the trajectory of an approaching weapon would require

a different tradeoff on these dimensions than one designed to
evaluate the likelihood of a political coup in Irag. "Communi-
cation: performance" itself cannot be assessed in abstraction

from a mission.

Measures of this sort may prove useful (if appropriately linked
to ultimate objectives) for the evaluation of alternative

hardware or goftware designs. But they do not apoly at all to
the selection of the content of the information to be provided.

For this reason; it does not seem desireable to construct an



evaluation technigue with these measures as a basis. It has
been suggested (Alberts, 1980) that an evaluation technigque
might start with data-processing parameters, but employ "link-
age models" which describe the relationship between these para-
meters and higher-level indicants of system utility. Such a
technigue, while acknowledging the importance of ultimate util-
ity, would have to ignore some of the most critical sources of
variation among proposed systems--i.e., the nature of the infor-
mation presented.

The optimal exploitation of more effective weapons and more

highly mobile forces regquires CBI systems capable of supporting
rapid, accurate decision making. The advantage in an engagement
may belong to the side which can saturate the command and control
capacity of an adversary. Yet current E31 systems tend to present
large gquantities of data about the environment, adversaries, OWn
unit, and weapons, in relatively raw undigested form (cf., Cohen
and Brown, 1980). An exclusive stress on communications.

properties, by deflecting attention from what is done with

improvement.

2.1.2 Information gualityv. A second approach evaluates infor-
mation systems at a higher level of abstraction and has been
particularly prominent in the literature on Management Infor-
mation Systems (MIS). Information content and information de-
livery are characterized in terms of such dimensiﬂns as acouracy,
relevance, timeliness, clarity, and readability (Swanson, 1974;
Gallagher, 1974). Direct subjective assessments of these
properties may be obtained in a laboratory context or in large-
scale prototype testing. Again, measures on these dimensions

{(or others defined in terms of them) may be combined by a weighting
scheme into a single index of worth.

On the face of it, these properties seem to bear a close relation
to the contribution of a system to ultimate objectives. The
notion of precision, for example, is defined as the proportiocn
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of the supplied information items which are deemed relevant

by the user. Thus, weight is given to the need for an intel-
ligent selection of the information to be provided. An adeguate
system must achieve a suitable balance between precision and
completeness, defined as the proportion of relevant items

which are supplied (cf., Cleverdon, 19&62; Smith, 1872).

Similarly, reguirements of usability are acknowledged in such
dimensions as clarity and readability. Again, successful systems
must strike a balance between usability and informativeness

in the more abstract sense, represented by relevance, accuracy,
and timeliness. A distinction of this sort between two classes
of properties has become widely accepted (Herner and Snapper,
1978; Larcker and Lessig, 19B0). For example, Smith (1972)
propogsed two sets of eriteria, one dealing with efficiency

from the operator viewpeoint and one with effectiveness

from the user viewpoint. In his efficiency set, Smith listed

a variety of attributes, reflecting both cognitive and organ-
izational factors: orientation toward a single corganization
(or, presumably, body of users), functional and technical inte-
gration with the target organization, uniguenass (or lack of
overlap with other systems), flexibility, efficacy of processing
procedures and programs, and efficacy of the man/machine inter-
face. 1In his set of effectiveness attributes, Smith includes
the following: relevance, accuracy, timeliness, sufficiency,
concisenses, consistency of the data source, user confidence,
and news or discovery value of messages.

A closer examination of this approach reveals, however, that the
relation of criteria to utility has not been sufficiently
clarified. Since the goal is to define the "perceived"” value

of information, justification of attributes which were initially
posited a priori has been sought in studies of subjective judg-
ments. For example, factor analyses of experimentally elicited



responses suggests that evaluations can be roughly organized
in accordance with the proposed criteria (e.g., Zmud, 1978;
Larcker and Lessig, 1980). Unfortunately, however, there is
reason to suppose that subjective judgments tend to be guided
by considerations other than ultimate utility.

Often a respondent is simply invited to indicate which data
elements or information are "relevant"™ to him. In this case,

no directicon is given as to what the information should be
relevant for. Data which have no effect on decision making (be-
caunse, for example, they are already known to the user) might

be counted "relevant" if they are related to the topic of concern.
In some studies the respondent may be asked to check only those
elements which are relevant in that they are likely to be “"used".
On occasion, the instructions request the respondent to check

off items that are to be "used for decision making." The latter
approach is in fact seldom employed. But even when it is used,
critical ambiguities as to what is being assessed remain un-
resolved. Information may be used in decision making and vet
have a very low probability of changing the decision and affecting
utility. Moreover, no consideration is given to the relative
importance of the decisions which might be affected.

Little attention has been paid within this approach to rules for
weighting and combining attributes into a single index of utility
(zee Keeney and Raiffa, 1976). PFactor analytic methods for
extracting subjective dimensions from evaluative judgments

(Zmud, 1978; Larcker and Lessig, 1980) implicitly inpute ortho-
gonality to the extracted dimensions. Yet in terms of utility,
additive relationships do not always seem plausible. For
example, a decrease in: usability cannot always be fully com-
pensated by an increase in informativeness (e.g., accuracy).

If usability falls to zero (e.g., in the case of an illegible
display), utility is presumably zero regardless of accuracy.

This suggests a multiplicative relationship. Thus, while greater
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accuracy may be achievable only by sacrificing usability, in
terms of utility the more of one, the more valuable is a given'
level of the other. A similar argument applies to timeliness
and accuracy. More time may buy more accuracy. But a system
that never produces information on time is worthless, regardless
of its accuracy. If orthogonality is to be imputed to these
dimensions on the basis of factor analvtic results, we can

only conclude {once again) that respondents were not assessing
utility.

The problems with "relevance" noted above spill over, of course,

to derived measures like precision and completeness, which are
defined in terms of relevance. But these measures raise funda-
mental gquestions about system evaluation in their own right.
Completeness, as Cooper (1976) notes, places heavy stress on the
presumed cost of "unexamined documents", i.e., relevant information
which is not supplied by the system. But it is far from clear

that this is a well-defined, guantifiable set except in very
special circumstances. To be sure, in a detection problem (e.g.,
signalling the presence of enemy platforms in an area) misses

are guantifiable in principle and are gquite relevant to syvstem
evaluation. But in general it is not clear what the set of "all
facts" on a given topic might be, nor why this set should be
considered in evaluating the utility of the facts that are supplied.
As Coopar notes, information never received by the user cannot
affect his decisions. (It may, but need not, affect our assess-
ments of likelihoods and utilities for the outcomes of his

decisions.)

In short; it is neither feasible nor justified to automatically
penalize a system when it does not present a "relevant" item

of information. The more direct and wvalid approach is to compare,
in terms of utility, svstems which supply a particular type

aor item of information with those which do not.



An important result of treating information selection as if it
were a detection problem is to slight the value of inference

and decision aids. Such aids are not easily reconciled with

the paradigm of a fixed set of facts from which data is to be
selacted. On the contrary, they may assist the user in providing
a structure for the problem within which such facts can be
interpreted. In Management Information Systems, as in CEI.

the emphasis so far has been on information systems which per-
form routine repetitive tasks, at the level of "operational
controel," rather than systems which can support problem-definition
and problem-solving at the level of "strategic planning" (Gorry
and Morton, 1971). Major advances in the latter area will come
not from more “complete" coverage of data, but from enhanced

information processing ability.

2.1.3 Multi-attribute utilityv. A considerable body of technigues

has been developed (e.g., Eeaney and Raiffa, 1976) for measuring
utility when competing alternatives vary on numerous relevant
dimensions. Multi-attribute utility (MAU) models specify how
measurable properties of a system are related to overall system
utility by means of mediating attributes and conditioning wvari-
ables. Development of such a model consists of several stages.
Overall utility is decomposed into subfactors, and these are
further decomposed down to the level of measurable properties.
Functions are assessed on the measurable properties to express
their contribution to factors at the next higher level. Com-
bination rules are employed to show how the value of a factor

is determined by the subfactors subordinate to it, and importance

waights are assigned to the subfactors.

MAU models provide a single index of utility for complex systems.
They have been applied to such CEI components as the single
channel ground and airborne radio system (Chinnis, et al., 19%75).
"value diagrams," which may be regarded as wvariants of MAD



models, have been applied to the evaluation of alternative
intelligence collection platforms in Barclay, Brown, et al.,
1977. 1In this application, the value of a particular platform
is expressed in terms of its contribution within different
callectiﬁn modes (photegraphic, radar, ete.), for different
types of target, for different types of threat, in different

geographical regions.

MAL models, in contrast to the data processing and informaticn
guality approaches, give explicit attention to utility and to the
form in which attributes combine. The objective is to facilitate
evaluation by breaking it down into simpler components. None-
theless, there has been little or no attention to the particular
nature of information systems. The assessment of information

value 18 not decomposed in such a way as to make explicit reference
to ite impact on decisions. The validity of the assessments
obtained thus depends on the assumption that the assessor takes

this impact implicitly into account.

For axample, in the evaluation of intelligence platforms, im-
portance weights must be assigned to different collection modes
for a given target type, threat type, and geographic region.
There is no guarantee that in assigning these weights, proper
regard is paid to the decisions that would bhe affected. Yet
information has value in this context chiefly to the extent that

it can alter deci=zions.

In sum, although the MAU methodology is suitable for application
to complex systems in general; there is as vet no adegquate
specification of the criteria or attributes which are particularly
appropriate for information systems. 1In light of the pre-

viously noted problems with such measures as relevance, com-
pleteness, and precision, specifying such attributes promises

to be a non-trivial task.



2.1.4 User information selection. A final approach is to
rely not on assessments, but on behavior. Information selection

decisions mav be observed as they are actually made. Analysis

of such decisions, which are assumed to reflect user needs,

can guide system design (cf., Davis, 1974). In the adaptive
information selection (AIS) method developed by Perceptronics
(5amet, et al., 1976, 1977), a model of the information

choices by individuals or organizations is used to determine
which items will be routed where. The model is capable of
adapting to changing preferences for information as circumstances

alter.

This approach is ideally suited for the design of systems in-
tended to automate and replace existing procedures. AIS is
likely to channel information in a way which is compatible with
the capacities and preferences of its users. WNonetheless, for
this very reason, it has important limitations. Perfect mirroring
of current procedures in incompatible with the achievement of
certain kinds of improvement. AIS may in fact perform better
than the users which it models when their errors can be accounted
for as random noise. But it cannot correct systematic biases,
fallacies in reasoning, or mistaken assumptions. Moreover,

it cannot lead to the provision of informtion - e.g., decision

ajds - which significantly enlarge present capabilities.

Behavioral data have a status somewhat comparable to holistie
subjective assessments of information value. Intuitions of
usars concerning their needs are a valuable source of insight
for the system designer. Howaver, these data need to be supple-
mented by a more analytical consideration of what the data are
neaded for, i.e., what their impact is expected to be on sub-

sequant decisions.



2.2 Value of Information

The standard decision analytic concept of the value of informa-
tion is well described in most of the basic textbooks (e.g.,
Brown, EKahr, and Peterson, 1974; Raiffa, 1968}, and is pursued
in greater depth and complexity in more advanced work (e.q.,
Raiffa and Schlaifer, 196l1l). Although information can have
intrinsic value by increasing knowledge, the thrust of VOI

is to evaluate information gathering acts (or “"experiments")

in terms of their instrumental impact on subseguent decisions.
(Our notation will be a simplified version of the notation used
in Raiffa and Schlaifer.,)

2.2.1 A decision problem. If he is unable to obtain further
information, a decision maker might face a simple decision prob-
lem like the one depicted in Figure 2-1. In this problem, he
must choose between two options, 8y OF ag. tne of two events

or states of the world; s, or 32; will turn out to be the case.
Depending on which combination of act and event obtains, he

will experience a utility, u(a,s). In order tc decide between
ay and Bor the decision maker assessaes utilities for the terminal
node of every path threough the tree. He also assesses probabil-
ities for each event, Ptsl} and P[szl. He can now choose be-
and a, by "averaging out and folding back"™ the tree.

tween al
First, he computes the expected value of each action by taking
the sum of the vtilities for that action weighted by the proba-

bilities:

u*{a) = E ul(a,8) = I P(slula,s).
E =

The expected value of the decision problem itself is the ex-
pacted value of the best alternative:

u* = maxaEsu[a,§I+
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u{al,sll

u[al,sz}

ulazral}

u[az,sz}

A Simple Decision Problem
Figure 2-1
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2.2.2 Value of perfect information._ It is quite simple to
assess the expected value of perfect information (EVPI) about
5 = {s,,8,} for this decision maker. In effect, we "flip the
tree,” placing the uncertainty node for s before, rather than
after, the decision node. We thus assume the decision maker
has information about s when he makes the decision. Now,
rather than selecting the option with the largest utility
averaged across possible states of the world, he can select
the opticn with the largest utility within each state of the
world, whatever it turns out to be:

u* (PI) = Es maxaula,ﬁl.

The expected value of perfect information is simply the value
of the decision with the information less the value of the
decision without it. Clearly,

- g -
a,s) * max_ E ula,sl;
E_ max ufa,s) > a Bg {a,8);

a

hence ,

u* (PI) > u*,

Thus, the expected value of perfect information is positive or

Zero. (Note that this does not imply that the decision maker,
even wWith perfect information about s, selects the option with
the best outcome. s may not be the only relewvant uncertainty,
in which case ula,s) is not a realized utility but an expection
over the unmodeled events. Alternatively, u{a,s) may be the
expected value of a probability distribution assessed on utility
u, for each a and s.)

2.2.3 Opportunity loss. Some insight into the dependence of

the value of perfect information on decisions is obtained through
an alternative formulation, in terms of expected opportunity loss
(EOL). Let us assume that without any further information the
decision maker prefers option a, (i.e., a; maximizes Esu{a.ﬁli.
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Now we can compare, for each s, the utility he receives from a,
with the utility he would have received if he acted on perfect
information about s. This difference is referred to as an "op-
portunity loss:"

ilal,s] = maxauta,sl - u:al.sl.

It can be shown that the expected value of perfect information
is the same as the expected opportunity loss for aq

1=

Eaiial,Ej

EE[maxauta,ﬁ} - ulal.sll

EVPI.

Observe that for wvalues of 8 in which the already preferred act,
ayr is in fact the best choice, mﬂxau{a,s] = u{al,si, and there
is no gain in utility from perfect information. Information has
value only if it can change decisions. 1In effect, the value of
perfect information is the expected cost of errors.

2.2.4 Value of imperfect information. Often a decision maker
iz able to obtain information about possible states of the world
which, while not perfect, nonetheless has a bearing on his choice

of action. Let us assume that before choosing betwean 2, and Bqr
he has the chance to perform an experiment, 2y, with possible
cutcomes z, and z,. The expected value of this experiment can
be assessed by adding an uncertainty node, representing its pos-
sible outcomes, to the decision tree prior to the decision node.
In Figure 2-2, we see that the decision maker can either choose
immediately between 2, and 2, {after the dummy experiment, eﬂ]

or alse perform ey first.
A convenient assumption in analyzing value of information is

that utility is a linear function of some measure (e.g., money)
of total consequences (Raiffa and Schlaiffer, 196l1; Lavalle, 1968).
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Figure 2-2

Decision Tree for Value of Information

utal.sll

u{al,szl

utal.ﬁl}

utaz.szl

:al,sll-c

u{al.azl—c

H{HE;EL}—'E

U{EE’EE}_E

u{al;sl}-c

u[al;szl-c

2 ulaz.azj-c
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Then the utility assessed for each path through the tree can be
expressed as two additive segments:

ule,z,a,s) = ula,s) - cle),

where c(e) represents the cost of performing the experiment.
(We further assume that c(e) is independent of experimental
cutcomes, z.) As a result, we can compute the value of the
experiment e (disregarding its cost) and then compare this
value with E{Ell. in order to decide whether to purchass it.

To evaluate the experiment ey the decision maker must make
some additional assessments: (a) the probability of receiving
a particular observation from the experiment, P[zlell and (b)
the probability of states of the world conditional upon these

ohservations, Pﬂslz;el}. Usually, the most natural way to ob-
tain these probabilities is to assess P{3|Ell and P[z's,el},
and then to use Bayes' Therom:

P(alel} F{zla,ell

Pis|z,e,) =
Plz|eq)

Plzle;) = [ B(s|e,) Plz|s,e ).

Before performing the experiment, the decision maker can i
compute the expected wvalue of each action, a5 and 85, using
the conditional rather than the prior probabilities of =:

u*{el,z.al ula,B8).

- Es|z,el
The expected value of the choice between aq and Ay after ab-
sarving the information represented by z, is the expected
value of the best alternative:

u*[el,z] = max_E ufa,s).

slz,e,
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Finally, the expected value of the decision problem with the
experiment e, is obtained by taking the expectation with re-
spect to its ocutcomes:
w
u !el} = maxaE

E=|El u{a;sl}.

alz;el
This is the decision maker's expectation, prior to the exper-

iment, of the uwtilities to be cobtained posterior to the receipt
of information. Hence, this technique is referred to as "pre-

posterior analysis."
As in the case of perfect information, the expected value of
imperfect, or "sample" information (EVEI) is the value of the

decision with the information less the value of the decision

without it (disregarding cost):
= L = #*
EVEI = u*(e;) u*fe_}.

This gives the fair cost of El‘ If EVS5I exceeds the actual cost,
c{elj, then other things being equal, ey is worth performing.,

2.2.5 HNon-negativity of information wvalue.

In a sense, imperfect information about s is perfect informa-
tion regarding a component of the uncertainty. Uncertainty
about s, represented by P(s), is decomposed into uncertainty
about the outcome of the experiment, P[zleli, and uncertainty
about s conditional on those outcomes, P{5|z,91]. Imperfect
information resolves the former. (Note, however, that uncer-
tainty about s in the communication theory sense (Shannon and
Weaver, 1949%) need not be reduced by the occcurrence of z.)
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EVSI,; like EVPI; is non-negative. The essential point is that

u*[elj max u*{el,i,al

= Ez|&1 a

| W

* 2
maxaE u (El.E,a}

z|el
This simply says that taking the maximum within levels of the
variable z (perfect information about z) is at least as good
as taking the maximum averaged across levels of z (ignorance
about z). The remaining steps reguire some additional assump=-
tions. We see that

B u* Z

E E U{ﬂtg}
a zl&l slz,el

= max_E ula,s)

a“zis|e,

= max E 5
*a 5|E:L"1'[E*’i':I

gince ul{a,s) is not a function of 2, If we further assume that
Pts!elﬁ = P(s), i.e., that performance of the experiment does
not itself alter states of the world,

max_E u(a,s)

= E|El maxaEsu!a,s}

]
u [ED}
Thus,
o w :
u*(e;) 2 uvile ).
2.2.6 Non-decisional impact of information. The standard VOI
analysis does not allow for the fact that the acguigition of in-

formation may, in itself, affect the state of the world. The
most obvious example is, perhaps, the situation where, were others
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to know that one was obtaining the information, they might alter
their own strategies. This is indeed a pressing concern in sub-
marine command and control, for example, where information about
target location must often be collected without revealing the
presence of one's own ship. Increased accuracy of localization
may lead to counterdetection and loss of advantage (Cohen and
Brown, 1980). Similar tradecffs may govern decisions as to

the collection of intelligence information in general.

I. H. Lavalle, in his paper, "On Value and Strategic Role of
Information in Semi-Normalized Decisions™ (1980), examines this
"strategic non-independence® between information-gathering and
states of the world. Lavalle shows that one may split up the
overall value of the information into the strategic value and
the pure informaticnal wvalue. The strategic value is the dif-
ference in the value of the decision with and without the ac-
guisition of non-used, zero cost information. It may be either
positive or negative. The pure informational value is the dif-
ference in the value of the decision with and without the de-
cisional use of information already acgquired. The pure infor-
mational value is thus always non-negative. Lavalle shows that
if the decision maker has constant risk aversion (i.e., if

his utility functions are either linear or exponential in form)
than the overall value of information is simply the sum of

the strategic and the pure informational wvalues.

It will be an assumption of our approach that, in general, the
utility of information can be additively decomposed into pure
information value and other sources of value. The latter in-
cludes not only Lavalle's strategic value, but other contributions
of an information source or experiment - including, for example,
enhanced communication within an organization or increased con=-
fidence in previously taken decisions. The utility of informa-
tion, in terms of its decisional impact, can then be assessed

in abstraction from its other sources of value. All con-
tributions to utility can ultimately be combined within an
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overall multiattribute evaluation of an information system.

2.2.7 Conditions of positive value. The conditions under which
imperfect information has positive (pure informatiocnal) walue can
be illuminated by a formulation in terms of opportunity loss. We
assume that in the absence of information concerning z, the decision

maker prefers ootion a,. We can now compute the cost of the errors
caused by not knowing E. That is; we compare for each wvalue of

Zz, the utility he expects to receive from ay with the utility

he would have expected had he acted on information about z. The
expected value of imperfect information is the expectation of

this difference with respect to z:

EVEI = u*[el} - u*{eﬂ,all

[maxaEslz i ufa,g) - maxaEEu[a,s}]

E
1|E1 ey

* - %
Ezlellmaxau {el,zrah u {El,z.al}].

These egquations shows that imperfect information will havs posi-

tive expectad value if and only if:

- z and s are not independent (E # ES]. Thus, z has
1

s|z,e
an impact on the decision maker's judgments about s.

® Under some outcomes of the experiment, the
best action given knowledge of z i2 not the pre-
viously preferred option, so it is possible that

ﬁhxau*[el,z,a}} u*(e,,z,a,). In other words, revised

judgments about s will lead to altered decisions.

e The utilities of the previously preferred option and
the option indicated by knowledge of 2z are different:

i.e., altered decisions affect payecifs.



2.2.8 Application of VOI to information systems: practicality.
The paradigmatic application of VOI has been to the one-time
acquisition of a discrete item of information for a particular
purpose: for example, a market survey to decide whether or not
to introduce a new product. Ewen in this kind of application,
standard VOI technigques guickly become unwieldy as the number
of options, states of the world, and experimental outcomas in-

creasa. It is not unheard of for decision trees to be con-
structed with tens of thousands of nodes.

Information systems, however, especially in EEI, do not fit
within the traditional paradigm, either at the design stage or
in use (Figure l-1). The designer must consider innumerable
items of information for inclusion in the actual data base,
many of which will be regquired for a multiplicity of purposes
by a variety of users. Moreover, it can be expected that in-
formation items within a system will interact strongly in their
effects on decision making: in many casaes, the presence of one
will be useless without the presence of another. As a result,
aven in a single instance of system use, more than one

item will tend to be present in the wvirtual data base (e.g.,

on a wvideo display).

Interaction substantially complicates the problem of system
evaluation. Consider the task of evaluating a data base con-
gisting of n experiments, En = {31,....En}, for use in only

a single scenario or decision problem. The baseline against
which VOI is calculated will depend on the purpose of the eval-
uation. If the issue is a procurement choice among an informa-
tion system and other options, we will probably be interested in:

E?EI{EH} = u*!En} = u*{eu].

That is, we will compare the decision problem with and without

the entire data base, But if the issue involwves adjustments
to an existing sytem, e.g., the expansion of E__, by the
addition of experiment e, . We will want:
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EVSI Ien]En_l} = g*{E )} - u*(E__,),
i.e., we will compare the two data bases directly. MNow if

the e, are utility independent, the budget planner or system
designer can compute the expected wvalue of the decision
separately for each information item, assuming no other items
te be present, and then compute the wvalue of the decision with
the entire data base by summing over items:

n
&* = ¥ *
u !En! i u ‘Ei}*
In this casea,

EVSI (e i _
“lEn-ll = e ) u*le_ ),

80 when an existing data base is to be modified, only the items
in gquestion need be considered.

If, on the other hand, the e; are utility interdependent, this
decomposition fails: the wvalue of adding e, depends on the
items which are already present. Let the set z contain every
combination, z, of the outcomes of each of the experiments
El“l”Eﬂ+ Then wea hawve

u*(E_ ) = E max_E ufa,s).

n z|E, a“s|z,E,

Thus, a very difficult set of probability assessments is reguired
over Z x 5, the joint space of combinations of experimental out-
comes and events,

If we now consider the operation of the system across scenarios,
the assessment effort is increased many times. (Note in
addition that scenarios need not be utility independent:

failure in one may increase the value of success in another.
Thus, summing EVSI across decision problems may lead to dis-

tortion).
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Even without interaction, the burden of assessments and comp-
utations for system VOI would be prohibitive. With interactions,
it is probably impossible.

2.2.9 The problem of specifying structure. As we have seen,

VOI methods presuppose a highly structured decision problem:

a specified set of options, a specified set of uncertainties
bearing on the choice, and a specific source of information
which can reduce the uncertainty in specified ways. This
reguirement raises problems gquite apart from the assessment
burden it imposes. The set of scenarios in which a CEI system
is expected to operate tends not only to be large, but - for

a variety of reasons - not very well-specified.

e Technological advances in sensors and weapons will
affect opticens and information sources. Such de-
velopments are not fully predictable in advance.

e The pptions which we perceive as available will
evolve as tactical doctrine changes in unforeseen
Wavs.

¢ The most critical "state of the world" in deter-
mining the outcomes of our actions will be the
actions of our adversaries. These derive from
policies of which we will have only partial knowledge.

In reducing the complexity of V0I, we will decrease the re-
quirement for structure. An incidental bonus is that we

may be increasing the scope for information system flexibility.

2.2.10 Standard simplifications of VOI. Methods for
simplifying VOI analysis do exist. Some are particular to
the value of information, while others represent guite general

methods for "pruning" decisgion trees. Unfortunately, these
methods are not entirely successful in resclving the diffi-
culties discussed above. In general, either there is insuf-
ficient reduction of complexity or else the analysis is so
generie that, in essence, the benefits of the VOI concept are

sacrificed.
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2.,2.10.1 Opportunity loss. A formulation in terms of op-

portunity loss can sometimes ease the assessments required
for VYOI analysis. In place of utilities, u(a,s), at the
terminal nodes of the decision tree, we can place the error
cost or opportunity loss:

Ll{a,s) = ulag,s] - ula,s)

where a, is the option we would choose if we had perfect know-
ledge that s is the case., We can compute the expected op-
portunity loss of a decision with experiment-&lri*{el], by
averaging out and folding back as before, only assuming that
the decision maker minimizes expected opportunity loss at each
decision node rather than maximizing expected utility (Brown,
Eahr, Peterson, 1974; Raiffa and Schlaifer, 1%61). The
expected value of imperfect information for 2, is then:

Evsliell = E*{Eu] - L*{eli

m [u*({PI} = u*!eﬂ]] - [u*(PI) ~- u*!El}]+

Opportunity loss is useful when the components of L{a,s),
u[as.sj and ufa,s), are additively decomposable into: (i) =&
common factor which is difficult to assess, and (ii) a
criticﬁily varying factor. For example, some aspects of the
utility of a decision problem may be constant whether or not
the optimal action is selected, e.g., the cost of deploving a
platform may not depend on the tactics adopted. This common
factor drops out of the analysis and need not be considered

when the difference, %la,s), is assessed directly.

Analysis in terms of opportunity loss omits no relevant infor-
mation from the assessment of EVSI. Clearly, however, the
reduction in the assessment task is guite marginal in texrms of
the total assessments still reguired.

2.2.10.2 Perfect information. The expected value of perfect
information can be used to set an upper bound on the amount
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the decision maker should be willing to pay for information.
The computation of EVPI is considerably simpiér than for
EVSI, whether or not in terms of opportunity loss. The
experimental outcomes need not be enumerated, and a probability
measure need be assigned only to 5 rather than to I x 8.
Moreover, a rough assessment of EVSI can be based on EVPI
by the process of "anchoring and adjustment." The evaluator
need only assess the proportion Py of the value of perfect
information which he believes will be afforded by the imperfect
information e,. Then

EUSI{El] = Pl*E?PI
The evaluator will probably place more confidence in the
adjustment process if he has actually calculated both EVSI
and EVPI for a few information items. WNonetheless, it is far
from clear that the assessment of P will be sufticiently
refined to distinguish among many proposed alternative data bases.
In comparing 24 and €54 for example, the relevant compariscn
is betwean P1 and Pgr EVFI dropping out as a common
term. But this boils down simply to a holistic assessment of
VoI for e; and e,, with no explicit analysis of their differential

impacts on decision making.

2.2.10.3 Scenario sampling. An exhaustive elaboration of

scenarios is fortunately not required for the evaluation of
information systems. Considerable decision-analytic experience

has been gained in the past few years in the genaration of sets
of manageable scenarios which, nevertheless, constitute adequate

bases for evaluation of systems.

0'Conner and Edwards (in press) have proposed some general con-
cepts and methods for generating a satisfactory set of scenarios.
Four criteria can be identified from their paper. Scenarios
should be:

{1) realistic;
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{2} relatively probable;
[3) representative;

(4) maximally discriminating among systems.

Criterion (1) can be satisfied by adding detail that has
approximately the same effect on the evaluation of all alter-
natives. Criterion (2) reguires not that scenarios be
probable in a literal sense, but that they be probable re-
lative to other scenarios specified at a comparable level

of detail. Criterion (3) regquires that the selection of
scenariocs be an appropriate sampling from the total "scenario
gpace.” Once the appropriate dimensions of this space are
defined, achievement of eriterien (3) can usually be assessed
by expert judgment. The major difficulty is in defining
these dimensions soc as to satisfy ecriterion (4) as well.

Once appropriate scenarios are selected, system utility can be
estimated as a weighted average of the utility within each
gscenarioc. Weights represent the probability of a scenario
relative to the probability of the selected scenario set, rather
than its probability as such (which will be very small).

These concepts were developed in the context of applyving multi-
attribute utility models to the evaluation of complex military
systems. Their relevance to present concerns, however, is
twofold. PFirst, of course, they may be applied straightforwardly
to the evaluation of CaI systems. More important, however,

iz a sacond -- and novel -- application of these concepts to
the determination of the expected value of a set of information.
This latter use would, in essence, substitute sets of infor-
mation in place of the alternative radios (Chinnis, EKelly,
Minckler, and O'Conner, 1973), radars (Barclay, Chinnis, and
Minckler, 1975), or other eguipment being evaluated.

Thesa technigues, howewver, do not reduce in any way the assess-
ment effort required within a scenario; and the total number
of scenarios which needs to be considered may still be quite large.

2=25



2.3 Modifications in VOI Technigques

The problem of simplifying VOI analysis so that it becomes man-
ageable for information systems remains unsclved. In this sec-
tion, we turn to some more fundamental problems in the VOI ap-
proach. Modifications of standard techniguesz which have been
proposed to deal with these problems may léead us some distance
toward the desired simplifications.

2.3.1 The consistency condition. A very strong assumption,

implicit within the standard decision analytic treatment of

VYOI, concerns the behavior of the decision maker when he arrives
at the subsegquent decisgion node (e.g., the choice betwaaen 2, and
azl. Hot only is it assumed that the structure of the decision
problem is fully specified, but it is assumed that the decision
maker acts rationally upon that structure. The "consistency
condition" says that the portion of the decision tree following
the decision node will adequately represent the decision maker's
view of his problem when he gets to it. This means:

(1) He will compute expected utilities for each option using
the modeled conditional probabilities and utilities.

(2) He will then maximize expected utility.

(Alternatively, we need only require that he will act as though
(1LY and (2) were true.)

The traditional analysis thus takes a normative view of subse-
quent as well as initial decisions. Its output is not simply
& recommendation concerning information purchase, but a “de-
cision rule" prescribing subsegquent choices contingent on out-
comes of the experiment.

This normative approach, and the consistency condition under-
lying it, are closely related to the non-negativity of VOI.
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It must be remembered that VOI is the prior expectation of

the value of information, before receiving it. If the decision
maker feels that the information to be provided will be mis-
leading, he should also anticipate that he will take that feel~-
ing into account when he comes to act on the information. (It
is reflected in the conditional probabilities for states of the
world which he assesses now and will act on then.) By incorpor-
ating his misgivings into the model, he dispells them. 1In es-
sence, the consistency condition states that, at any given

time, he should not be surprised about (have failed to antici-

pate) his feelings or opinions at that time.

Hevertheless, the normative approach to subseguent decisions,
reflected in the consistency condition, may conflict with the
goal of evaluating informaticon decisions. For this purpose,
what is needed is a prediction of what the decision maker will
do with the information. In effect, the consistency condition
takes prescription as description: he will optimize with re-
spect to the information available at the time of the analvsis.

2,3.2 BActs as events. Rex Brown, in his paper, "Heresy in
Decision Analysis: Modeling Subsequent Acts Without Rollback™
{1975), advances the idea that, in certain situations, subseguent
acts should be modeled by probability nodes rather than decision
nodes. Thus, rather than constraining the decision maker to
maximize expected utility for decisions socme time in the future,
we suppose that there is uncertainty in the way in which he will
act,

2.3.2.1 Failures of consistency. The circumstances in which
&

this proposal is appropriate are just those in which the con-

gistency condition fails to hold:

{1} Such a concept is of value if one believes that the de-
cision tree does not fully model the events up to the time of
the decision, i.e., the information that may then be available
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to the decigion maker. If this possibility is admitted, then
the concept of maximizing expected utility for subsequent acts,
by rolling back the decision tree, becomes invalid. Even if
the decision maker in fact maximizes his expected utility in
the subsequent decision, the option he selects need not be the
one which maximizes expected utility conditional only on the
modeled information.

(2) BSimilarly, the decision maker, now, may feel that in the
future, he might change certain aspects of his analysis of the
problem, including his probability assessments or utility funec-
tion. 1In principle, it is possible to model any such set of
changes as event forks in the decision tree prior to the sub-
saquent decision node. But it is clearly out of the guestion
to model explicitly all possible probability assessments and
utility functions (cf., Browm, 1975). HNot only would proba-
bility distributions have to be assigned to all the possible
changes, but=-=-in order to predict the decision maker's choice
by rolling back the tree--probabilities subsequent to the de-
cision node would have to be made conditional on these changes.
This would reguire a set of second-order assessments on the
diagnosticity of the new probabilities or utilities, regarded
ags information, for the "true" or "authentic® walues (cf.,
Nickerson and Boyd, 1980, and Tani, 1975, discussed in Section
2.3.2]).

These observations suggest an in principle limitation to the
modeling of this type of change, in one's basic view of the
problem, within the traditional VOI paradigm. There is nothing
logically to prevent the decision maker from changing these
second-order conditional assessments as well during the time
before the subsequent decision. But in order to model this
change, he would need a new, higher-order model=--and so on,
into an infinite regress. Far-fetched as this kind of example
geems, it does represent a fundamental formal limitation on

the power of traditional technigues to describe all decision

problams.
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(3) Scme instances in which the consistency condition is
vioclated do not seem amenable to fuller modeling in terms of
events at all. The decision maker may predict that on account
of fatigue, time pressure, limitations of memory or cognitive
capacity, he will fail to process certain information (e.g., a
danger signal) appropriately. This could be true even though
in the course of the VOI analysis, he (perhaps with the help
of a decision analyst) has already worked out how he should
process it. It seems gquite implausible to regard factors

like fatigue as "information events." In these cases, the
decigion maker simply lapses from his own normative standard,

(4) Another case which does not seem amenable to traditiconal
methods is that in which the decision maker adopts a new "de-
gcision rule." Perhaps his behavior, rather than maximizing
expected utility, can be expected to reflect some of the
"heuristics" described in recent psychological literature
(Kahneman and Tversky, 1977:; Slovie, Lichtenstein, 1971).

One can always, of course, so define the decision maker's
ntility function that the "act" of obeving a heuristic turns
out €0 maximize expected utility, In this case, one attri=
butes to the decision maker an affection for the heuristic

as such. But this rather trivializes the notion of optimal
behavior and, further, is likely to contradict the decision
maker's own, more reflective normative views. In addition,
there is a near contradiction in supposing that the decision
maker uses maximization of expected utility (on a second-order
lavel) to conclude that he should not use it (on a first-order
leval).

The plausibility of the consistency condition may be particu-
larly doubtful in the case of information systems, where the
system designer and the decision maker are not, typically, the
sama parson. The likelihood that decision maker and system
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designer use different decision rules, or that the system
designer will fail to consider information events available
to the system user, is correspondingly greater.,

2,3,2.2 Sufficient modeling. Ewven if it were possible, in
principle, to model all these problematic changes as "infor-

mation events," it is not logically necessary to do so.
Modeling acts as events represents a formally sufficient de-

gree of modeling (Brown, 1978), even when information events
are omitted from the analysis or when acts are influenced by
other sorts of causes, Events may be implicitly "integrated
out," without affecting the results of the analysis, as long
as they do not precede a decision node. And there should be
no greater difficulty in predicting one's own behavior, as

an uncertain event, than in predicting environmental events
which, similarly, are subject to complex and inexpliecit causal
influences

To be sure, the acts as events model does have shortcomings,

Most obviously, using this idea will to some degree lessen the
prescriptive power of the decision analysis paradigm, for the
decizion maker will not get zo much guidance in his future de-

cisions.

More importantly, perhaps, little guidance has been provided,
thus far, on how the required assessments are to be obtained,
Two sorts of novel judgments are needed in this approach:

e for each option, the probability that the decision
maker will adopt it, conditional on the modeled

information: and

™ for sach option, its expected utility, conditional
on the assumption that the decision maker has adopted
it.
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These assessments essentially reverse the order of precedence
in the standard technigue. There, the probability of a state
of the world, conditional on the outcome of an experiment, was
independent of the action adopted:

Filsle,z,a) = Pis|e,z),

since the action was assumed to be selected solely on the basgis
of an inference about 3 suggested by the experimental outcome.
When, however, it is assumed that action is based on unmodeled
information, the assessment of the probability of s, or the
probability distribution on terminal utility u, must be
adjusted to take this hypothesized infermation into account.

If the act is selected, we assume it was for a reason. It is
not clear, however, what the nature of this adjustment should
be,

Despite these difficulties, it is clear that the acts as events
model holds promise for our considerations of the value of in-
formation stored in a data base. The expected benefits include
the simplification due to not modeling all information items
and the entire decision process; as well as the increased
validity due to accomodating vieclations of the consistency
condition, Moreover, as we shall see, methods to facilitate

the assessment task are available.

7 2.3.3 value of analysis. B&Among the items which may potentially
be included in an information system are programs for inference
and decision aiding. Such programs, which are freguently inter=-
active, may help the decision maker structure the problem, by
identifying options and major uncertainties bearing on the
outcome, and may help him arrive at a solution by applying

formal tools of statistics and decision theory (e.g., Barnes,
1980; Cohen and Brown, 1980). Inputs may be either subjective

judgments or objective data, including other iteme in the data

base.
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The evaluation of such programs raises a special set of problems
in the application of deciszsion analytic technigue:

e Standard VOI technigues assume that the situation is
already modeled before the analysis can be evaluated.
Were =such indeed the case, there would of course be
no value in performing the analysis agaln.

# Decision analysis decomposes initially very complicated
and difficult assessments into simpler ones. If the
result of the analysis were always consistent with
initial judgment, there would be no point in doing the
anlaysis. We thus view the decision maker as an
inconsistent probability assessor. It seems odd, then,
to base a theory of the value of analysis on the con-
sistency condition, as embodied in VOI.

Using decisien analysis can be very expensive. It is there-
fore not surprising that in recent years potential clients

have wanted some indication of how much the analysis would

be worth, before they contract for it. However, only a few
papers have been published upon the subject of evaluating
decision analysis. These appear relevant, as well, to the

igsue of ineluding automated decision analytic aids=-=-in ad-
dition to aids of other types--within information systems.

In this section we shall review the three major papers appearing
in the literature.

2.3.3.1 Watson and Brown. The paper by Watson and Brown, en=
titled. "The Valuation of Decision Analysis® (1975), uses a de-

cision analytic model in the evaluation. However, rather than
require a full model of the problem, they use the simple tree

of Figure 2-3. Uncertainty is encapsulated within the X which
are the expected utilities for actions which will arise from
"perfect analysis.” In evaluating such perfect analysis,
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the caleculation is precisely the same as with value of perfect
information, but information concerns the X.. . Bécause this

is simply value of perfect information, it is easily shown that
such value will always be positive.

Watson and Brown similarly meodel the value of imperfect analysis
by assuming that the imperfect analysis will alter our prior
distribution concerning the regults of a potential perfect anal-
yeis. Thus a node is introduced before the decision node which
describes the ountcome of the imperfect analysis, and another un-
certainty node appears after the decision node which describes
the unecertainty concerning the perfect analysis, given the imper-
fect analysis results. However, Watson and Brown do not assume
the consistency condition and thus are able to provide an ex-
ample where the wvalue of imperfect analysis is negative.

Rather than assume the consistency condition the authors assume
that the deciszion maker will follow the recommendations of the
imperfect analysis, whatever his prior beliefs may have been
concerning its walidity. They thus assume a version of “acts

as events" in which the probability of an act is egual to the
likelihood that it will be recommended by imperfect analysis.
Negative expected value arises if the decision maker believes
beforehand that the imperfect analysis will be sufficiently
poorly done as to worsen his position,

If those prior beliefs were incorporated inte the analysis, we
would find that the prior expectation of the results of the per-
fect analysis, given the imperfect analysis, would be precisely
the results of the imperfect analysis. After all, if, after an im-
- perfect analysis, the éxpected vélhe'af'tHE_EEpected utility of :
an action that would be obtained by a perfect analysis, differed
from the expected utility obtained by the imperfect analysis,
the imperfect analysis could be instantly improved by changing
its results so that the eguality did hold.
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Incorporating prior beliefs in this way is eguivalent to the consis-
tency condition; selecting the act with the highest expected wvalue
according to the imperfect analysis is, in this case, the same as
rolling back the decision tree. 1In such a case, it is easy to

prove that the expected wvalue of analysis will be positive,
This version of the consistency condition seems sensible. It
is plausible that an (imperfect) analysis might in fact lead
ocne astray. But it is less plausible that one would expect
this to happen beforehand, yet also expect to undertake the
analysis and abide by its results.

The real issue of consistency in this context is not whether

the decision maker will roll back the tree (or modify the im-
perfect analysis) based on his conditicnal expectation of the
results of perfect analysis. The issue rather is whether he
can meaningfully formulate such an expectation in the first
place. Joint probability distributions need to be assessed

over the values of imperfect and perfect analysis. Since the
digtribution over the results of the imperfect analysis assumes
a good understanding eof what that analysis will be, it seems
unfair that the decision maker be reguired to make such assess-
ments. Yet it is not in the spirit of decision analysis for the
analyst to describe how good he believes his analysis will be,
or to prescribe the degree of confidence in it te be felt by the
decision maker.

The concept of perfect analysis may itself not be meaningful to
the decision maker, WNot only can it not in practice be carried
out, but the existence of a unigue set of psychelogical proba-
bilities to be uncovered by such an analysis is doubtful.

Despite these difficulties, it may be that inconsistent assessments
(which motivate the use of decision analysis) cannot be modeled with-
out some concept of perfection, to provide a point of comparison
against which the obtained assessments can be evaluated. Such a
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concept is indeed common to all approaches to this, and similar
problems. The calculation of the value of analysis may be
sufficiently insensitive to the precise nature of the second-
order distributions, to justify the use of these concepts at

least in a heuristic sense.

The Watson and Brown approach assumes that the available options
to the decision maker have already been modeled. However, in
many situations this is a very major part of the analysis. Once
this has been carried out, it may well be easier to perform a
very guick and rough decision analysis on the problem, carry
out & sensitivity analysis on the parameters and use this
information to help the decision maker decide, and use this
further analysis is reguired. Thus, difficult second-order
assessments need not be undertaken if options are specified.

2.3.3.2 Tani. GSteven Tani, in his paper, "A Perspective on
Modeling in Decision Analysis" (1378), views the aim of decision
analysis as being to help uszs obtain a probability distribution
over an outcome variable (e.g., profits) that is "better" than the
one which we can assess directly. In order to define “"better",
he brings in the concept of an "authentic probability." Aan
authentic probability is one which most accurately describes all
our beliefs about the event in guestion. He then contrasts these
authentic probabilities with probabilities that can actually

be assessed, which he calls "operative."” The "goodness" of an
operative probability is then defined in terms of its closeness
to the authentic probability.

Tani builds a probability distribution describing where the
authentic probability may in fact lie given the elicited oper-
ative probability. We view the authentic probability as that
probability we would provide after an infinate time for thought
and introspection. We may view this probability distribution
ovaer the authentic probability as our uncertaint?, after
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finite time for thought and introspection, as to what we might
think after infinite time. Its expected value is the operative
probability itself (a version of the consistency condition sim-
ilar to that discussed by Watson and Brown); and the variance
of this distribution measures closeness to the authentic proba-
bility.

The value of modeling is simply the value of reducing our un-
certainty concerning the authentic probability. Standard VOI
analyses may then be carried out on theée probability distribu-
tions and the value of modeling can be calculated.

Tani's concept of an authentic probability provides some
elucidation of Brown and Watson's notion of "pérfEEt analysis."
It is also similar to work in reconciling incoherent probability
assessments by Lindley, Tversky, and Brown (1979). They use

the idea that operative probabilities are noisy measurements of
the authentic probabilities, and may therefore be in error. The
problem, of course, is that the required assessments may still
be quite difficult. There is no guarantee that the second-order
probability distributions will themselves be authentic! A second
problem is that, again, the calculations may only be carried out
if the majority of the modeling has already been performed.

2.3.3.3 HNickerscn and Boyd. Nickerson and Boyd, in their paper,
"The Use and Value of Models in Decision Analysis" (1980), take
the view that the modeling in decision analysis should be viewed

by the decision maker as simply another piece of information
to be incorporated into his overall system of beliefs. Thus,
rather than expecting the decision maker to follow the recom-
mendations of the analyst unguestioningly, Nickerson and Boyd
suggest that the decision maker should use Bayesian updating
on his beliefs prior to the analysis and use his updated be-
liefs, independently, to choose his preferred option posterior

to the analysis.
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The model that Nickerson and Boyd build for evaluating a

decision analysis supposes that there is a "true" eguivalent
reference value for each opticon: the value that will actually
result if that option is selected. Then the authors assume that,
at any stage, the decision maker can build & probability distri-
bution over what that true wvalue might in fact be. Then "perfect"
modeling is defined as a modeling effort that yields a probability
mass function with all mass concentration at the actual eguivalent
reference value for each alternative. Thus, perfect modeling
provides perfect information about the eguivalent reference value.
This is therefore a much more stringent reguirement for perfect
modeling than the ones used in the other papers, where a perfect
model is simply one which fully encapsulates our current subjective
beliefs abput the expected utility of each action.

Nickerson and Boyd are then able to use the standard VOI con-
cepts to calculate the expected value of perfect modeling, as
the expected value of perfect information about the eguivalent
reference values. Similarly the expected value of imperfect
modeling is simply the wvalue of imperfect information about
those equivalent reference values, under the assumption that

the decision maker will incorporate that information optimally
into his belief structure. It can then be eagily shown that the
expected value of modeling must always be non-negative.

A major difficulty with this approach is the assumption of the
existence of "true" eguivalent reference values, to serve as
points of comparison for evaluating obtained assessments. Such
values are clearly not objective, in the sense that the vearly
amount of rainfall in Minneapeolis is objective. They incorpor-
ate such gsubjective factors as utility functions and tradeoffs
between different attributes. In order to determine a "true"
egquivalent reference value, therefore, one cannot simply pre-
dict, and then observe, the wvalue which "occurs." Some digging
within the decision maker's psychological field is reguired, to
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ensure that all his relevant beliefs are incorporated. But this
is essentially the idea of "perfect analysis" -or "authentic

probabilities.”

On this approach, as on the previous ones, the assessments ra-
quired with imperfect modeling, in order to incorporate the im-
perfect information into the decision maker's beliefs, are

very difficult. The method also suffers, of course, from the
usual difficulty that the options are assumed predefined.

However, there do appear to be many situations in which these
concepts may prove applicable. The idea of using decision anal-
ysis only as a source of information to the decision maker

seems more valid than the more usual assumption that the
recommendation of the decision analysis is what the decision

maker should choose to do. A very similar procedure was
developed by members of DSC to help evaluate potential infor-
mation in a ferest planning situation (DSC Report, 1980). The
notion that decision aids are information seems particularly
appropriate in the area of command and control, where it under-
lines the fact that such aids support, but do not replace, the

decigion maker,






3.0 TFRCHNIQUES FNR INFORMATION SYSTEM DESIGHN

In this chapter we sketch out, on a conceptual and algorithmic
level, some ideas for assessing information walue in the context
of system design. In large part, these ideas are as yet untested.

We observed in Chapter Two that standard VYOI technigues, while
properly focusing attention on the decisional impact of
information, reqguire a highly structured context in order to be
applied. They presume a specified information source or
experiment, specified experimental outcomes, specified
uncertainties about states of the world, and specified options.
Such analyses guickly become intractable when applied to complex,
multi-purpose systems, expected to operate in a variety of
environments, some of which are guite ill-defined. Moreocever,
they lack the flexibility te handle non-optimal responses to
information. And, finally, they cannot be gmplﬂyed to evaluate
aids which support inferential and decision making processes.

Our objective is to devise methods which are simple and flexible,
yet incorporate in a realistic manner the impact of information on
decision making. Clearly, different degrees of specification and
structure will be appropriate for different evaluative purposes,
In each case, specifications which limit the tractability or
validity of the analysis at hand must be omitted. Our strategy,
however, is to find, within this constraint, a degree of modeling
that is not only formally sufficient to express the value of
information, but which includes explicit reference to decisional

impact.

We will begin with a relatively highly structured technigue and
derive new ones by progressive abstraction. The first technigue
to be considered, however, is, itself, a generalization over

standard VOI procedures. The models to be described reflect the
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following segquence of increasing abstraction:
(0} standard VOI;
(1) unspecified experimental outocomneas;
(2] non-optimal behavior:
(3) unspecified states of the world;
(4) unspecified optionsg;

(5) multiattribute approximation.

3.1 Unspecified Experimental Outcomes

In & number of circumstances traditional VOI technigques are
inapplicable on account of the character of the data set being
evaluated. Those technigues reguire:

{1} that the information take the form of
"axperiments", with variable outcomes not known
in advance; and

(2) that the possible outcomes of an experiment be
spelled out and probabilities assigned to them.

Ooften, however, it is either inconvenient or impossible to =atisfy
thesa conditions. In particular, the impact of a given item of
information may depend on the context of other items in the data
base. Spelling out all possible combinations of outcomes of all
experiments, assessing their probabilities, and assessing probabil-
ities for states of the world conditional on such combinations, may
present insuperable difficulties (see Section 2.2.7).
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Moreover, in some cases the information to be evaluated will

take the form not of experiments, but of facts, from physics,
history, or recent intelligence. Facts make trouble for
traditional preposterior analysis since, unlike experiments,

they have but a single "outcome." Facts are known to the

system designer, but are not - if inclusion in a data base is
useful - present in the "working memory" of the system user. In
this case it is obviogus that predicting user choices by reolling Lack
the system designer's model of the subseguent decision will be in-
appropriate. Since the fact is already known to the system
designer, conditionalizing on it will not alter the probabilities
he assigns to states of the world. It is the user whose

posterior probabilities (and actions) may be affected by in-

clusion of the fact in the Actual Data Base.

3.2 Acts as Events in System Evaluation

These difficulties can be handled by treating acts as events
(Brown, 1975). Information, to the extent that it has wvalue,
may change a decision makexr's choice of action (Section 2.2).
Thus, if experimental outcomes occurring prior to a decision are
not explicitly modeled, the prediction of action based on
rolling back the decision tree is invalid (Section 2.3.2.1).
However, an alternative approach allows such outcomes to be
"integrated out.” This involves treating subseguent decisions
as uncertain events and assessing probabilities for states of
the world and utilities conditional on the action selected
[Section 2.3.2.2).

Tha acts as evants model applies to the evaluation of a single
item in a data base, to the evaluation of groups of items, and

to the avaluation of facts.

(1) We first consider the wvalue of adding information item e
to a data base, E }. The

n

consisting of items {El,.+‘,e

n=1" n=1
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value of e ~may well depend on the inclusion of some or all
of En-l
computation of this value,

(Section 2.2.7). If such interactions exist, the

o i *
EVST IenlE ) = u [Enl u {En S

n-1 -1

according to the standard VOI analysis, requires an enormously
complicated decision tree in which the possible outcomes E{i]
of each experiment e, are moedelled (Figure 3-1). If, however,
we treat the decision node for a as a chance node, we may
validly omit reference to the outcomes of experiments.

In figure 3-2, we choose to model only the outcomes of e i.8.,
the experiment under consideration. Uncertainty concerning the
outcomes of other experiments must be implicitly considered

in assigning probabilities to acts, a, events, s, and (if

5 does not exhaust the relevant states of the world) to the
distribution on terminal utility, u. If the evaluation can
consistently produce such assessments, the value of EvEI{En!E“_ll
calculated from Figure 3-2 ghould be the same as from Figure
3=1.

{(2) The acts as events model enables us to group experiments
for the purposes of assessment. Consider the evaluation of

a large set of information items, En' as the potential contents
of a data base, If the elements of En interact in theéir impact
on decisions, standard VOI once again regquires a complex

tree, as in Figure 3-3, to evaluate:

= * — %
E?EI{EH: u :En] ﬁ {eg]-

By treating acts as events, we can achieve any desired degree
of simplificatien. All experimental outcomes may be omitted,
ar [as in the lower branch of Figure 3-2) we may explicitly
model outcomes for selected elements in E..
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Figure 3-1

Standard VOI for a Single Experiment



Figure 3-2

Acts as Events VOI for a Single Experiment
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Figure 3=3

Standard VOI for a Group of Experiments



(3] The incluéiun of facts in a data base could never,

on standard VOI analysis, be justified. Mere -inclusion of an
already known fact in a data base will not change probabilities
for states of the world, hence, will not change subseguent
decisions. (And we do not wish to compare inclusion of a fact
with a hypothetical state of the world in which the fact was not
true!) By treating acts as events, however, we can distinguish
the effect of including a fact on the user's decision making,
from its role in the system designer's assessment of probabilities
for states of the world. Since acts are not predicted by rolling
back the tree, the system designer's probabilities for states

of the world remain constant while the user's actions change.

The value of knowing a fact will, for most CE applications,
depend on the experiments which are also included in the data
base. Thus, a fact, fi’ will tyvpically be evaluated in a context
of experiments (and other facts) En, in accordance with the
mathods of (1) and (2) abovea. In Figure 3-4, experimental
outcomes for one experiment, Ej’ have been explicitly modeled

and othereg integrated out.

Note that the probability assignment for states of the world is
independent of the inclusion of fi in the data base:

Pi{s|E + £ , z'j], a) = P(s|E_, z{jl, a) .
n i n

That iz, in either case the system designer uses all his factual
knowledge, including fif to evaluate the conditional probability
of 8. On the other hand, the probability of an action is not

independent of the inclusion of fi=

plale, + £, 2'9)) 4 p(ale_, 219N,

il‘

assuming that the decision maker does not already have a woerking

knowledge of fi.



Figure 3=4

Actes as Events YOI for Addition of a Fact to Data Base



3.3 Assessment heuristics. The acts as events methodology
vastly reduces the number of judgments reguired in order to
evaluate experiments. However, the assessments which remain
appear quite difficult. A large amount of implicit informa-
tion must be integrated, within the mind of the assessor, in
order to arrive at estimates of probabilities and expected
utilities for actions. The probability that an action will
be chosen must reflect the expected impact of omitted exper-

imental outcomes, and the expected utility of the action must
be based on the assumption that the act was chosen on account

of such impact.

3.3.1 Auxiliary decision tree, One approach is to assess
these gquantities directlf. However, a more natural procedure
would be to start with the assessments in a traditional, but
abbreviated (hence invalid) decision tree, and then derive
the required assessments by adjustment. Consider again the
value of adding a single experiment, e r to the data base,;
En_l[Figura 3-2). For thiszs problem we construct the auxil-
iary tree in Figure 3-5. This, of course, is the diagram one
would use in a standard preposterior analysis which, incor-
rectly, fails to model en's information context, En—l‘ REol=
ling back this trea, wa compute the expected utility for each
option, conditional on incomplete information,

(n)

unﬁ‘Eniz rla} = E {Tﬂ UEE,E]

sle .z
and similarly,
utle_.,a) = Eslaﬂu{a;SIF

where subscript m indicates that these values derive from a
auxiliary model. The assessments for utility and for
P[$|e,z} are straightforward here, since acts are not regarded

as events upon which they must be made conditional.
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It remains now to discuss methods for deriving the required
Judgments: act probabilities and expected utilities conditional
on complete information,

31.3.2 LAssesgsment Ef act probabilities. If, contrary to assumption,
Figure 3=-5 modeled all the relevant information available to the

decision maker, wé would expect him to choose, after observing
(n) ()

z ntZ

course, is that, because we have integrated over information

; the action which maximizes uﬁle (4). The problem, of

events, there is uncertainty as to the actual expected utility,

u*[En,z,a], which the decision maker will assign to option a after

E{n]-

observing all the experimental outcomes. is a partition of

S . (2) (n)

the total space, Z = x Z ses X F , of experimental out=-

comes, having been obtained by marginalizing over outcomes of all

{n},a] is merely the expectation,

other experiments. Thus, uﬁ[an,z
with respect to the ignored experimental outcomes, of the random
variable, u*tEn.E,a}, The probability that the decision maker

will select option a, is the probability that u*{En,E,ai] excesds

* - -
u {En,z,ajj for all i # j.

A well-known device for approximating such probabilities is based

on the choice axiom described by Luce (1959, 1963, 1977). Abbre-

(n)

viating u;len,z ,ail as ua ir we let:
r

P{ailﬂn,z ) =

n E *
3 {u m, 4

The exponent, ¢, is a measure of the accuracy with which the

expected values, u* represent the distributions of u*tEn.E,a}.

3
It thus reflects thgr:yst&m designer's confidence in the complete-
ness of his model of information events. | (Yovits, Rose, and
Abilock (1968=T8) use this eguation, with an anlogous interpretation
of ¢, for a quite different, normative purpose. In the context
of signal detection (Luce, 1963), the exponent reflects the number

of independent observations of a stimulus.)
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Using the choice equation, probabilities for acts can be assigned
on the basis (i) of their expected utilities conditional on
incomplete information and (ii) a single additional assessment,
¢. The plausible range for ¢ is between zero and infinity.

When the modeled information is complete, c goes to infinity,

and the choice aguation predicts with a probability of one selection
of the act with highest expected utility. On the other hand,
when the number of unmcdeled events and the swings in utility
which they can generate are large; there is no reason to

suppose that the judgments of the decision maker will correspond
to the model. In this case, ¢ equals zero, and choice prob-
abilities, from the point of view of the model, are random:

P[&IEH, z{n}l = 1/g for g alternative actions.

The intermediate case in which c=1 is of particular interast,
since it represents the case in which response probabilities
are proportional to utility (cf., Luce, 1959).

A nice property of the choice eguation is that, for (O<c<=,

the order of action probabilities corresponds to the order of
expected utilities conditional on incomplete information. Use
of the eguation thus ensures satisfaction of a desideratum for
the assessment of action probabiliti=ss suggested by Brown (1975).

Note that by introducing terms for “"response bias" (Luce, 1963),
we obtain a more general form:

b, (u*_ ,)}%

Pla,|BE. z ) = _i_._m.:l_c
£ n,n Lb, (u* )
3 =3 m, ]

The bi raflect any feelings the system designer may have about

the inclinaticn of the decision maker to adopt specific acts,
independent of events [(whether modeled or unmodeled). Thus,



when ¢ egquals zero, actions are unpredictable in terms

of events, and:

(n), _ b,
Ptailﬂn,z } i

3.3.3 Assessing €. A convenient procedure for assessing ¢ is

suggested by the following formula, in which we write Pi for
(n}), .
Pla |E ,2""):
*
u i
1 i =¢ lo m,i
og 5 d - ‘
] m, §

¢ is, therefore, the slope in logarithmic coordinates of the plot
of response probability ratios to ratios of expected utilities.

This relationship can be exploited in two different ways:

@ Ratios of response probabilities can be assessed
for several hypothetical ratiocs of expected utilities.
A straight line may then be fit in log-log coordinates
to the cobtained points, and the slope taken as an
astimate of c.

e The slope may be assessed directly by adjusting a
straight line in these coordinates. The implications
of any particular adjustment for the relation between
the two sets of ratios may be read off.

Both methods assume that the assessor will have reasconably
consistent intuitions that, for example, a response twice as
high in expected utility is three time= az likely to be chosen,

eto.

It is worth noting that the arctan transformation of o,

corresponding to the angle of the slope, transforms the range
of ¢ to a bounded interwval, with ¢ = 1 as the midpoint., This

may be a reascnable scale to use, therefore, if it is desirable

to get a gquick numerical estimate of "model completeness.”
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3.3.4 Assessment of expected utilities., Unfortunately, we know
of no procedure of comparable simplicity for deriving axpected
utilities for actions, conditioned on the action having been

taken, from the modeled expected utilities, We do know, of course,
that the adjusted expected utility, u*ian,z[n],ai}, will be greater
than the modeled one, u;:i, if unmodeled events are thought to
affect the utility of a, . If a, is chosen, we assume that the
unmodeled uncertainties came out in favor of ai, and its expected
utility is greater than the average with respect to those uncertain

events,

Ideally, a formula could be provided which uses the parameter &
and the u;'i to give u*{En,z{n},a]. In the absance of such a
formula, however, some rules of thumb can be offered., These
rules reguire a rough assessment of the effect of unmodeled events
on the expected utilities of th? $pti¢n$, i.,e., the uncertainty

n

concerning u*len.ﬁfaiﬂ. given z .

e If uncertainty about expected utility u*(E_,E,a) for
given experimental outcome 1{n] is approximately the

same for all options a, the order of the adjusted

expected utilities, u*{En.S{h},al, should be the same

as the order of the modeled expected utilities, ua T

@ The larger the effect of unmodeled events on u*[En,E.ai],

the greater the adjustment for that act: i.e.,
u*(E ,z[nn,a.J exceads u* by a greater amount.
n 1 m,i

# Other things being egual, the lower the modeled expected
utility of 8. the more it must increase to be the
maximum, and the greater the adjustment. Thus, the spread
of the u*[En,z[n',al is lesgs than the spread of the ua+

s When expecﬁed utilities for acts are negatively correlated,
i.e., evants that help one act hurt ancother - the adjust-
ment needs to be less.
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These guidelines are based on the behavior of the expected value
of a random variable, conditional on its being the maximum of

& set of random variables.

A lower bound on the required adjustment can be guickly derived

if one is prepared to assume that the distribution of u*{Enai:a}
for given experimental ocutcome z‘ni, is normally distributed with
(n)

mean u*{en,ﬂ +a) and constant variance g? for all a. Let al

ba the act which maximizes u*{en.z[n],a] in the auxiliary model

(Figure 3-4). We now make the furthar assumption that the cor-
relation between u*{En,E,al} and u*[En,i,&ih for all other acts
a; ig -1. This means that any gain in utility for act 8, due
to unmodeled events, is offset exactly by a loss of utility for
1° It follows that the lowest expected walue for a, at which

it could be preferred to a; is midway between the two modeled

a

untilities:
= o | - &
L um,i * ‘EIumrl 1“"1:|'L,_"L:I

If ay and a, are the only two options, ag will be preferred

.for values greater than L. Then the expected utility of i
given that it is preferred to 8, can be obtained simply by
integrating from L and normalizing:

(n) “ h
u*[En,z ,ai} = JFLx fi{xldx ffj;, fi[x]ﬂx.

where fil-} is the postulated normal probability function for
u*{En;E,ail given z[n}. Thesa integrals can either be approxi-
mated by a computer, or assessed from tables of normal probabil-
ities and the unit normal loss integral (Raiffa and Schlaifer,

1961} .

This assessment heuristic reguires only one assessment in addition
to those required for the auxiliary tree (Figure 3-4): the
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variance ¢? of the distributions of expected utility., This as-
sessment may be most naturally obtained as a credible interval--
€.9., the interval within which the expected utility is likely
to fall with 958% probability--from which the variance may be
computed. The result of the proposed heuristic is merely a
lower bound on u*lEn,:lnl,ai}, however, both because the cor-
relation was assumed to be -1, and bhecause a, and a; were assumed

to be the only options.

The relations between ¢® and c has not as yet been spelled out,
However, both o? and ¢ should be chosen so that:

-

PHEL1|En,zm}] < JL f“{]{jdx

that .a; will be preferxred.

3.4 HNon-Optimal Behavior

When information events are omitted from a traditiomal VOI

model of a decision problem, the decision maker's choices may be
inconsistent with that model. In another class of cases, how-
aver, the consistency condition (see Section 2.3.1) may fail

not because the model is incomplete, but because the decision
maker fails to act optimally on the information which he has.
The reasons for such inconsistency with the model may include,
on. the one hand, motivation, fatigue, and constraints on time,
memorvy, and attention, or, on the other hand, limitations of

knowledge (see Section 2.3.2.1).

An important consideration in CE design, particularvy in the
provision of inference and decision aids, is the extent to which
they will be used or--on account of habit, distraction, or
distrust--ignored. Clearly, in the context of system design,
the "consistency"™ of the user with the designer's model will
reflect the compatibkility of the system with the perceptual,
cognitive, and organizational demands of the situation, i.e.,
it will reflect the designer's skill.
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When, for whatever reason, the decision maker fails to maximize
expected utility as modeled by the designer, the acts as events
technique is appropriate. We can use the choice equation and an
auxiliary decision tree, based on standard VOI analysis, to
aggess the probabilities for actions.

As before, the parameter ¢ measures "consistency": the expected
agreement of the decision maker with the system designer's model
(depicted in the auxiliary tree). Howewver, in this case, we are
asgsessing not the completeness of the model, but the guality

of the user's decision processgses, When ¢ eguals zero, the model
iz unable to predict behavior, since choices are wholly unaffected

by the considerations the designer regards as critical. (It may,
however, be governed by response biases, represented by the hi‘}
As c approaches infinity, behavior comes increasingly under the
rational control of the modeled information events.

A plausible rationale for the application of the choice eguation
to acts as events is the assumption that the expected utility

[n};a}, as assigned by the system designer,

of an action, u'{en.z
stands in for a random variable. This wvariable represents the

expected utility assigned by the decisicon maker to the act. In

the case of incompletely modeled information events, uncertainty
is due to the effect of such events, as yet unknown, on the
decision maker's assessment. In the case of non-optimal behavior,
however, uncertainty concerns the degree of closeness of the
decision maker's expected utilities to what we assume are the
"true" (i.e., the modeled) expected utilities.

Note that in the application of acts as events to non-optimal
behavior, thare is no need to adjust the expected utilities,
u*{e;z,;a), for actions. Unlike the case of omitted information
events, no presumption exists that a given act has been chosen
for a reason. Thus, the lower ¢ falls, the more degraded the
expected utility of the decision problem with information, u*l(e).
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3.4.1 Application te sxntemlﬂeaiﬁn. As noted above, although c
reflects the user's decision processes, it will, to a large

extent,; be dependent on properties of the EE system being evaluated.
It is a measure of system usability. Thus, a goal of system design
is=-=-pther things being egual--maximization of the wvalue of c.

Factors affecting ¢ include such diverse considerations as legi-
bility of displays, provision of inference aids to draw out the
implications of raw data, and appropriate training in the use of

the svstem.

In some cases, design questions may involve a tradeoff between
improvements in usability and improvements in "pure informational"
value. The latter is the difference between the modeled

expected utilities:

Evs;m[en] = u;{eni - ua{eﬂﬁ

i.e., the value of the decision problem with and without experi-
ment e , given that the information is used optimally. (It may

be computed by standard VOI analysis, as in the auxiliary tree

of Figure 3-3.) A tradeoff might occur, for example, when

the algnrithﬁ which is optimal for solving a given problem in a
purely technical sense, is less likely to be used than a heuristic
which is more familiar or faster to apply.

The methods outlined above could be used to locate the optimal
point on such a tradeoff. Design options may be scored on the

two dimensions, usability (c), and pure information wvalue
[EvEIm{En!]. A region of feasible coptions and an "efficient
frontier" of undominated options may be defined within this two-
dimensional space. The options which are not eliminated in this
way can be evaluated by reference to the expected value of
information, EVSI(e ). For each point in the space, this guantity,
in accordance with the acts as events technigue and the choice
equation, uses the assessment of ¢ to degrade the pure information
value and arrive at a measure of overall utility. "Isopreference”
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contours may be defined which represent the combinations of
usability and of pure information value which are eguivalent in
terms of overall utility. Standard technigues can then ke used
to locate the best feasible design option.

3.4.2 pApplication to value of analysis. The evaluation of
decision analysis (see Section 2.3.3) raises issues similar to
those inveolved in non-optimal behavior, since there may be a
discrepancy between the expected utilities assessed by a decision
maker and the "true" beliefz and desires. The critical differ-
ence is that in the evaluation of decision analysis the true
expected utilities (those tnat woula arise in "perfect” analysis)

are unknown. Thus, we compare the assessed expecteda utilities
with the conditional expectation of the perfect expected utilities.

We construct an auxiliary tree, as in Figure 3-3, in which the
information event is the outcome of imperfect analysis (i.e.,
the wvector of expected utilities assigned to options);:; an un-
certainty node after the decision node represents the possible
cutcomes of perfect analysis, conditicnal on the ocutcome of
imperfect analysis. Since perfect analysis is assumed to
reflect the decision maker's true beliefs and desires; optimal
behavior consists in rolling back this decision tree, and
selecting the act which maximizes the expected wvalue of expected
utility according to perfect analysis, conditional on imperfect
analvsis.

The auxiliary tree reflects, in essence, the proposal of
Hickerson and Boyd (1978), that the output of decision analysis
be treated as information within a standard vOI framework, and
used to update expectations concerning "true" expected util-
ities. Although perfect analysis is unobtainable, this model
describes how the decision maker may still behave optimally,
with respect to his second-order assessments of the validity

of imperfect analysis.



The behavior of the less than optimal decision maker can be pre-
dicted, by means of the choice equation, from the auxilliary
tree together with an assessment of ¢. ¢ measures the agree-
mant of the expected utilities which the decision maker assigns
to actions with the conditional expected values of perfect
expected utilities. Thus, it reflects the extent to which the
decizion maker performs the reguired second-order assessments.
When ¢ approaches infinity, we have the Nickerson and Boyd
model in which imperfect analysis is assessed in the light of
prior beliefs concerning its relevance to perfect values. For
c equal to zero, behavior is random with respect to these as-

gessments.

By parameterizing consistency in this way, we avoid assuming either
that decision makers are always consistent (Nickerson and Boyd)

or, on the other hand, that they always act unguestioningly on

the recommendation of the analysis, however bad (Watson and Brown,
1975).

3.5 An Inferential Structure for VOI

When acts are treated as events, they may be incorporated as
variables within a probabilistic inference structure. Such a
representation may possess advantages, in terms both of assess-
ment and computation, over the traditional decision tree. One
further conditicn must be satisfied, however, if these adwvan-
tages are to be realized.

In Figure 3-2, we assumed that the system designer was eval-
uating a data base, En' and wished to model explicitly only
selected experimental ocutcomes, z{ni. Probabilities for the
modeled states of the world, s, were dependent on the actual
values of z '™, However, unmodeled events might be predictive
for 8 as well. We now consider the special case in which s

is independent of all unmodeled information events.
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3.5.1 Inference tree represantation. If this independence

holds, we can substitute an alternative form of representation
for Figure 3-2, in terms of hierchical inference (HI). (Bee
special issue of Organizational Behavior and Human Performance,

December, 1973.) Hierarchiecal inference invelves a target
variable, input wvariables, and intermediate wvariables. The
object is to obtain a probability distribution over wvalues of
the target variable, given particular wvalues of the input
variables. It may be easier to proceed by assessing proba-
bilistic relationships between input and intermediate variables
and between intermediate variables and the target variable;

if =0; HI enables us to derive the desired target distribution.

Figure 3-5 depicts the assessment problem in the form of an
"inference tree" (Kelly and Barclay, 1973). Each node corre-
sponds to a variable, and one node is shown below another if
Enﬂwledge of the lower variable is regquired for an inference
about the higher wvariable. The object of the inference in
Figure 3=6 is to derive a probability distribution over terminal
utility, u, for particular values of E (e.g.. En,Eh_l,nr eﬂ] and
z'n}. This distribution will be marginal with respect to inter-
mediate variables: acts, a, states of the world, s, and the
vector of expected utilities, E;r from an auxiliarv tree.

3.5.2 Computation of VOI. Once the distribution on u is ob-
tained, we can proceed to derive the same guantities that

figured in the more traditional Acts as Events evaluation pro-
cedure of Section 3.2 (See Figure 3-2), First, by taking the

expected value of the distribution on u, we get the expected
utility of the subsegquent decision, after cbserving the results

of the experiments in E, but marginal over all outcomes eXcept
(n)
= H

(n) ~
BB = Ay,
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Figure 3=6

Inference Tree
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Hext, we compute the expected utility of the decision problem
with the information in E, by taking the expectation with re-

spect to the modeled experimental outcomes, z{"]:

u*(E) = E ux(2,z'%) .

z‘ﬂ}lﬂ

Once we have done this for all the relevant values of E, we

can easily compute VOI; e.g.,

- - ik
EvSI{EnIEn_l} u*{E_} = u*(E__,).

d.32.3 Assessments on u; independence assumptions. What

is distinctive about the inferential approach, of course, is
not the foregoing calculations, biut the derivation of the dis-
tribution on u from Figure 3-6. Two features of the inference
tree are c¢ritical (cf., Eelly and Barclay, 1873): (i) it
contains no closed paths.. (The duplication of an input var-

{n], presents no problems, however.) {ii} the proba-

iable, =
bility of any variable, conditional on the wvariables immediately

below it, is independent of any other variable in the tree.

Given these conditions, we decompose the assessment of proba-

bilities on u as follows:

(1) B(ujE,z) =‘L‘L Plua,s) Pla|E,z ™) pis|z™))
where J is the general summation operater. Eguation (1)

allows us to draw a sharp line between two roles of informa=
tion: (1) as a conditioning event in the system designer's
assessment of probabilities for states of the world, and (2)

as a conditioning event for the system designer's aaﬁessment

of probabilities for the decision maker's selection of actions.
These roles are distinet because we do not wish to assume the
consistency condition: that the decision maker selects actions
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by maximizing expected utilities based on probabilities
assessad by the system designer., These probabilities are, how=
ever, s5till relevant to the evaluation = %ince states of the
world affect the utility payoff for a given action.

Note that eguation (1) depends on certain independence assump-
tions:

(n)

P(u|E,z" "' ,a,s) = Plu|a,s),

(n) Inl}_

F(s|E,=z ,a) = P(s|z
The first of these is implied by condition (ii) above, and is
justified by the decomposition of total utility into the cost
of the experiment and other aspects of utility (Section 2.2.4).

The second independence assumption has two parts. The Indepen-
dence of 5 and a, conditicnal on E and zi“}, raeflects conditions
(i} and (ii), and is by far the more important, Such independence
holds if, as we assumed at the outset of this section, no
unmodeled information events bear on the occurrence of . In
that case, the assessment of probabilities for s need not take
into account the impact of unmodeled events on action.

The independence of 8 and E, conditiocnal on E{n], ig less im-
portant. This =zays that whether or not an experiment is in-
cluded in a data base has no effect on the probabilities as-
sessed by the system designer conditional on its (hypothetical)
outcome. (We assume, with Raiffa and Schlaifer, 1961, that

2 contains sufficient information to identify the relevant
experiment in E.) This is based on the assumpticn that exper-
iments do not affect states of the world (Section 2.2.6). It

is not eritical for the HI approach that this be true, however.

Both aspects of eguation (1) - the effect of information on
probabilities of actions and on probabilities of states of the

3-25



world - may be further decomposed. The assessment of act
probabilities is decomposed as follows:

plalE,z ™)) =Jt Plalu) Plut|E,z ™),
b
This introduces a further independence assumption, in accordance

with condition (ii):
(1) * -
Pla|E.z 'Emi P[algﬁ].

We have already described (Secticon 3.3.2) how act probabilities
may be assigned, by means of the choice eguation, as a function
of Eﬁ - i.e., the vector of expected utilities for actions com-
puted from an auxiliary model. The reguired independence is
thus insured. Turning now to Pl[gi;lﬂ;z{“]'l, expected utilities
for actions, 5;, are computed within the auxilliary model by
standard procedures of rolling back the tree (Section 3.3.1).
This step is therefore deterministic:
(n}

P(u* (E,z{™) = yéur 5 - ut(e ,z

i tai}}'

l, if x =0
0, otherwise.

where- §(x) =
The other limb of Figure 3-6, representing the predictive im-

pact of information for states of the world, can be decomposed

as well. P{BIz[n}] can be assessed indirectly, by means of

Bayes' Theorem, in terms of Pizln}i and P[=[n1|$] (Section 2.2.4).
Morecver, additional intervening variables may be inserted

between s and z ™ if the system designer feels they will im-

prove his assessments, regardless of whether or not such var-
iables would be known te the decision maker. Indeed, a more
general form of the inference diagram is possible, in which the
experimental outcome wariable, z, ranges over different outcomes in
the righthand and lefthand branches. Thus, the system designer
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can decompose his assessments on 8 in one way and his assessments
on a in qguite another, He need not suppose that the decision maker
possesses the same information, or prefers the same decomposition,
as he does.

3.6 Unspecified States of the World: Credibility

We have seen how experimental outcomes can be omitted from VOI
analysis by modeling acts as events (Section 3.2). Further
simplification in the use of VOI to evaluate information systems
can be achieved by omitting states of the world. 1In this section
wa discuss the conditions under which an acts as events model

can facilitate this stap.

In traditional preposterior anmalysis, since states of the world
follow the decision node, they may, of course, be integrated out.
It is hardly possible to model explicitly all the events which
could affect utility. To the degree that important factors are
neglected, however, the price of increased simplicity is a more
holistic, and probably less credible, estimate of the expected
utilities for actions. The impact of information on the inferences
of the decision maker and the system designer are no longer modeled
in any detail. The resultant increase in uncertainty about u*(e,z,a)
creates uncertainty in subseguent conclusions. The evaluation of
the decision problem with an experiment, u*(e), is affected since
this is the expectation, with respect to experimental outcomes, of
the maximum expected utility feor actions. Similarly, the compu-
tation of value of information (EVSI(a)) becomes less credible.

If one wishes to define "credibility" formally, we may think

of it, following Tani (Section 2.3.2.2), as the "closeness" of

an obtained agsessment to the "authentic" wvalue, If a probability
distribution on authentic values is assessed conditionally on the
obtained estimate, "closeness" is inversely related to the variance
of that distribution. The effect of the credibility of a component
assessment (e.g., u*({e,z,a)) on the credibility of VOI (EVSI(e))
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can be computed by the method of decomposed error analysis (DEA)
described in Brown (1968).)

States of the world may be integrated out when acts are modeled
as events, too [(Figure 3-7). Once again, we can expect some
reduction in the credibility of estimates for expected utilities
of actions. In some instances, however, the sensitivity of

u* (E) to u*(E,a) will be less in an actsz as events model than

in a comparable preposterior model (see the Technical Hote
appended to this report). The reason is that a weighted average
of a set of random variables tends to be more precise than the
i imum.

The exact degree of sensitivity of u*(E) to u*(E,a) depends in a
complex way on the nature of the acts as events model. In
particular, it depends on whether expected utilities are used to
predict actions and, if so, how strong the relationship is.

We can - if we wish - continue to predict the decision maker's
behavior by reference to the expected utilities of acts. It was
ghown in Section 3.3.2 how an auxiliary tree can be used to
compute the ua for that purpose., In thiz case, the effect on
cradibility of omitting states of the world is somewhat larger,
gince the weights for expected utilities (i.e., the act proba-
bBilities) are themselwves functions of 1.1,1"“'1+ In some instances,
sengitivity will be much greater than in a comparable preposterior
analysis.

A difference between acts as events and preposterior analysis,
of course, is that in the former we are not compelled to predict
behavior using expected utilities of acts. Instead of employing
an auxiliary tree and the choice egquation, we may model the

impact of information on action independently - for example:
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Figure 3-7

Integrating out experimental outcomes and states of the world.

3-25



# by observing actual behavioral patterns in natural or

experimental settings;
# by noting poliecy guidelines or prescribed dectrines;
& by using descriptive psychological theories of behavior.

If this type of modeling is feasible, the loss of credibility
due to omitting states of the world is reduced (see Technical
Note) .

These results are consistent with the following intuitions:

for acts as events, it seems advisable to omit important states
of the world only if the analytical resources saved are shifted
to some independent method of modeling act probabilities,
Conversely, if there is such an independent method, the value

of modeling states of the world is reduced, We turn now to some
technigues based on the supposition of independent modeling of

act probabilities.

3.7 DUtility Swing

A convenient formulation of many VOI problems is in terms of
opportunity loss, or the cost of errors (Sectiomn 2.2.3, 2.2.7,
and 2,2,10.1). This approach is particularly appealing when

we have decided not to model states of the world, since direct
assesasment of utility differences is only one step beyond direct
assessment of the utilities themselves, It turns out, however,
that an application of the opportunity loss concept within an
acts as events context is not guite as straightforward as it

might appear.

The natural way to proceed would he as follows, with reference

to the diagram of Figure 3-7:



E?SI{EnJ = u*{Enl - u*{uﬂl

= E u*IEn,a

s *
aE|E ; E u lﬂnfan}

n E ﬂﬂlED

= E E E [u*[En,aE] - u*{eD

a_ll
n| [} El®n “

¥

where we have used 2 and ag to refer to the informed and
uninformed acts, respectively. With this approach we need to
assess probabilities over the options both for the decision
maker's initial preferences, L and for his choices, Bos
after observing the data base contents, En‘ The gquantity in
brackets represents the utility swing for a particular combination
of initial preference and informed choice, and may be assessed
directly. (Note that we could also define opportunity loss in

terms of perfect information and let:

EvSI[EnJ = I*IEG} - R*tEn}

= [u*({PI) - ”*{Eg]] = [u*(PI) - u*(E_}]

(ee Section 2.2.10.1). We have chosen instead to regard “"arrors®
as differences made in behavior by ignorance of a particular data
baze, En, and not by lack of "perfect knowledge". However,

paralle]l considerations would apply to the alternative treatment.)

To seea the problems that arise in the context of acts as events,
note that with the standard opportunity loss treatment, when
information does not affect choice, utility swing is zero

(8ection 2.2.7). The crucial intuition underlying our assessments
is that we are evaluating the costs of errors, what we would

have gained by switching responses. On account of our assumption
that experiments do not affect states of the world (Section 2.2.8),

we would therefore expect to find that:

3=-31



] = *
u IEn,aEI u {Eu*anl

when ap = a_.

This however, is not the case with acts as events. Utility
agsessments are conditional upon the actions performed, and upon
the amount of knowledge one supposes to have informed the action
(Sections 2,.3,2.2, 3.3.4). Thus, even when the decision baged
(o] Eﬂ is the =same as would have been taken without it, we assess:

* FETE
ur(E ,ap) > u*le_,a ),

E

because the fact that the action is chosen on the bagis of knowledge

gives us more information about utility than the mere fact that
it is chosen.

Fortunately, there is a formulation in terms of opportunity loss
which fits the intuition that we should be concerned with errors.
We can repartition the space of outcomes so as to establish the

desired eguality of expected utilities. All that is required is
that we insert a chance node after the uninformed act, a which
corresponds, hypothetically, to what the informed act, Ap, would

have been (Figure 3-8}.

The expected utility assessment, u*ten’au'aE}* is now conditioned
on the hypothesis that, in this situation, if the decision maker
had known Epqe he would have chosen ag. Thus, if the uninformed
decision maker makes the same choice in that situation, he gets

tha same utility. The effect of this partitioning is that:

* = 1® FRRTE.
u {en,aﬂ,aE! u !En,aE} »u {eﬂ;aﬁl
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when a_ = a_, and
E ()

u*{e ,a_,a < uvl(e &
[ o' o Ej - ( of n}

when as # a i.e,, expected utility is adjusted downward when

o
we know that the informed cheoice would have been different.

We can now reformulate the acts as events model in terms of

opportunity losa:

EVSI(E,) = u*(E )} - u*(e,)

= F +*
n {En,a

- E
aE|E ) E E 1 {eﬂ,aﬂ,aEl.

n E %1% 2el%r%

And, assuming that the informed decision maker knows what his

initial choice would have been, i.e., P[aE|Ea’anJ = F{aEl = P{aErEn},
we have:

EVSI(E )} = Eaﬂleﬂ EaEIEn [u*(E_,ag) - u*(a_,&_ ,8.)].
The guantity in bracketsz can be interpreted legitimately in terms
of opportunity loss., In effect, it compares a_ and 2 in the same
situation, It corresponds to what the decision maker imagines

he would pay to be allowed to change his mind if, after chosing
a,, he observes E_ , and as a result now prefers a.. He will, of
course, pay nothing te retract his decision if En does not cause
his preference to shift.

The opportunity loss formulation is convénient, as noted in
Section 2.2.10.1, when there is an additive component of utility
common to all options a. Moreover, the required assessments
seem gquite natural. Still, it should be noted that in the acts
as events context, the number of reguired utility swing assess-
ments is actually larger (the sgquare of number of options) than
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the number of utility assessments that would ordinarily be needed
{twice the number of options). Even when the uninformed choice,

a is known with certainty, assesaments are reguired for each

ﬂ.l'
possible switch from ag, i.e., for each option.

3.8 Unspecified Options

Thus far, every VOI technigue which we have reviewed or proposed
has required that the options confronting the decision maker
be zpecified in advance. This is a guite unreasonable demand
when information systems are expected to perform in changing and
largely unpredictable environments. It is still less reasonable
when some of the information to be evaluated provides assistance
in identifying options. Finally, we can expect enormous economy
of aeffort by framing a VOI analysis with unspecified options.

A natural starting point is the opportunity loss idea in the
context of acts as events (Section 3.7). We now assume t£hat the
utility swing,

= 4 - %*
U{Enl u [En,aEJ u {eﬂ,aa,aEJ,

is (roughly) constant for all ap # a . Then we have:

EFEI(EH} = EanIED EaE|EnraE#an UlEn}
= U(E_) E ; Pila |e JP(a |E ]
n am aE ag : ol g El'n
= U(E_} E: E; Pla_kag|e_ ],
.ntoa, agfa, o' TElTo

again assuming that P(ag|E ) = Pla;|a_,e_ ). Thus,

=

EVSI(E_ ) - UIEn} . stﬁn}



where ElEnl is the probability that the decision maker would switch
options, if he had knowledge of En’ and UlEn} iz the expected shift in
utility given that he does switch optione as a result of En.

Both UIEn] and S{En] can be directly assessed, with a fair
degree of naturalness, in a variety of circumstances. When this
ig possible, it is unnecessary to spell out the options between
which the decision maker might switch. It is only reguired to
assess the likelihood that the information will cause some change
or other, and the expected benefit.

1.9 DecnmEgsing Ehift Probabilities: Information Value and
Usability

For many purposes of EE system assessment it is desirable to
distinguizh features relating to "pure informational value" from
those relating to "usability". Unfertunately, efforts to categorize
evaluative criteria in such terms have seldom been rigorous or
Formally justified (see Section 2.1.2). We have suggested one
approach to this problem based on an auxiliary decision tree and

the choice eguation (Sectien 3,4.1). We now outline another,

much simpler method which flows from the opportunity loss conception.

The egsential idea is to decompose the probability that the

decision maker will change cptions due to B, into two preconditions:

& the informaticon content of En would suggest a change
in options to an "optimal® decision maker;

# an actual user would change to the indicated option
given that an optimal user would.

The suggested decomposition is summarized in Figure 3-9. The

information system would cause an optimal decision maker to change

from his initial preference, a,r to a different choice, dys

with probability . Given that an optimal decision maker changes,

the actual user will switch his preference, ap to the indicated

option (or to one nearly as good) with probability K. If he does
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Figure 3=9

Probability tree for information wvalue and usability.



switch, his swing in expected utility is U, as defined above. If,
on the other hand, he remains at his initial preference, or
switches without apparent reference to the information systen
content, his expected utility swing is zero.

If the information system content suggests to an optimal user

that he stay with his initial choice, a,, we assume - for simplicity -
that the actual user will remain at a, with probability one., It

seems unlikely that the decision maker would very often be deterred
from his chosen path by the illegibility of a confirming information

display, or even by a fallacious interpretation of it.

We thus have a "multiattribute" decomposition of E{Enl in terms
of two parameters: Ainformation wvalue, R:En], and usability, K{En}:

EEEn} = R{En} . HEEn?+

This MAU model is not ad hoc {see.Section 2.1.2). The multi-
plicative combination rule is a direct implication of our
probabilistic assumptions; and the interpretation of R and K

as probabilities provides a framework in which their meaning can
be clarified and communicated.

An important part of such clarification is the definition of
"optimal decision maker" (ODM). First, it should be clear that
ODM is not ocmniscient. We attribute to him roughly the same
substantive knowledge to be expected in the actual user of the
information system. Otherwise, of course, the information provided
by .the system could never cause him to change his mind.

On the other hand, we assume that ODM is consistent (Section 2.3.1).
This means that he rationally incorporates new information into

his belief structure: he assesses probabilities for states of the
world conditional on the information, assesses utilities for each
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combination of act and state of the world, and selects an action
by maximizing expected utility. A second assumption about ODM

is that, in doing so, he is undeterred by such factors as fatigue,
workload, inattention, failures of memory, or illegible displays.

kR is the probability that ODM, so equipped, will switch options

as a result of the provided information, (l1-K) measures the likeli-
heood that inceonsistency due to performance factors (fatigue, eto.)
or errors of knowledge (e.g., the use of an incorrect decision

rule) will negate this potential switch in actual practice.

3.10 Application to VOA

When inference or decision aids are provided by an information
system, they may improve the "usability" of other information
items. They may reduce the effects of workleoad and fatigue by
automating certain functions, and they may correct errors of
knowledge by helping to draw the implications of information

for belief and action.

Decision aids, however, may possess information value in their

own right, considered in isoclation from other elements of the

data base. HNote that although ODM is assumed to be a consistent
probability assessor, he is not necessarily an authentic one

(Tani 1978; Section 2.3.3.2). That is, his assessments need not
fully incorporate the relevant knowledge which he already possesses -
and which, if he had "infinite time® for reflection, he would bring
to bear on the assessments. A decision aid can cause an optimal
decision maker, so defined, to change his mind. It can stimulate
the generation of available options; and it can improve his
assessment of probabilities by decomposing them in more natural

ways, that draw on more of his knowledge. His judgments are

consistent conditional on any given knowledge set.

Since ODM is consistent, he will evaluate the output of a decision
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aid as "information", assessing its validity in the context of
other heliefs, and acting accordingly (MNickerson and Boyd, 1980;
Section 2.3.3.3}. Note that a; - the option indicated as optimal
by this process - need not be the option explicitly recommended
by the decision aid.

Actual decision makers, of course, may either fail to appreciate

a good decision aid or aet unguestioningly in accordance with a

had one (cf., Watson and Brown, 1975: Section 2.3.3.1). E, there-
fore, measures the "usability" of the decision aid - the extent to
which its impact on behavior reflects a rational evaluative process

on the part of the user.

The proposed technigque satisfies two desiderata for the evaluation
of decision analysis, discussed in Section 2.3.2:

# It does not assume that an actual decision maker is
perfectly consistent in the probability judgments used
to evaluate the analysis.

# It does not reguire the prior specification of options
available to the decision maker.

Thus, in addition to being simpler than current approaches, it is
applicable to decision aids which assist in the modeling of options.
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4.0 INFORMATION EVALUATION FOR SYSTEM USERS

4.1 "Intelligent" Computer Aids for Information Selection

In thiz chapter we turn to the szecond level of information
selaction described in the Intreduction: the "user dialogue®.
Certainly one of the most important characteristics of future CEI
systems will be the ability to perform proactively and intelligently
in the on-line provision of information to decision makers, Users
should not have to traverse comple seguences of computer-generated
menus or cope with complex thesauri of computer-recognizable

terms in order to tell the system what information is needed.

To whatever extent possible, the system itself should guickly
determine the information needs of the particular uger, and select
optimal methods of data presentation based upeon its knowledge of
human factors and its internal determination of the expected

value of information.

While system designers must consider the broad range of scenarios
in which a system is to function, our concern shifts now to a
particsular u=ser in a particular situation. Even though, in a
sense, the user has less to consider, the constraints on the
complexity of the user dialogue are no less severe than for the
designer dialogue. The user of a cz system will be operating under
heavy pressures of time and cognitive load, partieularly in
gituations of combat. A& determination of the information that

is of greatest value must take place as guickly and effortlessly
as possible. We may add that elaborate and complexX programs

to perform a full VOI analysis would not appear to be practicable
adjuncts of data-base systems, given the present state of the

art in computer aids.

In our discussion of the user dialogue, we will draw upon concepts
developed in Chapter Three, particularly Sections 3.7 and 3.8, for

a method which may prove both practicable and effective.



The method is based on the fundamental concept .that information
has & value only inscfar as it causes a decision to be changed.
In essence, then, we reguire the computer to ask only how likely
data in a given category are to cause a switch in the preferred
cptions, together with an estimate of how valuable such a2 switch
would be. The data that are then presented to the user will hbe
those which masximize the product of the propability of a switch
and the expectation of the shift in utility. However, a direct
assessment of these entities may not be possible for the decision
maker (DM) without some more solid background against which to
base these assessments. Thus, the procedure we advocate provides
for a certain initial structuring of the decision problem. There
are; however, many different levels of effort and complexity at
which the assessments could be carried out. We shall indicate
the advantages and disadvantages of the various levels of

decomposition.

4.2 OQutline of Proposed Program

The basic idea of the approach is shown in diagramatic form in
Figure 4-1. 1In Step 1, the computer asks the DM to make a list of
all those options that the DM considers to be potentially
selectable. The purpose of this is to make the gquestioning in
later steps less of an abstract exercise. The DM is then asked to
select that option which he considers to be the best, in the
absence of any information that might be provided by the data
basae,

In S5tep 2, the DM is asked by the cumbuter to think about which
areas of major uncertainty the M would like most to have resolwved
in order to feel more happy about the option selected. It will be
emphasized to the DM that consideration should be centered upon
those uncertainties where potentially available information might
cause the preferred option te switch. Thus, even were the DM
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particularly worried about a certain area of uncertainty, if

he did not feel that any potential resolution of that

uncertainty would cause the preferred option to be switched, then
the information would have (at that point and time) no wvalue.

Each individual type of uncertainty may, or may not, be explicitly
linked wia the computer to the relevant decision options. It is
gquite conceivable that, after producing such a list of
uncertainties; the DM will want to return to Step 1 in order to
include one or more previously unconsidered options. Such an
iterative procedure should, of course; be built into the decision

aid.

In S5tep 3, the computer will need to elicit from the DM the
probabilities that the preferred option would be switched giwven
perfect information on each of the uncertainties listed in Step 2
above. In S5tep 4, the computer would need to elicit the expected
change in the value of the decision, given a switch due to perfect
information, for each of the uncertainties. These changes in
utility would perhaps be best assessed on a 0 to 100 scale, where
0 indicates the worst possible outcome and 100 represents the

best possible outcome. After Steps 3 and 4, it will be possible
to decide which uncertainty it is of most value to resolve, by
maltiplying together the probability of a switch given that
resolution, and the expected change in utility from a switch. The
most valuable is obtained by finding the uncertainty which maximizes
thiz product.

4.3 Levels of Analysis

The steps described in the last paragraph are the heart of the
process. However, many different levels of effort could potentially
be programmed into the decision aid. We now indicate, in increasing
order of effort, some of the potentially available levels of
decision aid:



# The computer could simply ask directly of the DM which
uncertainty would be of the most value -to hawve resolved.
Such a direct assessment would not; we suspect, provide
much useful aid to the DM.

# ©One could assume that the expected utility from a
ewitch in the preferred option was approximately the same
over all uncertainties and simply ask the DM which
uncerfainty would, upon resolution, provide the greatest
probability of a switch in options. That uncertainty
would then be targeted as the one concerning which data
should be presented. It will be noted that this approach
does not reguire the assessment of numerical wvalues for
the probability of a switch—--merely the elicitation of a
maximal element. The degree of approximation inherent in
the initial assumption of egui-value switches will, of
course, depend on the given context. In certain
situations, this approach may indeed be the bast because
of its simplicity.

e« The analysis could be performed as indicated in the
previous section, by assessing both the probability
of a switch and the expected utility of a switch for
each uncertainty. The assessment of the probabilities
of switching could be done at a more or less refined
level and similarly the expected switches in utility,
although we assume that simple, direct assessments on
a 0 to 100 scale (perhaps wvia ratio judgments) are the =
most practicable,

¢  One could build a full multiattribute utility (MAU) model
instead of Step 4. The DM would then be reguired to
indicate how much gain {(or leoss) on each of various

key criteria could be expected from the potential switches
in preferred options.
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e The assessments could be conditional upon which parti-
cular switch in preferred option was made., Thus, the
computer would assess from the DM the probability of
switching to s=ach of the options listed in Step 1 and
then assess the expected switeh in utility individually
for each possible option.

# The greatest degree of complexity would be to build a full
decision-analyvtic model of the problem and to perform a
complete VOI calculation thereon. However, as indicated
at the beginning of this section, such a procedure is not

gt present to be contemplated.

4.4 Presentation EE Data

At this stage, the computer will have gained from the DM knowledge
of the area of uncertainty to which presented data should refer.
It is now necessary to decide which individual items of data in
fact pertain to this uncertainty and also to determine a
prioritization of all such items of data. It appears to be
necessary that some pre=-sorting of the items in the data base
should have been carried out prior to this analysis. At the
simplest level, one could simply associate with each item of data
several key words. A list of key words could then be presented to
the DM, on whom would fall the chore of linking the selected area
of uncertainty with presented key words. This, of course, would
be the most basic form of information selection, and one upon
which we believe it to be fairly easy to improve, given a certain
amount of ingenuity and f:r;E-mmjeli.ng aeffart.

The key to such more sophizticated methods of choosing data is
that, for a given data base, the types of uncertainty that may be
faced by decision makers will be finite and of small number.



Pre-modeling efforts are reguired to have associated with each

item of data in the data base an indication of which type of
uncertainty is addressed by that item. This indication could be
either in a binary yes or no form, or, in a more sophisticated
version, by a number between, say, 0 and 10, indicating the degree
of relevance of that information to each type of uncertainty,

once the important uncertainty had been isolated by Steps 1

through 5, any of a variety of algorithms could be used in order to
decide which items of data should be presented teo DM. As an

example, we have the following:

¢ If the binary categorization has been used, the computer
could simply present all those items which were classified
a8 being relevant to the given uncertalnty.

o If a more complete numerical scale was used,; the computer
could present items in order of their relevance to that
given area of uncertainty.

# The statistical technigue of cluster analysis could be
used to find items of data that were similar in
characteristics to a given prototype plece of data. This
prototype could be an item of data impinging purely upon
the selected area of uncertainty, though it could alsoc be
a more sophisticated version given to the computer by the
DM, i.e., the computer might ask the DM, after having
displayed the area of uncertainty of greatest importance,
to feed in a "relevance profile™ which the DM considered
to be the most appropriate type of data that could be
presented at that time.

¢ A more sophisticated form of cluster analysis could be
used, based either on stochastic clustering or fuzzy
clustering (see Appendix) which would permit the computer
to "know" to what degree the given data element belonged
to the relevant cluster. This would again provide for a
prioritization of the presentation to the DM.

After presentation to the user of each item of data, the computer
should present to the DM the possibility of going back to stage
one, In this way, the DM would be able to add to his previous
list of options any new ones that had occurred to him after
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presentation of the data and also any other major uncertainties
which now were worrying him. A new preferred aption could be
selected as reguired; new probabilities and utilities could be
assessed, and, thus, a new primary area of uncertainty could be
distinguished. The procedure would thus be iterative, as
indicated in Figure 4-1 until the decizion maker either felt
sufficiently confident of the preferred option, or until available
time and rescurces had run out.



5.0 TECHNICAL MOTE: CREDIBILITY

In this note we show how the credibility of the ewvaluation

of a decision problem with information, u*(E), depends on the
credibility of the assessments for the expected utilities of
actions (Section 3.6). We will compare two versions of acts as
events in this respect: one, using expected utilities to

estimate probabkilities for actions; the other, estimating those
probabilities independently. Preposterior analysis will be used

as a benchmark. The ultimate purpose is to assess the consequences
of omitting states of the world in these types of models,

We use the choice eguation to derive:

u*(E) = £ P{alE) u*(E,a)

a
L
u i . Emtic (uf 4 + &)
j mfj

It is necessary to note several simplifications. First, we treat
u*[(E,a) as “;,i plus an adjustment A, A is zero for preposterior
analysis (c+=), For acts as events it is always positive, and may
vary with u; and ¢, In this analvysis we will ignore A - in
effect assuming that it is not very sensitive to the wvalue of

u*. HNonetheless, for this reason we may underestimate the depen-
dence of the variance V{u*(E)) on vtu;} for acts as events.

Second, we are ignoring modeled information events, since the effect
of uncertainty in the assessments of P(z|E) is not our present
concern, and such an effect would be the same for acts as events

and for preposterior analysis when they model the same outcomes.

Finally, we assume that our uncertainty concerning the "authentic"

values of the u% T given the assessed ones, is constant across
=M j

acts.



On these assumptions, using the method of Brown (1968), and
ut ¢

wElting PR for m, k-, wa get:
L u* ¢
j W]

(e )’
Viu*(E)) = Viu*)E(3lk k'm, + H.O.T.

*
2 aum,i
c-1 L ct+l

p U e e Ui i#i “m,di| )+ H.O.T.

II: u* _'C)E- !

5 m,j J

| . :
By ignoring the higher i interactions of the u; we do not

affect the dependence of V(u*(E}) on v[u;}.
Aceording to this eguation,
VIiu*(E)) = Ele)Viut).

For treditional preposterior analysis our uncertainty concerning
the decision problem with E is the same as our uncertainty
about the alternative for which expected utility is maximum:

Via*(E}) = Viug).

For acts as events, K(c) may be greater or less than 1 depending
on ¢, the number of options, and the wvalues of the u;+ Thus, when
¢ egquals zero, the rate at which V{(u*(E)) increases due to increases
in V{u*} is less, in comparison to preposterior analysis:
viu*(E}) = v(ut)p,? = v(u¥)/q

i i

where g is the number of options (and Pi = 1/q since ¢ = ().
Here, K(0) = l/q.



On the other hand, for c = 1,

2,2
Viua*(E}) = V(u*)-L[2P, - IP,"]
my i § i
= ) wire 2,2
V{up)-g- (EF;7) 7,

1

Ip,2
1 1

when the uﬁ j are equal; it has its maximum value (1) when only
a single response has expected utility not egual to zero., Thus,

has its minimum wvalue (1/g) when each P, eguals l/g, i.e.,

2.2
q 2 qEEPi )

> 1l/q.

Hence, E(l) may be considerably greater than 1 when options have

very disparate expected utilities,

We turn now to the independent modeling of act probabilities,

in an acts as events model, In this case,

_ 2 2 :
V{u*(E)} = V{u®) E_Fi + E“[Fi}”;ﬂ,i + H.O.T, .

where ?i - P[ailEl, Again, EP 2 is minimum for equiprobable

1
actes and maximum for exclusive preference. Thus,

With independent modeling of act probabilities, therafore,

the dependence af Viu*(E])} on v[uﬁ} is reduced in comparison to
acts as events with ¢ = 1 - and, subject to the qualification
concerning the adjustment A, may be considerably less than in

the preposterior analysis.
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APPENDIX
FUZZY SETS AND INFORMATION SYSTEMS
INTRODUCTION

Fuzzy sebt theory iz a relatively new diszscipline. The seminal
paper was writkten by Zadeh in 1965, and since then a great deal of
time and effort has been spent developing the concepts. In this
section we shall present an overview of the foundations of the
subject; and show how their application could be of potential
value in the design and use of information systems.

An Overview of the Fundamentals of the Fuzzy Set Theory

The basic aim of fuzzy set theory is to handle imprecision. To
overcome the need for precision, Zadeh (1965) argued the need for
a new, fuzzy approach to the analysis of systems, and to this end
he introduced his fuzzy set theory and the related concept of
fuzzy logic. These ideas are compelling enough to have stimulated
considerable study over the last thirteen years. In this section
we present only & very guick treatment of the theory. For further
detail see Watson, Weiss and Donnell (1979%), Freeling (1979, 1980)
or any of Zadeh's own papers.

Our treatment follows that of Watson et al. The central concept
of fuzzy set theory is the membership function, which represents
numerically the degree to which an element belongs to a set. This
function takes on values between 0 and 1, and it 1s an extension
of the i1dea of a characteristic function for a set. The
membership function is assessed subjectively in any instance,
small walues representing a low degree of membership, and high
values representing a high degree of membership. Freeling (1980a)
discusszes further the gquestion of elicitation.



The calculus of fuzzy sets is based on three reasonable propo-
sitions which numbers of this type ought to satisfy:

(a) The degree to which a belongs to both A and B
is egual to the smaller of the individual de-
grees of membership.

i.e., p, ola}l = minduhtah.uE!a}]
(using an obvious notation)

(b) The degree to which a belongs either to A or
to B is equal to the larger of the individual
degrees of membership.

{a))

i.e., (a) = max(u,(a)

HaoB rFg

{e) The degree to which a belongs to (not A) is
one minus the degree to which a belongs to A.

i.e., uiia] = ] = uh{al+

Many possible usez for these concepts and this calculus in sys-
tems analysis have been suggested. One particular idea is to
extend the notion of a function to allow fuzzy inputs and pro-
duce fuzzy outputs. To deduce the "fuzz" on the output given
the "fuzz" on the inputs, we use the relationships above in the

following way:

Let pi{Hi} be the degreetﬁn which xi belongs to the possible

set of numbers for the i input variable, and uﬂ[y] ba the

~ degree to which y belongs to the set of possible numbers for
the output wvariable. Then application of the rules above gives

Ho l¥) = F=¥?§][Hi“{“lixllfuz[”z}""'”n[“n}]]

{1



The idea of Egquation (1) is that for each "possible" szet of walues
of the inputs (i.e., for all sets of values having non-zero
membership functionsz) the output value iz calculated and then a
membership grade is given to this output value, based on the
membership functiona of the inputs.

With this basic calculus numerous researchers have shown that
imprecision can be handled in a useful and logically consistent
manner. In particular, just as ordinary set theory forms the
basis for reasoning via logic; fuzezy set theory forms the basis
for approximate reasoning, via a fuzzy logic.

The Use of Fuzzy Sets in Managing Expert Information Systems

The main advantages of using fuzzy set theory and fuzzy logic when
designing an information system lies in the fact that we can allow
fuzzy, or approximate, input from the user. Although it is
possible that stochastic, or probability, models might alsc be
appropriate in this situation, using fuzzy logic is faster
computaticonally and thus appears to offer a practicable
intelligent svstem. We have not as vet developed these

ideas very far and thus we shall present only an overview

of the sorts of ideas that might ke worth researching further,

It should be noted that other researchers in the field have
already begun using these concepts and claim great successes

for their work. Such literature as may have been generated,
however, does not appear to have been published. The research
thus far has been reported only at international congresses, for
example the Congress on Cybernetics and Systems in Acapulco,
Mexico, December 12 through- 17, 1980. The ideas presented in

this section, however, do not borrow from those of other
researchérs, since unfortunately we have not been able to study
their work.



An attractive and fairly simple idea would be to extend the use of
key words. In order to achieve this, one could envisage
associating with each item a value indicating its degree of
membership in the fuzzy set of data satisfving a given key word.
Such a value could be preprogrammed into the information phase.
Then one can envisage using a fuzzy extension of cluster analysis.
This mathematical technigue has been studied, for example, by
Bezdeg, and several good results have been reported with it both
in terms of intuitiveness of the results and simplicity of the
calculation. The different data could be grouped together in
fuzzy clusters relating to their zone of applicability and then
@ither the names of the fuzzy clusters could be presented to the
data base user, or perhaps the prototype member of the fuzzy
clusters could be presented to the data base user, The user could
then state which fuzzy clusters he would be interested in viewing.
Alternatively, the user could present a prototype to the system
which would then present to the user those item= of data which
were "near" to the prototype, in terms of the fuzzy clustering
algorithm. Parsimony of data presentation could be incorporated
into the process by allowing only data which had membership
greater than a given threshold value in the relevant fuzzy
cluster to be presented. Should further data be reguesated by the
user one could then lower the threshhold value.

Fuzgy logic is of great potential when contemplating the design of
interactive data bases because the approximate concepts in which
human beings typically think can be explicitly modeled. For
example, the system would wunderstand what was meant by information
that was "sort of relevant to Russian submarine manuevers." With
such concepts, a gquick and highly interactive search of an
unfamiliar data base could be conducted by any user.

It should be realized that the concepts discussed above do not
draw on the decision theoretic idea of wvalue of information. Thus



we have done no more than whet the readers appetite for

investigating such use of fuzzy sets further.

§ o—— ——— ms o —

We follow Watson et al. (1979) and Freeling (1980a) and impute
from the imprecision in the inputs to a decision model; what the
imprecision in the conclusions should be. We assume that the
structure of a decision problem is eclear-cut, but that the input
probabilities and utilities are known only fuzzily
(approximately). (We realize that in many decision analyses the
appropriate structure 1is only fuzzily known, but we restrict
attention here to problems where this is not the case),

The inputs, then, are fuzzy numbers, as is the output (the expected
utility). An example of a fuzzy input and output are input
functions shown in Exhibit 1l(b) and (c). MNote that an ordinary
"grisp" probability (l{a)) can have only one wvalue; a fuzzy
probability has many possibilities. Such fuzziness may arise
because of lack of time in assessments i.e., at a first pass we
ask only for approximate values; or because the DM has no more
than a vague, or fuzzy, notion in his head of "probability." This
motivation is further discussed in Freeling (19B0b). We take the
view that we may model approximately the results of a more
detailed analysis, by assuming that the analysi=s will increase the
DM's coherence by reducing his initial fuzz on the inputs. In
particular, we introduce the concept of perfect coherence as the
sitvation when all inputs (and hence outputs) are crisp. In a
manner analogous to that used in a normal decision analysis to
calculate value of perfect information (VOPI), we may calculate
the value of such perfect coherence, before performing the
analysis. This, then, may be considered an upper bound on the
value of the analysis to the DM--how much he should be willing to
pay to achieve increased coherence by decision analysis. One may
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also extend the concept of VOPI to this fuzzy analysis. For the
gimple decision tree of Exhibit 2, where only the probability p

is fuzzy, as shown in (b), the (fuzzy)} VOPC and VOPI are shown in
{e). It can alsoc be shown that, in a veryv natural sense, the value
of perfect information is always greater than the wvalue of perfect
coherence. This satisfying and intuitive result leads us to hope
that this approach to the valuation of analysis may prove more
fruitful, at least in some situations, than the more traditional
ones discussed elsewhere in this report.

We have thus shown that we can, in a logically consistent manner,
gain an approximate idea of the value of analysis by asking only
for approximate inputs. Such a calculation could, we believe, be
fairly simply incorporated into an interactive data base, both to
calculate the value of a decision alding device, and also an
approximate value of different tvpes of information.
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