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ABSTRACT 

In passive t a r g e t  ranging aboard a nuclear a t tack  submarine several  ana ly t ica l  procedures e x i s t  f o r  estimating a 
s ing le  var iab le ,  and the est imates which a r e  obtained a t  a given time frequently do not agree. Typical ly,  the Commanding 
Officer  focuses on one o r  two of these est imates,  thus f a i l i n g  t o  u t i l i z e  addi t iona l  information t h a t  i s ,  in  pr inc ip le ,  
ava i lab le .  To address t h i s  problem, an in te rac t ive  Bayesian dec is ion  a id  computes a s ing le  pooled est imate of t a r g e t  
range, together with an assessment of i t s  probable accuracy. The a id  can operate e i t h e r  automatically or  by incorpo- 
r a t i n g  subject ive judgments concerning the v a l i d i t y  of the est imates being pooled. 

Quanti tat ive t e s t s  with pre-recorded at-sea da ta  (Rangex 1-78 and 1-79) evaluated the, a id  with object ive inputs ,  
subject ive inputs ,  and a mix of the two. It was found t h a t  est imates computed by the pooling a id  i n  a l l  three of 
these modes were consistently more accurate than KAST, MATE, and Ekelund ranging procedures and the Command s t a f f ' s  
unaided best  guess a s  to ta rge t  range. Maximum accuracy was obtained when Command s t a f f  subject ive judgments were 
combined with object ively assessed parameters. 

Formal analysis  of the s e n s i t i v i t y  of pooling accuracy .to e r r o r s  i n  inputs suggests tha t  the advantage of pooling 
over rel iance on a s ing le  est imate w i l l  be extremely robust over a wide range of condit ions.  

INTRODUCTION 

The effect iveness of command decision a ids  may be  
enhanced by a growing sense of t h e i r  l imi ta t ions .  
Since "objective" methods can seldan address more than 
p a r t  of a canplex problem, prescr ip t ive  a ids  a r e  appro- 
p r i a t e l y  regarded not  a s  "know-it-alls" but  a s  f a l -  
l i b l e  "advisors" (Patterson el a l  . , 1981). The deci- 
s ion  maker's own experience may be t h e  b e s t  ( o r  only)  
source of re levant  information i n  some matters (e.g., 
uncertainty about t h e  in ten t ions  of a mi l i t a ry  foe, o r  
t h e  canpetence of an operator  supplying range e s t i -  
mates), while an exclusively "factual"  approach could 
be f a t a l l y  incanplete. 

To earn t h e  Commander's t r u s t ,  a decision a id  
must display evidence a s  well a s  conclusions, accwmo- 
da t ing  h i s  requests  f o r  information a t  any l e v e l  of 
d e t a i l  (e.g., from raw bearing da ta  t o  t a r g e t  range 
est imates t o  "probabil i ty of k i l l " ) .  Such a i d s  w i l l  
allow t h e  Commander t o  interpose h i s  own assessments 
i n  addit ion to o r  i n  place of defau l t  values a t  any 
leve l .  But they w i l l  r ap id ly  and systematical ly in te -  
g r a t e  subject ive inputs  with t h e  object ive da ta  t h a t  
a r e  retained.  

I n  t h i s  repor t  we t e s t  t h e  f e a s i b i l i t y  of a proba- 
b i l i s t i c  a i d  which helps t h e  Commander of a nuclear 
a t tack  submarine evaluate noisy and sometimes incon- 
s i s t e n t  information about t a r g e t  range. Within t h i s  
spec ia l  context, we t e s t  t h e  hypothesis t h a t  ( q u i t e  
as ide  from any impact on user  acceptance) incorpora- 
t i o n  of Command s ta f f  judgments i n  addit ion to objec- 
t i v e  data can enhance t h e  q u a n t i t a t i v e  accuracy of 
decision a id  output. l 

Rationale 

The requirement of covertness i n  submarinebased 
antisuteparine warfare (ASW) imposes cons t ra in t s  on t h e  
q u a l i t y  of information available to the  at tacking p la t -  
form. For example, data provided by passive sensors 
(which do not a l e r t  the  enemy) is  usually l e s s  good 
than data t h a t  could be obtained by ac t ive ly  pinging. 
Numerous techniques a r e  available f o r  extract ing infor-  
mation regarding t h e  loca t ion  and motion of a t a r g e t  - 
based on d i f f e r e n t  aspects  of t h e  da ta  (e.g., bearing,  
i n t e n s i t y ,  angle between d i r e c t  and re f lec ted  sound 
pa ths)  and using d i f f e r e n t  a n a l y t i c a l  too ls  and assump- 
t ions .  Typical ly ( s ince  t h e i r  sources of e r r o r  a r e  
both pronounced and d i f f e r e n t )  they produce q u i t e  
diverse est imates of t a r g e t  range. The Commander, 
nonetheless, must use these es t imates  to make c r i t i c a l  
decisions regarding approach maneuvers and t ime of 
f i r e  - decisions which a r e  heavi ly  dependent on h i s  
assessment of range-related r i s k s  (e.g., counterdetec- 
t i o n )  and oppor tun i t ies  (e.g., p robabi l i ty  of a h i t ) .  

A current  t o o l  f o r  informally in tegra t ing  various 
range solut ions is t h e  Time/Range (T/R) Plot ,  o n  which 
range est imates labe l led  by source a r e  p lo t ted  (usual-  
l y  by hand) a g a i n s t  time. The T/R Plot  f a l l s  s h o r t  of 
what could be achieved by rmre systematical ly i n t e g r a t -  
i n g  da ta  about t a r g e t  range: 

It provides no assurance t h a t  the  informa- 
t i o n  i n  t h e  various ranging techniques is  u t i -  
l ized.  Confronted with a divergent s e t  of 
est imates,  t h e  CO is l i k e l y  e i t h e r  t o  suspend 
judgment about range o r  t o  focus on only  one 
o r  two of t h e  available est imates.  
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There is no e x p l i c i t  measure of o v e r a l l  range 
solut ion qua l i ty .  A s  a r e s u l t ,  t h e  CO may 
postpone a t tack  i n  order to r e f i n e  local iza-  
t i o n  more than it needs t o  be refined.  

Range information is not in tegra ted  with infor- 
mation about t h r e a t  and own s h i p  c a p a b i l i t i e s ,  
t o  support c r i t i c a l  canmand decisions. Inap- 
propr ia te  use of range information could lead  
t o  a premature a t tack  (which both a l e r t s  t h e  
enemy and misses) o r  t o  unnecessary .delay 
( increasing t h e  r i s k  of counterdetect ion o r  
l o s s  of opportunity) .  

Idea l ly ,  of course, it would be des i rab le  to  have 
a s i n g l e  accurate procedure for  est imating t a r g e t  
range: an exact formula applied t o  exactly measured 
inputs .  Unfortunately, desp i te  recent  and expected 
improvements i n  sensor systems and ranging algorithms, 
t h e  i d e a l  is not r e a l i s t i c a l l y  a t ta inable .  Any pas- 
s ive  loca l iza t ion  technique, no matter how good, w i l l  
almost cer ta in ly  be subjec t  both t o  s i g n i f i c a n t  e r r o r  
i n  the  measurement of inputs  (e.g., bearings,  thermal 
layer depth) and t o  occasional f a i l u r e  of assumptions 
(e.g. ,  about t a r g e t  maneuvers) upon which i ts v a l i d i t y  
depends. 

Because no individual  technique is f r e e  of uncer- 
t a i n t y ,  a complementary s t ra tegy  suggests  i t s e l f :  t h e  
design of a framework t o  e x p l o i t  a l l  the  information 
(however uncertain)  i n  a p l u r a l i t y  of ranging tech- 
niques, t o  assess  t h e  amount of uncertainty t h a t  re- 
mains, and t o  combine t h a t  information probabi l i s t i ca l -  
l y  with relevant  p r i o r  information about weapon and 
sensor c a p a b i l i t i e s .  Such a procedure is la rge ly  inde- 
pendent of the  d e t a i l s  of the  ranging techniques being 
pooled, and is by no means incons is ten t  with e f f o r t s  
t o  improve one o r  another of t h e  individual  tech- 
niques. Yet a s  long a s  no one technique exhausts t h e  
re levant  evidence, dramatic improvements i n  t a r g e t  
loca l iza t ion  accuracy (and sharper inferences about 
canba t -c r i t i ca l  events  l i k e  counterdetect ion and t a r -  
ge t  k i l l )  may be achieved, i n  pr inc ip le ,  within such a 
framework. The pooled estimate is based on a l a r g e r  
fund of data than any par t icu la r  so lu t ion ,  even t h e  
one t h a t  is, on the  average, best .  

A Range Pooling Technique 

The basis  for  t h e  approach adopted here is an  
appl ica t ion  of Bayesian probabi l i ty  theory, by means 
of which t h e  ev ident ia l  impact of each ranging tech- 
nique is quani t i fed  i n  the  context of other  techniques 
and used t o  ad jus t  a p r i o r  range est imate.  The out- 
cane of a s e r i e s  of such adjustments is  the  o v e r a l l  
pooled solut ion.  

I f  each range est imate takes t h e  form of a proba- 
b i l i t y  d i s t r i b u t i o n  f i  over t a r g e t  range R, a s i n g l e  
pooled d i s t r i b u t i o n  can be ccinputed which r e f l e c t s  
t h e i r  t o t a l  ev ident ia l  impact: 

where F ( - )  denotes probabi l i t i es  assessed by t h e  pool- 
ing a id  o r  i ts user. 

It might be poss ib le  t o  pool range so lu t ions  
d i r e c t l y  using the  above formula. However, by making 
a few addit ional  assumptions, computations w i l l  he 
speeded and simplif ied,  and inputs  w i l l  be transformed 
i n t o  a more readily understood form, so t h a t  users can 
evaluate such inputs  and ( i f  they choose) subjec t ive ly  
r e v i s e  them. 

Suppose t h a t  information about each f i  c o n s i s t s  
of a mean Ei and variance Vi. Then i n  place of equa- 
t i o n  ( I ) ,  we have: 

We now assume: 

( a )  F ( ~ ( R )  i s  independent of R. 

(b) F(E I1,R) i s  mul t ivar ia te  normal, with means 
R+Bi, variances Vi, and covariances Cov. .. =,I 

( c )  F(R) is r e l a t i v e l y  invar ian t  with R in  t h e  
region of i n t e r e s t .  

For addit ional  discussion of some of these  issues,  s e e  
Lindley, Tversky, and Brown, 1979; Morris, 1977; 
Winkler, 1981; Cohen and Brown, 1980. Assumptions (a) 
and ( b )  a r e  almost c e r t a i n l y  f a l s e ;  we w i l l  see,  how- 
ever,  t h a t  the  impact of these approximations on pool- 
ing  accuracy is  l i k e l y  t o  be q u i t e  small. 

A s  a r e s u l t  of these  assumptions, the  pooled 
range est imate can be computed a s  a weighted average 
of t h e  or ig ina l  est imates,  a f t e r  cor rec t ing  f o r  bias: 

where 

and p is  r e l a t i v e  prec is ion  (V2/V1). The expected 
variance of t h e  pooled solut ion is a function of t h e  
variances and covariances of the  est imates being 
pooled: 

Default values f o r  pooling aid parameters ( b i a s e s ,  
variances,  and covariances)  w i l l  be es t iaa ted  before- 
hand (e.g., f r m  exerc i se  data,  a s  described i n  t h e  
Method Section) and s t o r e d  for  automatic use, s u b j e c t  
t o  t h e  Commander's adjustment. These values w i l l  he 
condit ional  on possible scenarios - e.  g., thermal con- 
d i t i o n s ,  number of d a t a  points ,  maneuver geanetry, o r  
est imated range. The range est imates themselves w i l l  
e i t h e r  be supplied automatically (through the F i r e  
Control System) o r  be manually input  (e .g. ,  est imates 
based on manual p l o t s ) .  The output of the algori thm 
is a s i n g l e  pooled range est imate and an assessment of 
i t s  e r r o r  variance, express ib le  a s  an in te rva l  wi th in  
which t h e  t r u e  range is expected t o  f a l l  with a speci-  
f i e d  probabi l i ty  (e.g., 95%). 
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Displays 

Figure 1 is a display of the pooled solution 
together with inputs upon which it i s  based. Expected 
values and 95% intervals  of uncertainty a r e  displayed 
for each available ranging technique, as  well a s  fo r  
the  pooled estimate. The user can adjust  default  
values for inputs and observe the  implications of h i s  
revision fo r  the pooled estimate. (The default  
values, however, continue t o  be stored and available 
fo r  display.) 
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Estimation Techniques 

MATE KAST EXELUND D/E POOLED 

Range P o o l i n g  D i s p l a y  

F i g u r e  1. 

In Figure 2 the  Caumander has requested current 
s t a tu s  displays fo r  three range-related variables: 
the probability of being within the  t a rge t ' s  counter- 
detection range ( .20), t he  probabili ty of having the  
target  within own ship weapon range (-801, and the  95% 
in terval  of uncertainty a s  a percentage of the pooled 
range estimate (235%). The Cammander can s e t  a thresh- 
old on any of these variables,  a s  indicated by the  
dotted l ines.  When such a threshold i s  crossed, t he  
Cummander w i l l  be alerted.  
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A l e r t i n g  D i s p l a y  

F i g u r e  2 .  
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Other displays involving t a rge t  range w i l l  he 
required for other purposes: e.  g., a Time/Range p lo t  
of pooled range estimates (with uncertainty inter-  
va l s ) ,  and a geographic display u t i l i z ing  e l l i p se s  t o  
represent ta rget  location uncertainty. Fuller discus- 
sion of such display poss ib i l i t i e s  within the context 
of a general at tack planning decision aid i s  contained 
i n  Cohen e t  al. (1982a, 1982b) and Cohen (1982). 

METHOD 

Whether pooling improves range accuracy (and 
whether it assesses accuracy correctly) w i l l  be 
decided, ultimately, a t  sea. The present section 
repor ts  the r e su l t s  of some preliminary quanti tat ive 
t e s t s  - simulating the  operation of the p o l i n g  a i d  
and i t s  use by the  Commander with prerecorded data 
from at-sea exercises. 

Three d i f ferent  modes of operation of the p o l i n g  
a i d  were put t o  t e s t :  

Automatic mode: Pooling takes place without 
user interaction,  employing default parameters 
derived f rau  exercises. 

Previously adjusted weights: Prior t o  an 
engagement, t he  user has inserted h is  own es t i -  
matea of the  re la t ive  val id i ty  of d i f ferent  
ranging techniques i n  place of default values. 

On-the-spot adjustments: During an engage- 
ment, t he  user arrives a t  h i s  own range es t i -  
mates (o r  assessments of re la t ive  va l id i ty )  
and adjus ts  the automatically provided values 
accordingly. 

Each of these modes was canpared to three speci f ic  
ranging techniques (MATE, KAST, and Ekelund) and t o  
t he  unaided bes t  guess of the Command s taf f  (recorded 
onboard as  the  "system solution"). 

Data - 
Data u t i l ized  i n  t h i s  study came from on-range base- 
l i n e  runs by two U.S. nuclear a t tack  submarines ( t o  be 
designated SSN X and SSN Y) i n  Rangex 1-78 and Rangex 
1-79, respectively. Runs were conducted on t h e  wea- 
pons range of the  Atlantic Undersea Test and Evalua- 
t i on  Center (AWC). A l l  runs contained one target  
maneuver and a mixture of opening and closing geane- 
t r i e s ,  with ranges typical  of MK 48 torpedo deploy- 
ment. Both exercises included variations i n  leg 
length (long and short)  and target  signal-to-noise 
r a t i o  ( SNR) (high and low) . 

A t o t a l  of 200 data points were extracted, one a t  
the  end of each own ship leg, up to the target  maneu- 
ver. The following information re la t ing  t o  ta rget  
range was extracted,  when available,  for each data 
point: MATE solution,  KAST solution, Ekelund solu- 
t ion ,  system solution,  and reconstructed range. A l l  
but  the l a s t  of these were extracted from on-board 
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records - e i t h e r  manual logs o r  the  automatic Data 
Gathering System (DGS) associated with t h e  MK 117 o r  
MK 113 Mod 10 F i r e  cont ro l  System. 

MATE, KAST, and Ekelund a r e  a l l  "bearings only" 
techniques whose q u a l i t y  depends d i r e c t l y  on bearing 
measurement e r r o r ,  t h e  number of da ta  points ,  t h e  geo- 
metry of own sh ip  maneuvers, and t h e  assumption t h a t  
t h e  t a r g e t  has not maneuvered. MATE (Manual Adaptive 
Target-Motion-Analysis Evaluation) is an i n t e r a c t i v e  
method i n  which an operator inputs  hypotheses about 
t a r g e t  range, course, and speed and observes a comput- 
e r  display of t h e  differences between observed and 
predicted bearings. KAST (Kalman Automatic Sequential 
Target-Motion-Analysis) produces automatic so lu t ions  
based on assumptions about t h e  normality of e r r o r s  and 
t h e i r  r e l a t i o n  t o  SNR. Ekelund is  more approximate 
method for  obtaining a quick range est imate based on 
changes i n  the r a t e  of bearing change a s  a r e s u l t  of 
an own sh ip  maneuver. The "system solut ion" is  contin- 
uously updated i n  t h e  F i r e  Control System by t h e  Com- 
mand s t a f f  and serves a s  t h e  source of weapon s e t t i n g s  
i n  an at tack.  I t  represents ,  i n  pr inc ip le ,  t h e  Com- 
mand s t a f f ' s  current  bes t  guess a s  t o  t a r g e t  range. 
(No system so lu t ion  was iden t i f ied  f o r  Rangex 1-79, 
although t h e  MATE solut ion may i n  f a c t  have been u t i l -  
ized i n  t h i s  way.) Reconstructed ranges a r e  based on 
data from ocean-bottom sensors and approximate rea- 
sonably c lose ly  the  t rue  values. 

Test  Conditions 

We have u t i l i z e d  t h i s  da ta  i n  several  q u i t e  dif-  
f e r e n t  ways: 

(1) Default weights. F i r s t ,  exercise da ta  was 
used t o  est imate defau l t  parameters f o r  t h e  pooling 
a i d  by means of standard formulae. The e r r o r  f o r  each 
so lu t ion  a t  each data point  is t h e  difference between 
t h e  so lu t ion  est imate and the  reconstructed range. 
Default parameter values for  each solut ion technique 
a r e  s t a t i s t i c a l  functions of these e r rors :  average 
e r r o r  ( b i a s ) ,  variance of e r rors ,  and pairwise covar- 
i a n c e ~  of e r rors .  Weights based on these parameters 
were used t o  pool p a i r s  of est imates:  MATE/KAST, 
MATE/Ekelund, and Ekelund/KAST. To pool all t h r e e  
so lu t ions ,  an i t e r a t i o n  was required: Error s t a t i s -  
t i c s  f o r  the  pooled so lu t ion  involving MATE and KAST 
were computed, and then t h i s  so lu t ion  (MATE + KAST) 
was pooled with Ekelund. (Henceforth, t h e  "default  
pooled solut ion" f o r  any data point  w i l l  r e f e r  t o  t h e  
so lu t ion  which includes the  maximum possible number of 
pooling i t e r a t i o n s .  ) 

I n  t h e  absence of a " l ive"  Command s t a f f ,  we have 
employed exercise da ta  ( i n  a more a r t i f i c i a l  way) t o  
simulate two s o r t s  of user in te rac t ion  with t h e  pool- 
ing  aid:  

( 2 )  Subjective weights. The Commnd s t a f f  
r e l i e s ,  t o  varying degrees, on s p e c i f i c  ranging tech- 
niques i n  a r r iv ing  a t  i ts own best guess a s  to t a r g e t  
range ( t h e  system so lu t ion) .  To simulate subjec t ive  
judgments of est imate v a l i d i t y  p r i o r  t o  an ac tua l  
engagement, t h i s  re l iance  was modeled. Weights which 
b e s t  predicted t h e  system so lu t ion  were f i t  to each 
est imate by l e a s t  squares. The e f f e c t  of s u b s t i t u t i n g  
these  weights in to  t h e  pooling algorithm, i n  place of 
t h e  defau l t  values, i s  presumed t o  r e f l e c t  a t  l e a s t  
roughly the  outcome of pooling with weights subjective- 
l y  assessed by t h e  Command s t a f f .  

( 3 )  Subjective adjustments of defau l t  est imates.  
During an engagement, adjustments by t h e  Command s t a f f  
of defau l t  pooled range solut ions would presumably be 
i n  t h e  d i rec t ion  of i ts  own bes t  guess a s  t o  t a r g e t  
range. To simulate an adjustment of t h i s  s o r t ,  t h e  
system solut ion was pooled with t h e  defau l t  pooled 
so lu t ion .  Weights used f o r  t h i s  higher-order pooling 
determine t h e  magnitude of t h e  adjustment, and r e f l e c t  
t h e  r e l a t i v e  v a l i d i t y  and cor re la t ion  of the  system 
so lu t ion  and defau l t  pooled solut ion.  

( 4 )  Cross-validation. To achieve a l imi ted  
degree of cross-validat ion,  the t o t a l  sample was ran- 
domly divided i n t o  two p a r t s  - a " f i r s t  sample" f o r  
t h e  purpose of est imating parameters ( i . e . ,  d e f a u l t  
weights, subject ive weights, and higher-order pooling 
weights) ,  and a "second sample" f o r  t e s t i n g  t h e  per- 
formance of the  aid.  The gain i n  accuracy due t o  pool- 
ing  with defau l t  inputs  was a l s o  examined within d i v i -  
s ions  of t h e  data according to  platform (SSN X/SSN Y), 
SNR (high/low), and l e g  length (short / long).  

The primary measure of accuracy u t i l i z e d  i s  mean 
absolute e r r o r  (MAE): t h e  average difference between 
a range est imate and t h e  t r u e  range, without regard t o  
t h e  d i rec t ion  of t h e  difference.  (However, r e s u l t s  i n  
t e r n s  of the  standard deviat ion of e r r o r s  a r e  reported 
i n  Cohen (19821 and a r e  q u i t e  comparable.) Only r e l a -  
t i v e  measures of so lu t ion  accuracy w i l l  be given: The 
e r r o r  measure for  a p a r t i c u l a r  ranging technique w i l l  
be reported a s  a proport ion of the same e r r o r  measure 
for  t h e  defau l t  pooled solut ion i n  t h e  same data sam- 
p le ,  values grea te r  than one thus represen t  an advan- 
tage f o r  pooling with defau l t  weights i n  t h a t  da ta .  
(For example, using hypothetical  numbers, suppose t h e  
MAE f o r  MATE were 300 yards, and t h e  MAE for t h e  
defau l t  pooled so lu t ion  were 250 yards. Then the r e l a -  
t i v e  MAE f o r  MATE would be reported a s  300/250 = 1.20. 
This represents  a 20% increase i n  e r r o r  due t o  using 
MATE a s  opposed t o  t h e  pooling aid.)  

RESULTS 

Accuracy of Default Pooled Solution 

Pooling parameters estimated from t h e  f i r s t  d a t a  
sample a r e  given i n  Table 1. In t h i s  data MATE was 
more prec ise  than both KAST and Ekelund; KAST was more 
prec ise  than Ekelund, a s  was the  pooled solut ion in -  
volving MATE and KAST. The only c o r r e l a t i o n  of m d e r -  
a t e  s i z e  is  between e r r o r s  i n  KAST and MATE. 

UNCLASSIFIED 
Weights Based on: 

Solutions Default  Relat ive 
Pooled Weights Precision Corre la t ion  

MATE 
KAST 

MATE .72 2.5 
EKELUND .28 

p = -.02 

KAST .66 1.9 
EKELUND .34 

p = .02 

MATE-KAST .77 3.2 
EKELUND .23 

p = -.02 

Default Parameters Used i n  Pooling 
Table 1. 
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Figure 3 canpares the  pooled so lu t ion  to t h e  sp- 
c i f i c  techniques being pooled i n  terms of mean abso- 
l u t e  e r ror .  Pooled so lu t ion  r e s u l t s  i n  t h e  two sam- 
p les  have each been normalized t o  1.00 (with no impli- 
c a t i o n  t h a t  MAE f o r  p o l i n g  was ac tua l ly  t h e  same i n  
t h e  two samples). In  t h e  F i r s t  Sample, t h e  r a t i o  of 
t h e  MAE f o r  KAST t o  t h e  MAE f o r  the  pooling a id  was 
1.26 - f o r  an increase of 26% i n  absolute e r r o r  due t o  
using KAST. In t h e  Second Sample, t h e  increase was 
q u i t e  canparable, a t  31%. Results  f o r  MATE and Eke- 
lund, f o r  both f i r s t  and second samples, a l s o  show 

UNCLASSIFIED 

F i r s t  Sample 
(Rangex 1-78 Data) 

Second Sample 

la rger  mean absolute e r r o r s  than with p o l i n g .  
Mean 
Absolute 

UNCLASSIFIED Error 

R F i r s t  Sample 

(Rangex 1-78, 1-79 Data1 
Second Sample 

Mean 
Absolute 
Error 1.0 

2.0 1.82 

Sample 
Size 

System Pooled 
Solutio: Solution . 

MATE KAST EKELUND Pooled 
Solution 

S t a t i s t i c a l  c.001 c.001 c.001 
Significance 
of Comparison 
With Pooled 
Solution 

Figure 3.  Ratio of Mean Absolute Error (MAE) for  Current 
Ranging Techniques t o  MAE for  Pooling Aid. Significance 
level  is based on t - t e s t ,  u t i l i z i n g  second sample data only. 

Fiyure 4 ccmpares pooling with t h e  system solu- 
t ion .  In  t h e  f i r s t  and second samples, use of t h e  
system so lu t ion  would have increased MAE by 14% and 
46%. respectively,  over use of t h e  pooled solut ion.  

Improved accuracy general ly counts the  wst when 
q u i t e  la rge  range e r r o r s  a r e  avoided - s ince  small 
e r r o r s  could be overcome by the  weapon's search capa- 
b i l i t y .  Thus, Table 2 focuses on t h e  cont r ibu t ion  of 
pooling to the  reduction of large range e r rors  - i .e . ,  
e r r o r s  i n  e i t h e r  d i rec t ion  which a r e  greater  than  20% 
of t h e  t r u e  range. It ccmpares MATE, KAST, Ekelund, 
and t h e  system solut ion t o  t h e  pooling technique i n  
terms of t h e  proportion of t h e  time an e r r o r  is large.  
The proportion of l a rge  e r r o r s  i s  55% and 17% la rger  
f o r  t h e  system so lu t ion  than f o r  t h e  pooled solut ion,  

, i n  samples one and two, respectively.  The f i g u r e s  a r e  
18% and 72% f o r  MATE; and so on. 

Does t h e  e f fec t iveness  of t h e  range pooling a id  
depend on which boat u t i l i z e s  i t ?  Figure 5 breaks 
down t h e  r e s u l t s  f o r  mean absolute e r r o r  f r a n  both 
samples according t o  whether SSN X o r  SSN Y is in-  
volved. The same defau l t  parameters were used f o r  
both platforms. The improvement due t o  t h e  pooling is  

Sample 
Size 

50,57 

S t a t i s t i c a l  
Significance 
of Comparison 
( t - t e s t )  .085 

Figure 4 .  Ratio of Mean Absolute Error (MAE) for  System 
Solution to MAE f o r  Pooling Aid 

UNCLASSIFIED 
F i r s t  Second 

Sample Sample 

I EKELUND 1.95 1.72 

Ranging 
Techni- 
que s 

System Solution 1.55 1.17 

KAST 1.14 1.33 

Pooling Aid 1.00 1 .OO 

Table 2. Ratio of Proportion of Large Errors (>20% of 
t r u e  range) f o r  Current R a g i n g  Techniques t o  Large- 

Error  Proport ion for  Range Pooling Aid 

q u i t e  cunparable i n  both cases. Similarly,  t h e  contr i-  
bution of pooling t o  accuracy was unaffected by break- 
down of t h e  d a t a  according to l e g  length and signal-  
to-noise r a t i o  (Cohen, 1982). 
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SSN X # (Rznqex 1-78 Datal  

Nonetheless, it would be surpr i s ing  i f  these weights 
did not  r e f l e c t ,  a t  l e a s t  i n  a gross  way, Command 
s t a f f  judgments. 

SSN Y (Ranqex 1-79 Datal  UNCLASSIFIED 
"Subiective" Default  

Solut ions Weights Based Pooling Aid 
Pooled on System Solution Weights 

KXTE KkST EKELUND Pooled 
S o l u t i o n  

S a s g l e  
S i z e  

98 ,  81 103 .84  109 ,68  105.85 

F i g u r e  5 .  R a t i o  o f  Mean Absolute  E r r o r  (MAE1 f o r  C u r r e n t  Ranging 
Techn iques  t o  MAE f o r  Poo l in?  Aid ,  Broken Down by P l a t f o r m .  

In ' sum, p o l i n g  with defau l t  parameters increased 
ranging accuracy i n  both the  i n i t i a l  and the  cross- 
val idated data samples. Pooling was more accurate 
than any of t h e  t h r e e  individual  ranging techniques 
(MATE, KAST, and Ekelurid) and was a l s o  m r e  accurate 
than the  system solut ion,  representing the  Command 
s t a f f ' s  bes t  guess a s  t o  t a r g e t  range. The superior-  
i t y  of the  pooled so lu t ion  occurred regardless of p l a t -  
form, SNR, o r  l e g  length. 

Because of t h e  r e l a t i v e l y  small number of d a t a  
po in ts ,  defau l t  pooling parameters were estimated from 
f i r s t  sample da ta  ccmbining leve ls  of l eg  length and 
SNR. We expect t h a t  pooling accuracy would have been 
even b e t t e r  had t h e  weights been optimized wi th in  
l e v e l s  of such variables.  But how accuracy is 
l o s t  by not  doing so? Some perspective is provided by 
t h e  s e n s i t i v i t y  ana lys i s  t o  be reported i n  a l a t e r  
sect ion.  There is  a r a t h e r  la rge  leeway f o r  deviat ion 
of pooling weights from optimali ty,  cons is ten t  with 
t h e  super ior i ty  of pooling over re l iance  on any s i n g l e  
est imate.  

Accuracy of Pooling with Subject ive Weights 

We have evaluated t h e  p o l i n g  a i d  i n  i ts  "automa- 
t i c "  m d e  - u t i l i z i n g  defau l t  parameter values based 
on objec t ive  data. A c r i t i c a l  fea ture  of t h e  a i d ,  
however, is its a b i l i t y  t o  incorporate subjec t ive  
assessments by Command s t a f f  personnel whose knowledge 
of t h e i r  s i t u a t i o n  may not be re f lec ted  i n  previous 
data.  

Table 3 shows t h e  l e a s t  squares weights t h a t  
describe t h e  r e l a t i o n  of t h e  system solut ion t o  o ther  
range estimates. A higher weight f o r  MATE than  KAST 
means t h a t  MATE had a large influence on t h e  system 
so lu t ion  ( i . e . ,  Command s t a f f  range e s t i m a t e s )  than  
KAST. There is, of course, no reason t o  suppose t h a t  
these  a r e  t h e  weights t h a t  would be supplied e x p l i c i t -  
l y  by t h e  Camand s t a f f ,  o r  t h a t  would be derived f r a n  
t h e i r  d i r e c t  judgments of v a l i d i t y  and cor re la t ion .  

Table 3. Weights Derived By Modeling Command Staff  

Comparison with t h e  default  pooling a i d  weights 
( f r a n  Table 1) shows no very la rge  d i s p a r i t i e s .  How-' 
ever, t h e  Command s t a f f  weights tend t o  be mure ex- 
treme than weights based on object ive data. This may 
r e f l e c t  l e s s  tendency t o  combine est imates and a grea t -  
e r  tendency toward exclusive re l iance  on the  m r e  pre- 
f e r r e d  solut ion.  

What happens i f  range est imates a r e  a c t u a l l y  
pooled using these implied subject ive weights - r a t h e r  
than t h e  weights assessed frcm objec t ive  data? Figure 
6 provides t h e  re levant  comparisons: In both d a t a  
samples, p o l i n g  with "subjective" weights was more 
accurate than the  system so lu t ion  i t s e l f .  In t h e  
f i r s t  sample, system so lu t ion  MAE was 1.14 cmpared t o  
1.09 f o r  subject ive p o l i n g :  i n  t h e  second sample, t h e  
d i f fe rence  i s  1.46 t o  1.18. 

The advantage of pooling with subject ive weights 
was not  s t a t i s t i c a l l y  s ign i f ican t .  Then, too, i t  
might seem odd t h a t  a model of the  Command s t a f f  judg- 
ment process would be more accurate than t h e  Command 
s t a f f  i t s e l f :  presumably, t h e  model i s  i n c m p l e t e ,  
s ince  it omits other  solut ions of which t h e  Command 
s t a f f  was aware. This  r e s u l t ,  however, corresponds t o  
f ind ings  i n  a number of areas where simple models have 
outperfomed the  exper t s  upon whom t h e  m d e l s  were 
based (e.9.. Dawes, 1975, 1979). Such f indings would 
be exwcted  i f  the use of the m d e l  bv the  exoerts  was 

& -  

disturbed by s u b s t a n t i a l  random e r r o r  - of which t h e  
model i t s e l f ,  of course, is  free.  Another p o s s i b i l i t y  
is t h a t  t h e  exper t s  a r e  behaving q u i t e  d i f f e r e n t l y  
f r a n  t h e  nudel: e.9.. r a t h e r  than mentally ccmbining 
est imates,  t h e  Comrnand s t a f f  may be u t i l i z i n g  only a 
s i n g l e  technique on each occasion, perhaps s h i f t i n g  
f ran  one t o  another p r o b a b i l i s t i c a l l y .  A s  we s h a l l  
see ,  such a s t ra tegy  would, under most circumstances, 
be expected t o  be l e s s  accurate than p o l i n g .  The 
v a l i d i t y  of t h e  weights used i n  pooling i s  l e s s  impor- 
t a n t ,  fo r  accuracy, than the  f a c t  t h a t  some s o r t  of 
pooling is taking place.  

These f indings have an i n t e r e s t i n g  p r a c t i c a l  
appl ica t ion .  One way f o r  the Command s t a f f  t o  improve 
ranging accuracy might be t o  assess  pooling weights, 
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First  Sample ' (Rangex 1-78 and 1-79 Data) 
Second Sample 

system Pooling Based Default 
solution on System pooled 

solution Solution 
Model 

Sample 50, 57' 50,55* 
size 

78, 95 78,95 

Figure 6 .  Ratio of Mean Absolute Error (MAE) for System 
Solution and for  System Solution Model to MAE for Default 
Pooling Aid. 

*=Rangex 1-78 data only 

rather than range i t s e l f .  (Alternatively, weights 
might be extracted, a s  they ware here, fram Command 
s t a f f  range estimates.) The weights would then be 
used by the pooling a id  algorithm, t o  produce the  "sys- 
tem solution." 

Note, however, t h a t  t h i s  may not be optimal when 
suitable objective data are  available. Figure 7 shows 
t h a t  pooling based on "subjective" weights was s t i l l  
not a s  accurate a s  pooling based on default values. 

Accuracy of Subjective Adjustment of Default Estimate 

The previous section has dealt  with a special  
case of the range pooling aid: i n  which subjective 
estimates of weights entirely replace the default  
values obtained from objective 'data. More typically,  
one might imagine a compromise: adjustment of 
weights, o r  of range estimates, i n  the direction of - 
but not a l l  the way t o  - subjectively preferred 
values. 

Table 4 gives the parameters, estimated from the 
f i r s t  data sample, which were ut i l ized i n  the higher- 
order pooling of the system solution and the default 
pooled solution. The l a t t e r  receives a larger weight 
than the system solution due to  i t s  greater accuracy. 
The correlation is negligible. 

The r e su l t  of pooling subjective and objective 
estimates is a solution which is (non-si+ificantly) 
m r e  accurate than e i ther  type of estimate alone. 
Figure 7 shows tha t  the mean absolute error for  the 
combined solution is 81% and 97% of the MAE for the 
default pooled solution, i n  the f i r s t  and second 
samples, respectively. 

Ccmmand s t a f f  judgment ( the  system solution) by 
i t s e l f  is l e s s  accurate than the default pooled solu- 
tion. Nonetheless, it may contain information not 

UNCLASSIFIED 
Weights Based on: 

Relative 
Weights Precision Correlation 

-. 

system 
Solution .35 

Default 
Pooled 
Solution 

Table 4. Parameters Used i n  Combining System 
Solution and Default Pooled Solution 

UNCLASSIFIED 

First Sample ' (Rangex 1-78) 
Second Sample 

Mean 
Absolute 
Error 1 . 0  

Sample 
Size 

System Combined Default 
solution System/Default Pooled 

Solution Solution 

Figure 7. Ratio of Mean Absolute Error (MAE) for Combined 
Default/System Solution to MAE for Default Pooled Solution 

captured by default  parameters. Subjective adjustment 
of default solutions by Ca~mand personnel may be an 
easy and effective way to  tap  t h a t  information. ( A l -  
ternatively,  thd Command s t a f f  and the p o l i n g  a id  
might work i n  para l le l ,  arriving a t  separate esti-  
mates, and the  r e su l t s  might then be formally pooled, 
a s  i n  the procedve tested here.) 

To what extent does the advantage of combining 
objective and subjective information depend on the 
method of combination? In t h i s  t e s t ,  we have loaded 
the dice in  favor of such an advantage by formally 
pooling with weights based on f i r s t  sample data.  In- 
formal subjective adjustments of default solutions 
would be unlikely t o  correspond t o  optimal r e su l t s  of 
higher-order pooling. 
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SENSITIVITY AND ROBUSTNESS 

Fortunately, the sens i t iv i ty  analysis to  be re- 
ported shortly suggests tha t  the advantage of combin- 

LlNCLASSlFlED 
ing estimates i s  qui te  robust i n  the face of para- 

What happens i f  other than optimal parameters a r e  
used fo r  pooling? As we have seen, the  question is 
important for a t  l e a s t  two reasons: 

meter-estimation errors.  Even when the weights u t i l -  
ized i n  pooling deviate significantly from optimal 
weights, pooling i s  l ike ly  t o  outperform both of t he  Variance of 

Pooled Solu- 1 ' 5  

(1) In practice,  a range pooling aid w i l l  apply 
default parameters i n  s i tua t ions  quite differ-  
ent  fran the ones in  which they were e s t i -  
mated. 

- 

( 2) Subjective adjustments of default parameters 
may be based on erroneous information. 

estimates being pooled. Informal adjustments of the 
default  solution would be expected t o  have a s imi lar  
la t i tude .  Note t ha t  i f  the a l ternat ive  to informal 
adjustment were exclusive reliance on the less  accur- 
a t e  estimate ( i n  t h i s  case, the sys tm solution),  
informal adjustment should produce improvements regard- 
l e s s  of the degree of adjustment employed. 

I I 

How fa r  off can parameters be - whether pooling oper- 
a t e s  automatically or interactively - without sacr i f ic -  
ing the advantages of pooling7 

The variance of a weighted average of two e s t i -  
mates, i n  re la t ion  to the variance of the more precise 
estimate (V1), can be expressed i n  terms of p and p: 

Figure 8 p lo ts  t h i s  as  a function of W for p=1.3 and 
p=.34. These a r e  the actual values fo r  pooling MATE 
and KAST obtained from the f i r s t  sample (Table 1). 
Any choice of weights for pooling t h a t  a re  between 0 
and 1 corresponds t o  a point on the  sol id  curve; it 
predicts the  variance of pooling with those weights 
under the specified real-world conditions, i .e . ,  
values of P and p. 

The optimal (defaul t )  weight i s  W.6,  a s  given by 
formula ( 4 ) ,  and corresponds t o  the  low point of t he  
function ( i .e . ,  formula ( 5 ) ) .  The brackets in  Figure 
8 represent the maximum expected improvement i n  accur- 
acy attainable by p o l i n g ,  a s  canpared with exclusive 
reliance on MATE, the  bet ter  of the two estimates 
( E l ) .  Thus, pooled solution variance, with optimal 
weights, i s  75% of the variance of El. Other data 
points shown correspond t o  exclusive use of MATE o r  
KAST, pooling with equal weights for  MATE and KAST, 
default  weights with covariance s e t  t o  zero, and Com- 
mand s t a f f  subjective weights. 

How f a r  from optimal does W have t o  be for pool- 
ing to be no be t t e r  than exclusive use of El? As 
Figure 8 shows, W would have t o  be .2 or less:  i .e . ,  
E2 would have to  be weighted 4 times as  strongly a s  El 
instead of El being weighted 1.5 times more than E2. 
(Alternatively, W would have t o  be greater than 1.) 
This magnitude of er ror  must be regarded a s  highly 
unlikely. An even more compelling point, however, i s  
t o  ask what alternative to  pooling would i n  f ac t  be 

W e i g h t  Used in Pooling (W1l 

~ i a u r e  8. ~a.10 of the Pooled v a r i a n c e  IV. ,lWll ro the var-ance o i  -,- 
the Host P r e c i s e  ~ s f l n a c e  ~ e l n p  Pooled iV1 l  an a Pvnct ian  
o f  p o o l i n g  neiqhc, When v 2 / v l = l . 3 ,  ? = . 3 1 .  DaCr P o i n t s  f r o m -  
samole 1 (from l e ~ t  to rxvht): XRST. u n i t  welehcinq. var- - -  .-. . .~ . . 
i a n c e - o n l y  weights. ~ e f a u l r  Werqhfs. Subjective w e ~ q h i s .  %ATE. 

adopted. I f  the  CO o r  a member of h i s  s taf f  were s e r -  
iously considering values of W l e s s  than .2 ,  the l ike- 
l y  a l te rnat ive  t o  pooling for them would not be r e l i -  
ance on El - but re l iance  on E2. And i n  t h i s  case,  
pooling would be be t t e r  no matter what positive value 
of W was used. 

It i s  perhaps more r ea l i s t i c  t o  suppse  tha t  the  
person bent on se lec t ing  a single estimate, ra ther  
than pooling, w i l l  be unsure which of two ( o r  more) 
estimates to prefer. Under conditions where El is  on 
average bet ter  ( i .e. ,  V1 < V 2 ) ,  it is likely tha t  he 
w i l l  sometimes se lec t  El and sometimes E2. The vari-  
ance of t h i s  person's estimate w i l l  be a weighted aver- 
age of the variances of El and E2 with weights d e t e r  
mined by the  probabili ty (q)  of selecting E l :  

(This formulation assumes tha t  El and E2 a re  both un- 
biased, or equally biased, estimates of R; otherwise, 
the  discrepancy between the means of El and E2 w i l l  
add t o  the variance.) Thus, the variance for t h i s  - 
probabi l i s t ica l ly  mixed outcome w i l l  f a l l  somewhere on 
( o r  above) the  s t r a igh t  dashed l i n e  i n  Figure 8 l ink- 
ing V 1  and V2. Pooling, even with nonoptimal weights, 
w i l l  usually do be t t e r  than E l  ( t h e  bet ter  of the two 
estimates),  but the  best tha t  unique selection can 
achieve i s  to equal El. Moreover, t o  the extent t h a t  
a user would sometimes se lec t  the l e s s  good alterna- 
t i ve ,  t he  amount of er ror  i n  pooling weights tha t  is 
consistent with the superiori ty of pooling increases. 

Figure 9 shows, more generally, how the leeway 
f o r  pooling superiori ty depends on the optimal pooling 
weight and on the accuracy of unique selection. From 
formulae ( 6 )  and ( 7 ) ,  we have for  any values of p and P: 

Vl ,Z (W)  2 V1,2(9) i f  and only if 
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UNCLASSIFIED ASSESSMENTS OF RANGE UNCERTAINTY 

Optimal Welght 
(£01 E l l  

Pooled 
Figure 9. Maximum and Minimum El Weights Required for Superior- 
ity of Pooling Over Unique Selection (Resulting in Probabilistic 
Mlxing of E l  and Ezl, as a Function of the Optimal Weight and the 
Probability of Selecting Ellq) 

where w* is t h e  optimal weight a s  spec i f ied  i n  formula 
( 4 ) .  Suppose, f o r  example, t h a t  t h e  optimal pooling 
weight is .75 and t h a t  unique se lec t ion  under those  
condit ions means se lec t ing  kl 75% of t h e  time and E2 
25% of t h e  time. Then t h e  weight ac tua l ly  used i n  
pooling could be a s  low a s  .32 o r  a s  high a s  1.18 - 
and pooling would s t i l l  be b e t t e r  than t h e  s t ra tegy  of 
unique se lec t ion .  (When unique se lec t ion  is  per fec t  
(q=l) ,  t h e  upper and lower bounds would be 1 and .5.) 
I f  t h e  "true" weight were .9 and unique s e l e c t i o n  
involved mistakenly picking E2 only 10% of t h e  time, 
t h e  minimum pooling weight yielding an advantage f o r  
pooling remains q u i t e  low a t  .6. In shor t ,  even when 
t h e r e  is  s i g n i f i c a n t  uncertainty about pooling 
weights, and one est imate is s ign i f ican t ly  more accur- 
a t e  than t h e  other ,  it is very unlikely t h a t  t h e  s t r a -  
tegy of se lec t ing  a s ing le  est imate w i l l  do b e t t e r  
than pooling. 

Note on Bias 

In  t h e  discussion of s e n s i t i v i t y ,  we have d e a l t  
with t h e  expected impact of p o l i n g  on random e r r o r ,  
not  on bias. Any per t inen t  information about systema- 
t i c  e r r o r  i n  a s p e c i f i c  ranging technique (e.g., Eke- 
lurid) can and should be used whether or  not t h e  tech- 
nique is  pooled with others. To t h e  extent  t h a t  b i a s  
i n  an est imate being pooled is  not successful ly cor- 
rected,  t h e  remaining b ias  is transmitted i n t o  t h e  
pooled so lu t ion  i n  proportion to t h e  weight associated 
with t h a t  est imate.  But it w i l l  show up ( i n  f u l l )  i n  
range est imates t h a t  a r e  not pooled. 

PROCEEDINGS 49th MORS 

Perhaps a s  important a s  increas ing  t h e  accuracy 
of range so lu t ions  is knowing j u s t  how accurate t h e  
so lu t ion  is, a t  a given time. The pooling a id  algo- 
r i thm produces an est imate of e r r o r  variance f o r  the  
pooled solut ion.  From t h i s ,  i n t e r v a l s  can be calcu- 
l a t e d  which a r e  believed to conta in  the  true range 
with various degrees of cer ta in ty .  

Table 5 enables us to assess  t h e  c a l i b r a t i o n  of 
t h e  range pooling a i d  with defau l t  parameters f o r  95% 
and 90% i n t e r v a l s  of uncertainty.  The percentages 
within box A should hover around 95%. corresponding to  
t h e  proportion of t h e  time t h e  t r u e  range would be 
contained i n  a v a l i d  95% in te rva l .  In  box B, t h e  par- 
centages should approximate 90%. In both cases, c a l i -  
b ra t ion  is not f a r  o f f ,  but  t h e  predicted i n t e r v a l s  
a r e  somewhat too  narrow. Across a l l  pooling canbina- 
t i o n s  and samples, t h e  t r u e  range f a l l s  inside t h e  95% 
i n t e r v a l  92% of t h e  time, and wi th in  the 90% i n t e r v a l  
89% of t h e  time. 

UNCLASSIFIED 
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MATE 

KAST 
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MATE 

EKELUND 

KAST 
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---- 

MATE- KAST 

EKELbrn 

Sc!!~le Sample 

Overall 

Table 5. Proportion of Time True Range Fa l l s  Within 
Predicted In te rva l  of Uncertainty 

Deviations from normality and dependence of e r r o r  
(Vi) on range would be expected to d i s t o r t  pooling a id  
ca l ib ra t ion .  An addit ional  f a c t o r ,  not r e f l e c t e d  i n  
Table 5, i s  t h e  a r t i f i c i a l i t y  of exercise condit ions 
i n  comparison t o  combat: The number of t a rge ts ,  t h e i r  
bearings, possible maneuvers, and maximum dis tance  a r e  
a l l  known i n  advance. This e x t r a  uncertainty should 
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not a f f e c t  improvements i n  accuracy due to pooling 
r e l a t i v e  t o  use of simple est imates,  but  it a f f e c t s  
the  prec is ion  with which accuracy (of spec i f ic  e s t i -  
mates and of the  pooled so lu t ion)  can be known. Tech- 
niques incorporating higher-order judgments (uncertain-  
t y  about uncertainty)  and which use t h e  dispersion of 
range est imates a s  an addit ional  clue to t h e  spread of 
t h e  pooled d i s t r i b u t i o n  a r e  being applied to t h i s  pro- 
blem ( c f . ,  Lindley, 1981; Winkler, 1981). 

CONCLUSIONS 

The pooling algorithm provides a systematic ( y e t  
q u i t e  simple) method f o r  canbining a l l  t h e  ava i lab le  
information about t a r g e t  range: diverse range e s t i -  
mates, ob jec t ive  da ta  on the  accuracy and in te r re la -  
t i o n s  of t h e  techniques, and judgments by t h e  CO o r  
o ther  appropriate personnel concerning any of t h e  
above. Our preliminary quant i ta t ive  va l ida t ion  con- 
f irms the  e f f icacy  of the  approach: pooling improved 
range accuracy whether with ob jec t ive  inputs ,  subjec- 
t i v e  inputs ,  o r  a mix of t h e  two. Moreover, t h e  de- 
gree of accuracy achieved corresponded t o  t h e  amount 
of pooling involved, and thus to the  amount of infonna- 
t i o n  t h a t  was integrated.  Accuracy increased i n  t h e  
following order: 

r MATE, KAST, Ekelund, and the  Command s t a f f  
b e s t  guess 

Cohen, M.S., and Brown, R.V. Decision Support for 
a t t a c k  submarine commanders (Technical Report 80-11). 
F a l l s  Church, VA: Decision Science Consortium, Inc . ,  
October 1980. 

Cohen, M.S., and Brown, R.V. Application of decision 
a n a l y s i s  t o  ASW ranging and time of f i r e  ( U ) .  Proceed- 
ings  of t h e  Apri l  1981 Steerin9 Group Meetinq f o r  t h e  
Advanced Attack Center (AAC) ( U ) .  Newport, RI: Naval ---- 
~ n d e r w i t e r  Systems Center, 10 August 1981. Confiden- 
tial 

Cohen, M.S., Branage, R.C., Chinnis, J . O . ,  Jr., Payne, 
J . W . ,  and Ulvila ,  J . W .  A ersonalized and r e s c r i  - 
t i v e  decision a i d  (Tech;& Report 82-4): Falys 
Church, VA: Decision Science Consortium, Inc. ,  J u l y  
1982. ( a )  

Cohen. M.S.. Brown. R.V.. Seaver. D.A.. Ulvila. J . W . .  - -  ~- ~ 

and S t i l l w e l l ,  W.G. Operabil i ty i n  a t tack  submarine 
combat systems: An exploratory review (Technical 
Report 82-2). pal= Church, VA: Decision .Science 
~ o k o r t i u m ,  Inc., Apri l  1982. ( b )  

Dawes, R.M. The mind, t h e  model, and the  task.  I n  
Rest le ,  F. e t  a l . ,  (Eds.) Cognitive theory, (Vol. 1). 
Hi l l sda le ,  N J :  Lawrence Erlbaum, Asso., 1975, 
119-130. 

Dawes, R.M. The robust  beauty of improper l i n e a r  
r Pooling MATE, KAST, and Ekelund with subjec- models i n  decision making. Arnerican Psychologist, 

t i v e  weights J u l y  1979, 3 4 ( 7 ) ,  571-582. 

r Pooling MATE, KAST, and Ekelund with defau l t  Lindley, D.V. Reconciling continuous probability 
weights assessments (Technical Report 81-5). Fa l l s  Church, 

VA: Decision Science Consortium, Inc., October 1981. 
r Pooling t h e  defau l t  pooled so lu t ion  with t h e  

Command s t a f f  best  guess Lindlev. D.V.. Tverskv. A.. and Brown. R.V. On t h e  - .  -. - 

Sens i t iv i ty  ana lys i s  suggests t h a t ,  a t  any of these  
reconc i l ia t ion  of p robabi l i ty  assessments. The Jour- 

l eve ls  of pooling, s i g n i f i c a n t  e r r o r s  i n  parameter 
n a l  of t h e  S t a t i s t i c a l  soc ie tq ,  Series A, 1979, 
- A -  

est imates can occur without ieopardizinq the advantaqe 
142(2) ,  146-180. - 

. - 
of pooling over what is being pooled. The conclusion, 
we should s t r e s s ,  is not t h a t  object ive da ta  a r e  

Morris, P.A. Combining expert judgments: A Bayesian 

"better"  than subjec t ive  judgment, o r  v ice  versa. 
approach. Management Science, 1977, 3 ( 7 ) ,  679693. 

Rather, i t  is t h a t  a p rescr ip t ive  model which systenat-  
i c a l l y  constrains t h e  form of t h e  inference process Patterson,  J.F., Randall, L.S., and Stewart, R.R. 

while accommodating both ob jec t ive  data and ind iv idua l  Advisory decision aids: prototype.  McLean, VA: 

judgments may b e  b e s t  of a l l .  Decisions and Designs, Inc., February 1981. 

Current work is focusing on t h e  ac tua l  expected Winkler, R.L. Combining probabi l i ty  d i s t r i b u t i o n s  

contr ibution of pooling to canbat effect iveness.  The f rm dependent in fomat ion  sources. Management 

time-course of uncertainty reduction about t a r s e t  Science, 1981, z( 4 ) ,  479-488. 

range with and without t h e  pooling a i d  is being 
analyzed within approach and a t tack  exercises.  Impli- 
ca t ions  of improvements f o r  the  CO's t a c t i c a l  f l ex ib i -  
l i t y  (e.g., e a r l i e r  time of f i r e )  and for  t h e  accuracy 
of assessments involved i n  t a c t i c a l  decisions w i l l  be 
examined. A prototype range-pooling a i d ,  being imple- 
mented a t  the  Naval Underwater Systems Center (New- 
por t ,  R.I.), w i l l  be used for  hands-on demonstrations 
with po ten t ia l  users. A c r i t i c a l  top ic  f o r  invest iga-  
t i o n  w i l l  be t h e  f e a s i b i l i t y  of e l i c i t i n g  t h e  subjec- 
t i v e  judgments which have thus f,ar only been simu- 
lated.  
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R I  A prototype range pooling a i d  is cur ren t ly  
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COMMENTARY 
Richard R. Pariseau 

System Control Technology 

The paper presents a use fu l  approach t o  a very 
r e a l  problem. The r e a l i t y  o f  the  problem i s  
appreciated by t h e  f a c t  t h a t  du r ing  submarine vs. 
submarine exercises the average elapsed t ime from 
i n i t i a l  de tec t ion  u n t i l  weapon launch i s  
approximately two hours. I n  passive t a r g e t  
t rack ing,  t a r g e t  range continues t o  be the  most 
uncer ta in value and l a r g e l y  responsib le f o r  the  t ime 
i n t e r v a l .  When torpedoes are f i r e d  the t a r g e t  
damage r a t i o  has h i s t o r i c a l l y  been low. For various 
reasons t h e  number o f  successful torpedo f i r i n g s  
today i s  on ly  abovk f i f t y  percent. I t  i s  obvious 
there fo re  t h a t  the  problem i s  re levan t  and decis ion 
a i d i n g  i s  necessary. 

A major problem fac ing  technic ians who are 
developing decis ion aids i s  t h e  presentat ion o f  t h e  
r e s u l t s  o f  t h e i r  e f f o r t .  The decis ion maker, i n  
t h i s  case a submarine commanding o f f i c e r ,  must f e e l  
comfortable w i t h  the data which he i s  presented. It 
i s  the re fo re  necessary t o  the  decis ion analyst  t o  be 
concerned w i t h  FORMAT, VALIDATION and the  
INDIVIDUALITY o f  t h e  decis ion makers. 

The data must be presented t o  the decis ion 
maker i n  a format which i s  f a m i l i a r ,  e a s i l y  
understood, q u i c k l y  comprehended and unambiguous. 

When the  accuracy o f  t h e  i n p u t  data from which 
decis ions must be made i s  o f  unknown accuracy i t  i s  
na tu ra l  and necessary f o r  t h e  decis ion maker t o  
spend a s i g n i f i c a n t  amount o f  t ime t r y i n 9  t o  
v a l i d a t e  ie., determine the  accuracy of ,  the i n p u t  
data. A l e s s  s a t i s f y i n g  a l t e r n a t i v e ,  but  
complementarily add i t i on  t o  v a l i d a t i o n  i s  
s e n s i t i v i t y  o f  the r e s u l t s  t o  inpu t  data errors.  I t  
must always be remembered t h a t  a p e r f e c t  s o l u t i o n  i s  
no t  necessar i l y  t h e  goal o f  t h e  decis ion maker, but  
a comfortable awareness o f  the  v a l i d i t y  o f  the data 
upon which a dec is ion  i s  based i s  always important. 

The s u b j e c t i v i t y  o f  the  i n d i v i d u a l  dec is ion  
makers i n i t i a l l y  impacts acceptance o f  the decis ion 
a i d  and u l t i m a t e l y  t h e  frequency o f  i t s  usage and 
r e l i a n c e  upon the  output  ' o f  t h e  a i d  once i t  i s  
i n s t a l l e d  aboard the  ships. There are several ways 
o f  handling the  s u b j e c t i v i t y  requirements from h a s i c  
c a p a b i l i t y  f o r  data ca l l -up  a t  any leve l  upon 
command t o  personal cassettes c a r r i e s  aboard by 
i n d i v i d u a l  comnanding o f f i c e r s  which present and 
v a l i d a t e  in format ion i n  a personal manner. A s i n g l e  
s o l u t i o n  w i l l  n o t  be optimal f o r  a l l  decision a ids,  
however each dec is ion  a i d  must be developed i n  
considerat ion o f  t h e  s u b j e c t i v i t y  o f  the dec is ion  
maker. 
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