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1.0 INTRODUCTION

1.1 Scope and Structure of Report

The primary purpose of the present research has been to demonatrate the
feasibility of designing intelligent systems with the capacity for adaptive,
flexible reasoning in uncertain and changing envivormentz, The overall goals
of the project are (1) the development of Innovative inference frameworks for
reasoning in avionics enviromments characterized by high stakes, large volumes
of complex and conflicting information, &nd the need for rapid response; and
(2} to lay the groundwork for a more general understanding of the process of
choosing and designing inferemce frameworks for avionics expert systems
applications, The achievement of these objectives would have far-reaching im-
plications for the successful application of artificial intelligence technol-
og¥ in both military and civilian contexts, allowing the development of sys-
tems which fully expleit, while significantly improving upom, human imtel-
ligent reasoning. The ultimate result should be improved performance, at com-
parativaely little cost, of a wide range of combat systems.

This report details the contributions of the initial phase of this ressarch.
The remainder of this introductory section provides background on the problem
and briefly summarizes specific objectives. Sectioms 2 through 5 report on
the results. Section 2 is a eritical review of alternative inferemce
theories. The review highlights the shortcomings of current approaches in
providing fully adequate representations of uncertainty, and fully adequate
techniques for adaptively manipulating uncertain beliefs. Section 3 describes
the main product of the effort, an inmovative framework for expert system in-
ference in uncertain domains, Section & deseribes the application of that in-
ference framework to an Alr Force combat environment in a small-scale
prototype system for im-flight route replanning. Section 5 describes a com-
plementary line of research on concepts for human-computer interactiom, and

discusses thelr application in the prototype system, Section & summarizes the
work and briefly explores directions for the future,



1.2 Background on the Problem

In recent years techniques of artificial intelligence (AI) have been employed
to replicate, or improve on, human reasoming in an inereasing sphere of in-
ference and decision-making tasks (Hayes-Roth et al., 1983; Buchanan and Duda,
1982). Expert systems have now been developed for medical diapgnosis and
treatment (e.g., Shortliffe, 1976), geological exploration (e.g., Duda et al.,
1979), chemical analysis (Lindsay et al., 1980), military plamming (Engleman
et al,, 1979}, and other areas of specialized human skill,

Unfortunately, the introduction of AI technologies into real-time tactical en-
vironments has been relatively slew. Among the reasons for lack of progress
are a set of technical obstacles arising largely from the complexity of the
inference task in these problem domains: (1) Near-future avionics environ-
ments will be characterized by high stakes and increasing mumbers of high per-
formance threats both in the air and on the ground, heightening both the time
pressure and the uncertainty under which systems must functiom. Avionics
decision aids must support real-time decisions in rapidly changing
environments, while utilizing data sets which are large, incomplete,
unreliable, and often inconsistent. (2) In air-to-air and air-to-ground
combat, conflicts between critical cbjectives occur frequently and must be
resolved. E.g., the requirements to communicate with other units, to leocalize
threats by means of active emissions, or to move into proximity to a potential
target all may conflict with the goal of concealing one's presence and
location. (3) New advances in avionics technelogy have often led te the im-
troduction of "black boxes™ which are poorly integrated with other hardwars or
software components, and whose displays and controls are incompatible. Future
systems therefore will invelve exchange of cutputs among subsystems which
utilize radically different methods of representation amnd inferemce, e.g.,
rule-based architectures for predicting threat capabilities versus mathemati-
cal or statistical techniques of signal analysis, and must utilize a common
set of user-system dialogue procedures. (4) In these environments human
ghilities to deal with unanticipated events, or ill-defined comcepts, may be
crucial. To obtain true synergy between human and computer capabilities, the
aid must permit a dynamic and flexible partitioning of reasoning task com-
ponents between human and computer, be able to communicate both the degree of
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confidence and the rationale behind its recommendations, and facilitate intel-
ligent override at any point in the reasoning process.

In recent years, serlous attention has turned in the Al/expert systems com-
munity to the problem of reasoning about uncertainty (e.g., Buchanan and
Shortliffe, 1984); and tentative theoretical steps have been msde toward
flexible syvstems capable of adaptive learning (e.g., Hichalski et sl., 1983).
Revertheless, current expert systems technology has for the most part failed
to capture the capabllity of many domain experts to respond adaptively and
flexibly to conditions which wviolate the original assusptions, to create new
methods of reasoning where required, and to develop new ways of organizing
data and eollecting information based on unanticipated events. An adaptive

capability of this sort is required in order to build systems that address the
challenges of the modern battlefield.

We believe that a significant opportunity for addressing these shortcomings

exists in recent work om inexact reassoning im artificial intelligence and in
statistica.

The design of methods for inexact reasoning has in the past several years
moved from the background into the forefront of attention in expert system
research, and in AI more gemerally., In addition to the ad hoc numeric methods
developed in such early systems as MYCIN and FROSPECTOR, a varlety of formally
justified quantitative approaches are now being discussed and implemented.
Among the most prominent are variants of Bayesian probability theory, belief
functions (Shafer, 1976), and fuzzy set or possibility theory (Zadeh, 19635,
1972). Honnumerical approaches te reasoning with incomplete information have
also been dewveloped, and are perhaps cleoser te the mainstream Al tradition of
symbolic reasoning: e.g., non-monotenle logle (Doyle, 1979; Artificial Intel-
ligenee (special issue), 1980); and the theory of endorsements (Cohen, 1985).
Although there have been a few attempts (e.g., Nilssom, 1984; Cinsberg, 1984;
Cohen, 1985) to integrate the mumerlie and non-numeric traditions, for the most
part they have remained separate,

Incertainty caleuli will eventually be judged by how successfully they con-
tribute to a varlety of expert system fumctione; for example: (1) deriving
the uncertainty of a conclusion from uncertainty in data and rules across
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potentially lengthy lines of reasoning; (2) combining different items of
evidence or outputs of different amalytical subsystems; (3) resolving con-
flicts between different lines of reasoning (a.g., by collecting more informa-
tion or by revising assumptions); and (4) displaying econclusions,
explanations, and measures of confidence to users in ways that are readlly
understood. In time-stressed enviromments additional functions may include:
(3) efficient allocation of resources among different lines of reasoning or
information eollection options, (6) halting computations when results are
"acceptable emough® in thea light of prevalling time and resource constraints.

Unfortunately, mo current systems effectively encompass these diverse
capabilities. Moreover, there has as yet heen little systematic investigation
of the impact of alternative inference frameworks on expert system functioms.
Alternative frameworks differ in the concept of uncertainty they attempt to
capture {(e.g., chance, imprecision, or incompleteness of evidence) and the
degree to which appropriate normative justifications have been achieved.

They differ also in the demands they impose on experts for assessments, in the
cosputational burden they impose on the system, and in the ease with which
they represent distinctions and yield conclusions vhich are natural to a par-
ticular expert, user, or problem domain. Design choices, in short, must be

multidimensional. But it is by no means clear how tradecffs among these com-
peting considerations should be resolved.

Perhaps more importantly, current expert systems have typically incorporated
rather primitive knowledge representation schemes (e.g., a homogeneocus collec-
tion of rules), and such systems have been unable to duplicate the adaptive,
iterative model revision process practiced by human experts.

The present work represents an imitial effort to address these technical chal-
lenges in the context of avionics expert systems. The ultimate objectives are
to develop improved inference architectures for pilet decision aid applica-
tions and to develop & more general understanding of the process of choosing
and designing inference frameworks for avionlcs expert system applications.
Existing approaches to reasoning about upcertainty have been critically
analyvzed and an innovative inference framework has been developed which incor-
porates elements of a variety of existing approaches and which provides a
unique capability for adaptive self-improving inferemce. The feasibility of

I



this concept has been demonstrated in a specific avionies application area:
i.e., Inflight route re-planning in the face of strategic pop-up threats. A
prototype aid has been developed for demomstration purposes which illustrates
both the inference framework and the user/computer Interface, and which will
serve as a foundation for continued research and development.

1.3 Sumpary of Specific Objectives of the Research

In sum, the specific objectives of the present research (described in detail
in the following sections) were:

o to perform a critical review and evaluation of altermative inference
frameworks (including Bayesian, Shaferian, fuzzy, non-monotonic), iden-
tifying strengths and weaknesses for use in expert systems designed for
real-time tactical enviromments (Sectiom 2);

o to develop improved inference frameworks for real-time tactical expert
systems (Section 3);

o te develop concepts for human-computer interaction (Sectiom 3);

o to implement the developments of Phase I in a small-scale prototype sys-

tem In a selected avionics context (Sectioms 4 amd 5.

The overriding aim of the present research effort was to demonstrate the
feasibility of our inference framework. From the results reported below it is
clear that this ebjective has been met. Section & discusses directions for
future research, both theoretical and applied.



2.0 REVIEW AND CRITIQUE OF ALTERNATE INFERENCE FRAMEWORKS

2.1 Overview,

For purposes of this review, we divide inference theories Into three general
categories, The flrst category is that of gquantitative theoriles for repre-
senting and manipulating uncertainty. Of these, Bayesian probability theory
(e.g., Savage, 1934) has the longest and most distingulshed history.
Recently, a great deal of attentlon has been devoted to two newer numerical
theories: Shafer's (1976) theory of bellief functions and Zadeh's (1963)
theory of fuzzy logie.

The second category of inference theories 1z a set of gualitative, non-mumeric
inference frameworks. Our discussion begins with a brief mention of classical
logic. Based on classical logic is the theory of non-monotenic logic (Doyle
1979), which is an outgrowth of theorem-proving systems in artificial
intelligence. HNon-monotonie legle allows for provisional acceptance of uncer-
tain premises, which may later be retracted when they lead to comtradictory
conclusions. Toulmin (1958) introduces a new theory of logle based on an
apalegy with jurisprudence rather than the abstract mathematics of classical
logic, Paul Cohen's (1983) theery of endorsements is another outgrowth of the
artificial intelligence tradition. Cohen's system represents uncertainty

about a rule or conclusion by qualitative endorsements, which are propagated
through inferences to conclusions.

The third categoery of inference mechanisms consists of systems attempting to
synthesize logic and probability in some way. Twe approaches are discussed:
Lagomasino and Sage (1985) ostensibly base theilr theory on Toulmin's theory of
logle, while NHilssonm (19B4) uses classical logie.

2.2 HFumerical inference theorjes.

2.2.1 Bavesian probabilistie infevepce. Using probabiliey theory for fnexact
reagening. Probability theory has become central to modern scientifie
eulture., As such, it is the obvious calculus to consider for handling inex-
actness in expert systems, Its supporters in this role date back to the early
work on probablilistic information processing (see Edwards, 1966) and earlier;
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more recent contributors have been de Dembal (1973}, in the fisld of medical
decision making, and Schum (1980) in the intelligence field.

The application of probabilistic reasoning to rule-based expert systems is
complex, but it can be [llustrated with a simple eéxample. Part of an expert

system for avionics applications could be a threat classification system. A
rule in such a system might be:

IF (OBSERVED SIGNAL HAS FEATURE X)
THEN (THREAT IS SA-4) LR = 2.3)

vhere LR quantifies the impact of the evidence (the signal feature) on the
hypothesis (that the threat s an 5A-4). LR is a likelihood ratio, i.e., the
probablilicy of a signal with feature of type X given that the threat is an 5A-
4 divided by the probability of that signal feature given that it is not an
SA-%. Satisfaction of the antecedent of this rule would lead to a process of
Bayesian updating, in which the impact of the new evidence is combined with
the prior odds of the hypothesis being true. Suppose H is the hypothesis that
the object iz an 3A-4, Then Bayes' Theorem gives, in odds-likelihood form,

EEL%lEl - Pe(DIH] PEr(H]
Pr(H|D] PBr[D|H] ~ Pr[H]

where D 1s the data that the signal has feature X, and H s the hypothesis
that some other classification of the threat is appropriate. To carry out a
simple analysis of this kind, three assessments are required, namely Px[D|H],
PrEDlﬁ] and Pr[H], i.e., the likelihoods and the prior probability.

Work on Bayeslan approaches to inference has advanced from a simple one-step
application of Bayes' rule to the elaboration in recent research of rather
compplex structures capable of capturing a wide diversity of human inference
tasks and prescriptive intuitions (e.g., Schum, 1979, 1981). Bayesian
techniques, for example, are able to accommodate a mumber of different ways
that items of evidence can be related to one another with respect to a
hypothesis (Schum and Martim, 1980): e.g., they may be contradictory
(reporting and denying the same event), corrcboratively redundant (reporting

the same event), cumulatively redundant (reporting different events which
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reduce one another's evidential impact), or non-redundant (reporting different
events which enhance or do not change one another's evidential impact)., In
othaer, more complex cases of interdependence, Bayesian techniques capture the
evidential impact of bilases in an information source or non-independence of

Information source sensitivity with respect to what iz being observed.

The following discussiom highlights the major stremgths and weaknesses of the
Bayegian approach to uncertaln reasoning in expert systems,

Feasibility: Quantity of Inputs, When one attempts to use Bavesilan probabil-
ity theory on real inference problems, one quickly becomes aware of the com-
plexity of the task. This complexity led Shortliffe (apparently) to construect
hie caleulus of certainty factors as am alternative (see Shortliffe, 1976,
Section 3.2). Schum (1980, p. 207) ends his advecacy of the Bayesian approach
with a megative note: ™...now we have other problems, I believe nobady real-
ized how many ingrediemts there would be and how complex the judgments about
these ingredients would be even in apparently simple cases." In all but the
most trivial cases, a proper Bayesian analysis requires a great many condi-
tional probabilities to be assessed. Schum presents the analysis of a fairly
gimple legal trial invelving 7 pieces of evidence (Salmon's pills) and shewa

that at least 17 probability judgments are needed, even if all reasonable in-

dependence conditions hold. As well as requiring a very large numbar of praob-

ability assessments, the relations between them are diffieult to organize, and

the ecoherence of the total set of assegssments is often diffieult to determine.

Two important lines of defense for Bayeslians are (a) that simplifying assusp-
tions can always be made, e.g., equal prier probabilicies, conditienal inde-
pendence of eventsz; and (b) that variables which one does not care to deal
with may be "integrated out,® i.e., the resulting probabllicies are regarded
as marginal {("averages™) with respect to possible values of the fgnored

variables. Thus, a Bayesian model may be created which is as simple as one
likes.

Unfortunately, however, the situation is not gquite as clear cut as this.
"Simplifying assumptions" must in some sense be judgments (&.g., that priors
are roughly equal, that events are conditionally independent). Otherwise, one
gacrifices the validity of the Bayesian spproach. As one Bayesian (Lindley,
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1984) has put it, the Bayesian argument shows you the things you have to think
about; so, think about them. From the Bayesian point of view, an argument
which omits these factors is simply spuricus. In the case of "integrating
out" certain variables, ne formal problem presents {tself, sinee from a
theoretical point of view the results with and witheut such variables should
be the same. In actual faet, however, the difference in plausibilicy of the
overall analysis can be very great (as we shall note below). Thus, altheugh
the required number of assessments may in fact be reduced by either of these
means, the diffieulty of the judgments required to do so may be considerable.
Schum speaks of them as "exquisitely subtle®.

A quite different approach, which we shall explore in greater detail below, is
to regard simplifying stravegies as assumptions whose validity is tested im-
plicicly through thelr usge in reasoning. If the outcome of using such assump-

tions 1s plausible, the burden of explicitly judging their validicy is
avolded,

A related tactie is te accept the Bayesian frasework as, Iin principle, the
correct way to handle uncertainty, and divert our research interests to ap-
proximations that are as close as possible to the Bayesian norm. Indeed,
Shortliffe (1976, p. 164) originally saw certainty factors as a device in this
direction. Shortliffe, however, did not explicirly derive his theory as a
special case of the more general Bayvesian model. Adams (1976) showed that as-
sumptions necegsary to derive Shortliffe’s postulates in some cases do not
exist, and in other cases are far more restrictive and fmplausible than the
usual sssumptions of equal priors and conditiomal independence. We shall
return to this topic in the discussion of Shafer's theory (Section 2.2.2).

Computational tractability. There is no known, computatiomally tractable
method for propagating uncertainties comsistently through an arbitrary
Bayesian network. Restrictions of some sort on the kind of model that is
utilized are necessary. The only guestion (as in the previous discuession of
ipputs) is whether the restrictions will be plausible (i.e,, define a
meaningful , useful special case of Bayesian modeling) or ad hoc, PROSPECTOR
adopted the latter approach. More recently, Pearl (1982) and Eis (1983) have
explored the former. They show that independence assusptions make sense, and
probabilities can be propagated by simple local computatiens, 1f the inferen-
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tial network has (a) a causal interpretation, and (b)) the form of & Chow tree

(i1.e., 1t lacks undirected cyeles), Unfortunately, mot all real problems will
fit thie special structure,

If validicy is mot to be sacrificed, computatlonal tractability for a Bayesian
system can be purchased only in special cases; and even then, only at the ceost
of complex and subtle judgments regarding interdependence among items of
knowledge and the overall structure of the inferemtlial argument. As we shall
gee, the situationm is quite similar for Shaferian belief functioms. For this
reason, Shafer (1984a) has recently argued, the introduction of probability
into expert systems appears to be incomsistent with the modularity of
knowledge representations that wp to now has been the most salient charac-

teristic of such systems.

In Sectiom 3 we shall return te some of these questions. We will propose that
a careful use of qualitative reasoning, superimposed upom a probabilistic
system, may reduce the requirement for experts (or users) to address lssues of
interdependence and model structure explicitly, and make such assesaments
easier vhen they are required, without undo compromise of walidity. In Seec-

tion &4, we deseribe a smwall-scale pilot implementation of am avionics expert
system based on this approach.

Validicy: Axiomatic derivarion. Bayesian probability theory has a
preemipent, though perhaps not conclusive, claim to wvalidity among current
proposals for the handling of uncertainty. De Finetti (1937/1964) showed that
unless your beliefs conform to the rules of probability, a clever opponent
could make you the victim of a "Dutch book,” i.e., a set of gambles you would
accept, but in which you lose regardless of the outcome of an uncertain state
of affairs. More recently, Lindley (1982} has given & new derivatiom. Sup-
pose that people are going to measure the uncertainty of events by some
method, and we wish to know how good they are &t doing so. If we devise a
scoring system of any sort--as slong as (a) the score is a joint funccion of
the uncertainty measure and the event's truth or falsity, and (b) scores are
addicive across differant evente--then no matter what events actually occur,
the best achievable score will always go to a form of Bayesian probability.

Lindley concludes that "enly probabilicy iz a sensible description of
uncertainty. ®
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A common objection to this sort of demeonstratlion Is that we are not in fact
always (or usually) faced with a malicious adversary or, Indeed, with a scor-
ing system. But the point is not that we are, or should somehow presume that
we are, always subjected to such peculiar eircumstances. Even if we never en-
counter these conditions, other things being equal, a system which has the
property of working well in them is more desirable (in all circumstances) than
ona which dees not. It is plausible than an adaquate system of uncertainty
would guard against a Dutch book. It is plausible that such a system would

gcore high if we ever choze to score it.

The more fundamental objectiem, in our view, is that while probability theory
has been shown uniquely to possess a desirable property, but has not been
shown to be uniquely justified. Other systems of uncertainty may have
desirsble properties that probability theory lacks. {(Im particular, alterna-
tive theories might deal more adequately with different kinds of uncertainty,
such as incompleteness of evidence or imprecision. In this regard, note that
De Finetti's and Lindley's arguments do not apply to systems which provide
more than a single measure of uncertainty for each event, such as the upper

and lower measures in Shafer's theory, or fuzzy probabilities in Zadeh's.)

Honetheless, it seems incomtrovertible to wus that the existence of founda-
tional arguments such as those described is a strong plus for Bayesian theory.

Plausibility of instances. The thrust of Bayesian analysis is to improve,
rather than te replicate ordinary thinking. Bayesians argue that if one's or-
dinary intuitions are probabilistically incoherent, they ought to be changed.
We might expect, nevertheless, that these revisions of belief would typically
lead te judgments that are regarded as more plausible after reflection. In
other words, the plausibility of the axioms should outweigh the initial
plausibility of an incoherent set of judgments, In some cases, this seems
true, e.g., wost pecple who understand an explanation of the "gambler's
fallacy™ seem to accept that it is a fallacy; in other cases, perhaps, it is
not true (e.g., Sloviec and Tversky, 1974),

There iz another issue here which is, we feel, more important. Ewen if
revised (hence, coherent) beliefs are more plausible than unrevised, im-

coherent ones, all the credit cannot go to Bavesian theory. The reason is,
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that the selection of a specific revision is not uniquely determined by the
requirement of coherence. Consider, again, the example above of inferring the
chance of H, {.e¢., that a particular threat is an 5A-4, based on analysis of a
signal A. Bayesian theory tells us only that our assessment of Pr[H] should
be the same as PriH|A]Pr[A] + Pr[H|A]Pr|A], which 15 based on our assessments
of Fr(H|A], Pr[A], and Fr{H|A]. The theory provides mo guidance in the case
where the two are not equal. Coherence by itself does not dictate that the
result of an analysis is to be preferred to a direct judgment. We might

choose to revise one or more of the assessments Iin the analysis, rather than
to revise PrH].

This problem, which we may eall the incempleteness of Bayesian theory, is ex-
acerbated by the fact that im any problem there is more than one posaible form
of analysis. Many advocates and many critics of the Bayesian approach seem to

inply that there is only one way a probabilistic analysis could be carried out
and only one possible conclusion,

to the example of inferring H.

To see that this is not the case, we return
Let B be intelligence Information that the
country in question had purchased in the last year an important component

required for construction of an SA-4 installation. Instead of, or in addition
te, conditioning our assessment on A, as above, we could copdicion on B,

namely

Pr[H] - Pr[H|B]Px[B] + Pr[H|B]Px[R].

Yet again, we could condition jointly on A and B:

Pr[H] = Pr[H|AB]Pr[AB] + Pr[H|AB]Pr[sE] + Pr[H|AB|Pr[AB] + Pr[H|AB|Pr[AE].

5till more cholces are open to us: for example, we could assess Pr[AB]

directly, andfor further analyze {t as PriA|B]Pr[B], and/or as Pr[B|A]Pr[A].

The Bayesian theoretical attitude is straightforward, mamely that it does not
matter which of these forms of anmalysis we perform or which answer we select,
since coherent probability assessors should derive the same number whichever
method they choose. Theory, however, is of use because we are not ordinarily

coherent in our assessments. An analysis may wall give us a different ea-

timate of Pr[H] than if we directly judged it; otherwise, we wouldn't bother
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with the analysis. Moreover, different analyses may well give us differemnt

answers; otherwise, we would have no cause for regarding some analyses as
"better" than others.

An importanmt assumption of Bayesian theory is that all analyses (by the same
person) are based on the same evidence; they do not differ in the knowledge
they draw upon. We would argue that this is, psychologically, not true. Dif-
ferent wayas of formulating the same problem may well tap different imternal
stores of information. What is missing from the Bayesian framework is some

notion of the quality of probability imputs, i.e., the amount of knowledge or

completeness of evidence that underlies them. Several points can be made:

Revision of pruhahilitf judpments should be pulded by a judgment
of their quality, i.e., the amount of knowledge they represent,

More than one snalysis may be of value, if they bring different

knowledge to bear on a problem (cf., Brown and Lindley, 1982,
1985).

The application of Bayesian theory to a problem is not necessgarily
8 linear process in which inputs are provided snd conclusions
computed. It is (or often should be) an iterative process, in
which comparison of conclusions arrived at by different methods

leads to revisions of inputs and assumptions, until overall con-
sistency is achieved.

In erdinary statistical problem selving, perhaps, judgments of qualiey may

safely remain implicit. But a major limitation im the automation of Bayeaian

theory within expert systems is the lack of an explicit measure of complete-

ness of evidence, and a mechanism for its use in the revision of probability
estimates,

This will be a major focus in our discussion of Shafer, below, and in the new
developments to be described in Sectiom 3.

Semantics: Behavioral specification. Bayesian theory provides a clear be-

havioral interpretation of probabilities in terms of preferences among bets,

We can know what someons's probabilistie beliefs are by observing their ac-

tions under specified conditioms. By contrast, a common complaint by

Bayesians regarding other theories is the difficulty of krnowing what the basic

measures mean.
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There are three differemt, but related, misunderstandings of this "operational
definition.™ First, critics point ocut that betting may be an awkward and in
gome cases an impossible method for eliciting probabilities. It is often
easier to ask for direct verbal judgments. There is a standard answer to this
point by sophisticated Bayesians: Mesning need not be equated with evidence.
Bayeslans can use any method they like for estimating your probabilities, 1f
there 13 a reasonable expectation that the result will match, or at least
approximate, what they would have gotten had they used the betting paradigm.

This response hides a more subtle misunderstanding. It is still assumed that
we can, at least in principle, always know what & persom"s probabilities are,
simply by testing his preferences among bets. 5Since the operational defini-
tion specifies a situation where he must make a cholce, it is Implied that any
person "has" probabilities walting to be uncovered or "elicited™, Is
Bavesianlise thus inevitable? This conception seems to be contradicted by the
incoherence we typlcally find in people's unalded Judgments, and which is

amply documented in the experimental psychology literature (e.g., Eehneman,
Slovie, apd Tversky, 1981},

The sophisticated Bayesian was right, we suggest, in distinguishing meaning
and evidence, But--sophisticated as he is--he has not absorbed the full im-
plications of that distinction. Although he permits other kinds of evidence,
he is still equating meaning with a particular observable operation. The
problem, as polnted out by Quine (1933) and others in a more general eritique
of posltiviem, ls that the selectlon of this rather than some other component
of the theory as a "definition® is arbitrary. Te return to our earlier
example, suppose we equate Pr(H] for a person X with X's betting behavior in
regard to H. Then we determine In the same way his walue for Pr[H|A],
Pr[H|A], and Pr[A]. Finally, we compute & new probabllity of H, Fr'[H], from
the latter three wvalues, Why shouldn't we define X's probability for H in
terms of this cperation, i.e., as Pr'[H]? One reply iz that this operation
requires a theoretical assumption wiz,, that X 1z coherent, to justify the
computation of Pr'[H] from Pr[HJA], Pr[H}Eﬁ, and Pr[A], But the earlier
"operational definition®™ could be regarded as theoretical, tog, since it iz a
thesretical hypothesis (i.e,, that X acts so as to maximize subjectively ex-
pected utility) that enables us to derive X's probability for H from his
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preferences among gambles invelwving H. Conversely, we could regard the
definition in terms of Pr'[H] as purely "behavioral®, by ignoring the
theoretical hypotheses i{mplicit in our calculations.

It i3 far more natural to regard all these potentlal “"definitions”™ simply as
theoretical predictions. How then, without definitions, do we assess the
probabllicies and utilities required to derive the predictions? The answer is
that testing a theory is, inevitably, a bootstrapping operation, in which we
use the theory, as if it were true, to estimate values for an Iinterrelated set
of parameters, then test for consistency of the results. If the results are
consistent, the theory 1s confirmed; If not, it is disconfirmed. (For a

general discussion see Glymore, 1980.) To the extent that people are prob-

abilistically incoherent, therefore, probability theory is disconfirmed, and
they cannot be regarded as "having" probabilities at all.

Have we overlocked the difference between descriptive and prescriptive
theories? Perhaps "operational definitions" make sense for probabilities be-
cause they form part of a prescriptive theory. On the contrary, we sugpest

that there is a strong and important parallel between theory testing, as we
just desecribed it, and prescriptive analysis. Just as in deseriptive scilence,
we assume the prescriptive theory to be true, use it to perform a set of in-
terrelated analyses, and then test them for conasistency. However, if we find
inconsistency among alternative prescriptive analyzes, or between an analysis
and direct judgment, we do not (necessarily) drop the prescriptive theory; we
may choose to revise the values in one or more analyses so as to make them

consistent. In so doing, we construct rather than discover or confirm a prob-
abilicy model for cur beliefs.

What then is left of the Bayesian claim that operational definitions are
required for clarity of concepts? The third and final misunderstanding we
wish to address is the notion that because "operational definitioms™ are
arbitrary, and do not guarantee the applicability or even the relevance of a
prescriptive theory, that behavioral specification is of no use. In fact, it
is quite critical: without it, there is no link, or else no c¢lear link, be-
tween the prescriptive theory and action. With it, the prescriptive process
described above, in which a coherent set of judgments is arrived at through

successive iterations, also produces a clear set of implications for action.
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In expert system applications, such implications are typlecally the reason for
developing the system. Moreover, such specifications may play a clarifying
role for the decision maker in the process of iteratively arriving at an ap-
propriate set of judgments, The exlistence of such speclflcations must,
therefore, be counted as a plus for the Bayesian theory,

Naturalness of Inputs, Behavioral speciflcation ls not sufflclent to
puarantee the usefulness of an Inference framework. A common objection to
Bayesian theory urged by proponents of altermative views, s that the inputs
it requires exceed, In various ways, the capabilities of the decizion makers
it is designed to ald., A distinction must be made between two types of claim
against Bayesian theory: that it fails adequately to deal with imprecisien
and with incompleteness of evidence.

Bayesians assume that experts are capable of guantifying their uncertainties
and values to an arbitrary degree of precision. But this is true of no other
known process of measurement. Experts may simply not know, to the required
exactitude, what their beliefs or preferences are.

Alternately, the evidence may be Incomplete in that it does not justify the
degres of confidence suggested by use of a single number to assess an
uncertainty. Some assessments (e.g., the probabllicy that the Soviets will
invade Western Europe within the next year) are less well supported than
others (&.g., the probabllity that a coin in my pocket will land heads if
tossed), In the former cases, the available evidence may justify no more than
a range of probabilities rather than a single nusber.

There is an important distinction between these two complaints: the first is
consistent with the basic prescriptive adegquacy of probability theory, but
seeks to accommodate human shortcomings in the assessment task. In contrast,
the second objection has a mormative basis: probabilities themselves are in-
appropriate where evidenmce is incomplete. We shall explore these positions in
more detail in our discussions of Zadeh end Shafer, respectively.

A related problem is that the Bayesian framework addresses probabilistic and
not causal relationships. In many instances (particularly for applications
for which rule-based expert systems are suited) people's reasoning processes
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are naturally causally oriented (Abelson, 1%85; Ross, 1977; Tversky and
Kahneman, 1982). People may interpret probabilistic information causally,
leading to commonly observed blases such as ignoring base rates or the con-
junction fallacy. The persistence of such blases (Tversky and EKahneman, 1983)

pointe to the difficulty of tremnslating causal reasoning into probabilistic
Judgments.

Concepts of uncertainty. Bayesian theory is clearly designed to capture the
concept of chance, or uncertainty about facts. We argued that an important
gap in Bayesian theory is the lack of a measure of completeness or guality of
evidence, 1.e., the lack of a distinction between firm probabilicies (.5 as
the probabllity of heads om a colin toss) and those based on guesswork (.5 as
the probability of a Soviet inwasion). Intulitively, the weight of evidence
supporting some probabillity judgments 1s stronger that that supporting others.
We argued that this concept in fact plays an important role in ordinmary ap-
plications of probability theory, by guiding the chelce among potential revi-
slons of belief in the light of an analysis or set of analyses. We hope to
demonatrate below (Section 3) that an explicit measure of thls sort 1s erici-

eal for the control of reasoning in an expert system that intelligently
handles uncertainty about facts.

To what extent could Bayesian theory itself be extended to cover the concept
of completeness of evidence? Lindley et al. (1979) have recently attempted to
formalize the intuitive notion that we are firmer about some probabilicy
assessments than others, The tool they introduce Iz a second-order probabil-
ity distribution over possible walues of the true first-order probability,

The spread of the second-order distribution 18 a measure of the firmness of
the original probabilities. Lindley et al. have described procedures for

statistically aggregating inconsistent probabilistic analyses by means of such
gecond-order judpments.

These efforts have failed, in our opinion, for a wvariety of reasons.
Feasibility: The quantity and difficulty of required inputs is increased,
rather than decreased, to the degree that one's evidence is incomplete., Com-
putational intractability will certainly be increased as well. WValidicy:
Axiomatic justifications and behavioral specifications which apply to first-
order probabilities become much less convincing at higher lewvels, where, for
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example, gambles or scores which depend on one's own "true® prﬂhﬁbilitia:,
rather than actual esvents, lack plausibility., Face validity is dubious as
well: e.g., 1f we attempt to measure the quality of our second-order prob-
abilitles In the same way, we are threatened with an Infinite regress. Per-
haps the most serious diffieculty, however, is the implausibility of the in-
ferences to which this model gives rise. In brief, the procedure for ag-
gregating probabilistic analyses assumes that they disagres only because of
"polse, " or random error, in the assessment process; hence, it yields results
which do not reflect the possibility that different analyses have drawn on
different evidence. We suggest that from a psvcheloglcal point of wview, dif-
ferent analyses may tap different portions of our steore of knowledge, even
vhen performed by the same individual, These points are amplified in Cohen et
al,, 1984, and in a planned paper by Coben and Lindley,

Summary. Bayesian probability theory is strong in the formal aspeects of
validity. Its logical foundations are perhaps wuniquely compelling in applica-
tion to the concept of chance. However, the input and computational burdens

which it imposes, except when specialized models are adopted, are

considerable. It has no adequate resources for representing the quality of an

inferential arpument, and requires an arbitrary degree of precision in mumeri-
cal judgments. Ewven its walidity, in a more informal sense, can be
questioned. Bayesian theory, as it stands, implies that one's beliefs should
be coherent but provides no guidance for choosing among alternative equally
coherent analyses. Moreover, by assuming that all assessments are based on
the same evidence, it closes off the most promising source of such guidance.
We have argued that the application of Bayesian theory to a problem is not
linear process in which conclusions are computed from inputs. It is (or often
should be) an iterative bootstrapping process im which comparison of conclu-
gions arrived at by different methods leads to revision of inputs and
asgumptions, until overall plausibility is maximized. This process of revis-
ing probability assessments should be guided by a judgment of their quality,

A more satisfactory account of completeness of evidence is, therefore,

essential.

2.2.2 Belief functions. WNature of the theory. In the theory of belief func-
tions introduced by Shafer (1976), Bayesian probabilities are replaced by a
concept of evidential support. The contrast, according te Shafer (1981;
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Shafer and Tversky, 1983) is between the chance that a hypethesis iz true, on
the one hand, and the chance that the evidence means (or proves) that the
hypothesis is true, on the other. Thus, we shift focus from truth of a
hypothesis to the evaluation of an evidential argument, As & result, the sys-
tem (a) iz able to provide an explicit measure of gquality of evidence, (b} is
less prone to require a degree of definiteness in inputs that exceeds the
knowledge of the expert, and (¢) permitz zegmentation of reaszoning into
analyses that depend on independent bodies of evidence.

In Shafer's system, the support for a hypothesiz and for {ts complement need
not add to unity. For example, 1f a witness with poor eyveszight reports the
presence of an enemy antiaircraft installation at a specific location, there
is a certain probability that his eyesight was adequate on the relevant occa-
gion and & certaim probability that it was not, hence, that the evidence is
irrelevant. In the first case, the evidence proves the artillery is there.
In neither case could the evidence prowe the artillery is not there.

Te the extent that the sum of support for a hypothesis and its complement
falls short of unity, there Is "uncommitted” suppeort, i.e., the argument based
on the present evidence is unreliable. Evidential support for a hypothesis is
a lower bound on the probability of its being true, since the hypothesis could
be true even though our evidence falls to demonstrate it. The upper bound is
glven by supposing that all present evidence that 1s consistent with the truth
of the hypothesis were In fact te prove it, The Interval between lower and
upper bounds, 1.e., the range of permissible belief, thus reflects the un-
reliability of curremt arguments. This concept is closely related to com-
pleteness of evidence, since the more unreliable an argument is, the more
changeable the resulting beliefs are as new evidence (with associated

arguments) are discovered, These concepts are not captured by Bayesian
probabilicies,

In Shafer's caleulus, support m("} is allocated not te hypotheses, but to gets
of hypotheses. Shafer allows us, therefore, to talk of the support we can
place in any subset of the set of all hypotheses. In the case of three
hypotheses, H;, Hy and Hy, for example, we could allocate suppert to Hy, Hj,
Hy, {Hy or Hyl, (Hy or Hyl, (Hy or Hy}, and {H; or H, or Hy}. As with
probability, the total support across these subsets will sum to 1, and each
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suppert m{*) will be between 0 and 1, It 1s natural, then, to say that m({')

gives the probability that what the evidence means Is that the truth lies
somewhere in the indicated subset,

Suppese, for example, that we know In the case of three hypotheses that Hy Is
false, but have no evidence to distinguish between Hy and Hy;. In that case,
we would put m({Hy or Hyel) = 1, and give zero support to all the other pos-
sible subsets. Alternatively, we may feel that the evidence either means that
Hy is true, or that [H; or Hy) is true, or that it is not telling us anything
(i.e., {Hy or Hy or Hy) is true), and that the welght of evidence is just as
strong with each possibility. In that case m{Hy) = m({(H; or Hy}) = m{{H; or
Hy or Hyl) = 1/3. In & Bayeslan analysis, arbltrary declsions would have to
be made about allocating prebabilivy within these subsets, requiring judgments
that are unsupported by the evidence,

This same device, of allocating support to subsets of hypotheses, enables us
to represent the rellability of probability assessments, Suppose, for

example, that the presence of feature ¥ in a signal is associated with an SA&-4
70% of the time and with other threats 30% of the time, based on frequency
data from a set of previous signal analyses. If we are confident that an
image now being analyzed is representative of this set, we may have m{S5A-4) -
.7 and m{other) = .3. But if there is reason to doubt the relevance of the
frequency data to the present problem {e.g., due to possible presence of ECM
in the regien), we may discount this support function by allocating same per-
centdage of support to the universal set. For example, with a discount rate of
0%, we get m{SA-4) = .49, m{other) = .21, and m [[5A-4, other)) = .30, The
latter reflects the chance that the frequency data is irrelevant.

Shafer's belief function Bel('} summarizes the implications of the m{') for a
given subset of hypotheses. Bel{A) is defined as the total support for all
subsets of hypotheses contained within A; in other words, Bel{A) is the prob-
ability that the evidemce implies that the truth is in A. The plausibility

function PL{"} is the total suppert for all subsets which overlap with a given
subsat.

Thus, PL{A}) equals 1-Bel(A); i.e., the probability that the evidence does not
imply the truth to be in not-A. In one of the examples above, with
_1|:|_



m{ly) = m{(Hy or Hyl) = m{{H; or Hy or Hy)) = 1/3,

we get:
Bel(Hy) = m(H3) = 1/3; P1(Hy) = Ll-Bel(lH, or Hy)) = 1
Bel({H; or Hy}) = m(Hy) + m{{H; or Hy)) = 2/3;

Pl{{ﬂl or Hal} - 1-EE1{{H2|) =],

Dempster's rule. Thus far, we have focused on the representation of uncer-
tainty in Shafer's system. For it to be a useful calculus, we need a proce-
dure for inferring degrees of belief in hypotheses in the light of more than
one piece of evidence. This is accomplished in Shafer's theory by Dempster's
tule. The essential intuition is simply that the "mesning” of the combination
of twe pleces of evidence iz the intersection, or common element, of the two
subsets censtituting their separate meanings. For example, if evidence E;
proves I_Hl ar Hzl. and evidence HE proves {HE or H3}. then the combination E1
+ E; proves Hy. Since the two pleces of evidence are assumed to be

independent, the probabilicy of any glven combination of meanings iz the
product of thelr separate probabilities.

Let X be a set of hypotheses Hy, Hp, ..., H,, and write 2% for the powar set of
X, that iz, the set of all subsets of X. Thus, a member of 2% will be a sub-
set of hypotheses, such as [H,, Hg, Hq), Hy, or (H), Hy, Hy, Hy), ete. Then

Lf my(A) 1s the support pgiven to A by one plece of evidence, and m,(A) is the
support given by a second piece of evidence, Dempster's rule is that the sup-
port that should be given to A by the two pleces of evidence is:

Byt Ay=is

1 - L my(By)m,(Bs)
l‘_'Illﬂlmz_qﬂll I A ]

The mumerator here is the sum of the products of support for all paire of sub-
sets Ay, Ap whose intersection i= precizely A. The denominater is & normaliz-

ing factor which ensures that HIE{'} gsums to 1, by eliminating support for im-
possible combinations.
AR 1 D



Consider, for example, the following two support functiona:

Table 2-1
m () ma () mygl”)
Hy 0.2 0.1 0. 344
Hy 0.1 0.3 0.250
Haq 0.3 0 0.172
HyH, 0.1 0.3 D.125
HyHaq 0.2 0 0.063
HaHy 0 0.1 0.016
HyHqyHq 0.1 0.2 0.031

In the third column, we have used Dempster’s rule to compute mli{‘}, For ex-
ample

my (HyHy)my (HyHy d-+my (HyHydmy (HyHoly)4mg (HyHoHydmy (HyHs)
myp{fHy) = - e

where

€ = my (Hy) (my(Hy) + my(Hy) + my(HyHy)] #+ my(Hy) [my(Hy) + mp(Hy) + my(HyHy)]
+ my (By) [my(Hy) + my(lly) + my(HyHz)] + my (HyH,)m, (Hy) + m (HyHy)ms (Hy)
+ m) (Hyliy)my (Hy )

0,1x0, 340, 1x0, 240, 1x0. 3
and so mlﬂ{HlHEI - 1036

- 0.125,

Let us now examine the performance, or at least the potential, of Shafer's

theory within cur evaluation framework.

Feasibility: Quantity of Inputs. One of the maln difficulties standing in
the way of & Bayesian analysiszs is its complexity. At first sight the
Shaferian approach seems simpler, since complicated independence judgments and
conditional probability assessments appear not to be required. This ap-
pearance is 1llusory. Support fumctions sust be assessed over not just the
hypothesis set, but over the power set of the hypothesis set. With 10
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hypotheses, for example, the support distribution has 1,023 elements. For
both Bayesisn and Shaferian models, the required number of assessments or
judgments increases exponemtially with the number of events or hypotheses. To
see the parallel, compare the Bayeslian rule:

Pr[A or B] = Pr[A] + Pr[B] - Pr[A]Pr[B|A]

with Shafer's rule:

Bel{{h or B)) = m(A) + m{B) + m{({A& or B}).

In each case, to get an uncertalnty measure for a disjunction (i.e., a member
of 2%), we must make one assessment in addition to the measures already
assessed for the elements, For Bayesilans, the extra assessment is a condi-

tional probability Pr[B|A]; for Shaferians it is the direct evidential support
m({& or B}).

A Bhaferian response to this, in parallel with the Bayesian response, is that
specialized models may be developed that require far fewer assessments. In

fact, the belief function framework admits a variety of interesting special
cases: e.g.,

- simple support functions: all support goes either to some one
subset or to the universal set X. Either the evidence limits the

truth to lie within one particular subset or it is totally
unreliable.

» discounted probabilistic support functioms: all support goes to
individual hypotheses (as im a standard probability distributiem},
with some additional support possibly going to the universal set X

(reflecting a judgment of the quality of the evidence for the
probability distribution):

» consonant suppeort functioms: all support goes to a nested serles
of subszets of hypotheses; 1.e., the evidence points in a certain
direction but is unclear how far we should ge;

- hierarchical support functions: the evidence supports subsets of
hypotheses that can be arranged in a tree,

Here agasinm, however, (as in the Bayeslan case) complex and difficult judgments
must be made to determine that a particular specialized model is applicabla,
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before savings In quantity of assessments can be realized.

The problem for Shaferians may even be deeper. The applicability of
Dempster's rule to twe bits of evidence Ey and E; Is not automatie. It
requires rather careful and difficult consideration of a whole set of indepen-

dence assumptions. We shall return to this point in our discussion of the
validity of Shafer's theory.

Computational tractability. Here again the story is parallel te the Bayesian
case, The employment of unrestricted belief function models would invelwve
prohibitive computation, As a result, Gordon and Shertliffe (1984) propose to
modify Dempster's rule to simplify computation in MYCIN. Shafer (19B4a) has
erpued in response that ad hoe modifications of this sort might be aveided by
a control strategy that intelligently exploits the structure of restrieted
belief function models, such as the hierarchical strueture proposed for MYCIN.
Hera as in the Bayesian case, feasibility is purchased only in special cases,

and, evidently, at the cost of complex and subtle judgments regarding the
structure of the overall argument.

Validity: Semantics. Bhafer argues that the requirememt for a behavioral
specification of probabilities is irrelevant. People bet in a certain way be-
cause of their beliefs and preferences; cbserving their own betting behavier
will not help them to assess those beliefs. Shafer thus urges a shift from
the positivist to a more cognitive orientation. He argues that uncertainty is
quantified on the basis of an analogy between one's problem and a "canonical
example®. In Bayesian modeling, we assess the probability of an event by com-
paring its likelihood with the likelihood of a frequency-based event, such as
a8 random drawing from amn urn. Thus, for Shafer, to say that the Bayesian
probability of an event is x is to say that it is "like"™ the chance of drawing
a white ball from an urn with a proportion of white balls equal to x.
S8imilarly, te say that your Shaferlan belief in a proposition is y, is to com-

pare it to canonical examples in which the reliability of an evidential source
iz determined by chance,

Unfertunately, Shafer's position 1z weakened by two considerations: Filrst,
his canonical exanples, as we shall see below, are far more complex and less

obviously usable, even from a cognitive point of wview, than the Bayesian
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exanples. Second, behavioral specification probably plays a cognitive role in
elarifying the sense of a canonical example. For example, what does it mean
to say that my uncertainty about whether an object iz a building is "like" my
uncertainty about drawing from an urn? In what respects must they be similar?
Many people will find it {1luminating when told it means that I would bet at

equal atakes on either event.

A major strength of Shafer's theory, nevertheless, is the naturalness of the
input format it imposes:

. Assessments need go mo further than the evidence justifies. Az we
have seen, "ignoramce" is naturally represented by assigning sup-
port to a subset of hypotheses, with no further commitment te an
allocation within the subset. A Bayesian must decide among quite

definite and distinct, but equally arbitrary, allecations of
probability.

* Weight or completeness of evidence is quite imtuitively repre-
sented as the degree to which the sum of belief for a hypothesis
and its complement falls short of unity.

- Assessments may be based on distinct, separsble bodies of
evidence, rather than requiring--as in Bayesian theory--that all
assessments ba based on all the evidenca.

Face validity. Belief function theory possesses no deep axiomatic justifica-
tion comparable to the de Finetti and Lindley arguments for Bayesian theory.
Hot coincidentally, however, Shafer has offered a view of model "validation"
which contrasts sharply with the axiomatic approach. On Shafer's wview (19B81;
Shafer and Tversky, 1983}, theories of inference are tools which can be used
to help us construct (rather than elicit or discover) a set of probabilities.
The justification for applying a particular toocl to & particular problem is
that we see an analogy between that problem and the canonical example underly-
ing the theory. For example, te the extemt that the Bayesian theory has any-
thing to contribute, it is by establishing a persuasive analogy between your
problem and a situation, like drawing balls from an urn, where the truth is
generated by known chancas,

Bayesian analogies of this sort, according to Shafer, will usually be
imperfect, because in the canonical example we know the rules of the game that
determine how the truth is generated (e.g., the composition of the urn and the
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procedure for drawing a ball).

agspects of the situstion where comparable rules cannot be given without making

numerous assusptions,

better to switch to a simpler kind of model, which is more plausible despite
net giving & complete pleture of how the truth 1s generated, Such simpler

models can be based on canonical exasples in which the meaning of the evidence

rather than the truth is generated by known chances.

We comment on Shafer's position at two lewvels: First, how convineing is his

concept of validity? BSecond, how plausible or useful are the canonical ex-
asples underlying belief functions?

Concept of validity, For Shafer, wvalidity reduces to face walidity and
plausibilicy of instances. His argument for this position, however, contains
gome confusion. Shafer mistakenly assumes that the adoption of an axiomatic

framework implies a belief Iin pre-existing rather than constructed

probabilities. Thus, Shafer (1934a) speaks derisively of assessment in the

Bayesian context as "pretending® that one already has probabilistically

coherent beliefs and preferences, and then, somehow, "trying to flgpure out
what they are.®

Dur own view is that Shafer is correct to regard probabllity frameworks as
tools for the construction, rather than discovery, of probabilities. But he
is wrong in supposing that the axiomatic derivation of & framework detracts
from this role--as long as we understand, as argued above, that axiomatic
derivation iz only one argument Iin faver of a given framework. If taken
seriously, Shafer's argument would declare as "non-constructive™ any set of
prior constraints on the way uncertainty is represented or manipulated; thus,
it applies as strongly against belief functions and Dempster's rule as to
Bayvesian probabilities. The solution im our view is not to drop constraints,
but to drop the view that any particular set of comstraints is inevitable.
Thus, probability assessment as we understand it is an iterative and construc-
tive process, in which a tentative framework (e.g., Bayesian or Shaferian) is
adopted, assessments are made within the framework, checked for comsistency,
and revised; if the overall result is unnatural or implausible, the framework
itself may be rejected or revised., In other words, "pretending® that a

framework is correct is a legitimate strategy in uncertainty assessment;
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indeed, it is the only possible strategy. A framework is of use as a tool
precisely because it does impose (tentative) constraints on the assessments
that are produced. It challenges the expert to actively shape a previously
disorganized and perhaps even unverbalized set of beliefs. It serves as a
medium or language Iin which the expert "thinks" about uncertainty and in which
he expresses those thoughts. A supposedly "neutral® framework, that imposed
no format or structure, beyond that already present, would not help the expert
in the process of construction and could not advance his or our understanding
of his beliefs. (See Cohen, Mavor, and FKidd, 1984, for a more general argu-
ment in the context of knowledge engineering.)

In sum, Shafer's argument for a constructive process of probability assessment
is ecorrect. But he appears to have drawn two unnecessary conclusions: (1) It
in no way contradicts the added plausibility that may be lent to a frameworlk

by the existence of an axiomatic darivation:; and (2) it should not blind us to

the importance of the iterative strategy of tentatively adopting a framework
and testing its implications.

Shafer's canonical example. As noted above, when we apply a belief function

analysis, we "pretend” that the meaning of the evidence is generated by known
chances. In order to evaluate Shafer's theory in terms of face validity, we
pust examine this analegy more closely. In particular, we must focus on the
independence assunptions embodied in the canonical example which are required
to license an application of Dempster's rule. It turns out that these ;Baump-
tiens are the primary constraints Imposed by Shafer's theory on the process of
evaluating evidence; hence, they are its main contribution to the
"construction” of probability judgments. They have also been the major source
of controversy between Shafer and Bayesians. Early critics of Shafer's work
{e.g., Williams, 1978) complained about the obscurity of Shafer's notion of
Tindependent evidence." In a recent paper, however, Shafer (in press) has
clarified this concept considerably.

Shafer's interpretation of belief functions involves two sets of hypotheses
{or "frames”) as shown in Figure 2-1. One frame, 5, is a set of background
hypotheses which concern the state of the process that produced the evidence
at hand. For example, if the evidence Ey is a witpess's testimony that he saw

antiajircraft artillery in a certain locatlion, the frame 5 may simply be the
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Figure 2-1: TIllustration of Canonical Example for Belief Functions
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two possibilities (the witness is reliable, the witness is not rellable}. The
other frame, T, contains the hypotheses of primary interest, e.g., [(the artil-
lery La present, the artillery is not present). To get a belief funetion, we
only need (1) a probability distributien over 5, i.e., standard probabilities
Py and Py, for the rellability and unrellability of the witness; and (il) a
mapping frem § to T based on the content of the evidence, Since the evidence
is the witness's report of artillery, reliability in S5 maps onte [(the artil-
lery is present] in T; unreliability in 5 maps onto the set (the artillery is
present, the artillery is not present] im T. Support m(A) for a subset A in T
is just the probability for hypotheses in 5 that map only onte A. (We have
referred te this, somewhat loosely, as the probability that the evidence
"means”™ AY, Bel{A) for a subset A in T is the sum of the probabilities for
hypotheses in § that map onto subsets of T that are contained im A. Thus, in

our example, Bel(artillery is present) — P;; Bel([present, not present}) =
Py + Py,

Buppose we now recelve a second plece of evidence, E;, which is the testimony
of a second witness that he saw artillery In the same vicinity. We define a
new belief function for this witness by specifying a frame 5, with the ele-
ments {(the second witness is reliable, the second witness is unreliable}, and
by assessing probabilities Py' and P," eover 5,5. What is our new overall
belief in the elements of T? Naming 5 as 5, Figure 2-2 shows a new frame,
5.%8,, which results from combining elements of 5; and 5,. Each cell has a
probability whiech 1is the product of the probabilities of the elements from 51
and 34; and each cell is mapped onto a subset of hypotheses In T, based on
knowledge of Ey and E;. According to this mapping (as shown by the labels in
the cells), support for the artillery being present aquals the chance that
either witness 1 or witness 2 is reliable, i.e,, PPy + PlPE. + PEPI.‘ Thi=
iz the result given by Dempster's rule.

What 1if the report of the second witmess contradicts, rather than confirms,
the first? That 1s, EE 1z a report that artillery is not presemt in the
speclified location, In that case, the new frame, 51x52= appears &s in Figure
2-3. The only change is in the mapping of the cells to subsgets in T--a change
required by the change in E;. It turns out, however, that the cell cor-
responding to both witnesses being reliable does not map to any subset in T.

Since El and EE are contradictory, both cammot be true. Thus, we use our
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knowledge of El and EI to prune out Iimpossible cells in 51151. According to
the mapping, suppert for artillery being present equals the chance that wit-
ness 1 iz reliable and witness 2 1s unrelisble, 1.2., PIPE'IilaPlPl'], noE -

malizing to remove the impossible case. Once again, this is the result of ap-
plying Dempster's rule.

In many of Shafer'a discussions, he appears to argus that Dempster's rule 1s
justified in situations which "resemble" this canonical example, because it is
the correct rule for the example (just as Bayesian rules are correct for the
case of drawing balls from an urn). But what makes it correct? Even these
simple examples may seem too complex for such a direct appeal to intuition. A
recent paper by Shafer (in press) contains a more extensive discussion of the

preconditions of Dempster's rule., We can use Dempster’'s rule, he says, only
{f the following judgments are made:

{a} Before consideration of the mapping te T, any hypothesis in 5, is

cempatible with any hypothesis in 8, (80 5;%5, can be defined as a
new frame) .

(b Probabilities for elements of 51 are ilndependent of elements in SE
(e.g., we do not alter our estimate of the reliability of ome wit-

ness based on the reliability or unrelisbility of the other
witnesa).

{c) If we could draw a conclusion about the truth of a subset in T by
knowing that a certain combination of hypotheses from 5, and Sq
was the case, then we could have drawn the same conclusion by
knowing that either one or the other of the hypotheses (from 8y or
8q9) was the case. (In the example of concurring witnesses, we can
conclude that artillery is present if both witnesses are reliable;
but all we needed was ome or the other to be relisble).

(d) The evidence we use for assessing 5, and 5, tells us nothing more

directly about T. (All the work of reasoning about T is trans-
ferred to reasoning about 5.)

Having enumerated these assumptions, we must remark that our original gquestion
abhout the rationale for Dempster's rule remains unanswered, It has not been
demonstrated im amy way that Dempsters rule “*follows from" these
preconditiens, Perhaps Shafer means sisply that vhen these parcicular condi-
tions are met, Dempster's rule will appear more plausible or natural.

Hote, however, that the canonical situation described by these conditions in-
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cludes a chance model: Because of assumptions (a) and (b), the probability
for a component of 5y%8, is simply the product of the probabilities assigned

to the components of 8; and S,. It is tempting, therefore, to view the belief

function model as a special case of a Bayeslan analysis, defined by the
restrictions outlined in {a) - {d}. In that case, Dempster's rule should be
justifiable from {(a) - {d) by the rules of probability theory. Moreover,
Shafer's modal would then inherit the axiomatic justification of the Bayesian
model in the special circumstances where it applied.

A Bayesian foundation for belief finctions? To see how this might work, con-
sider the simple case of Figure 2-2, with H = the artillery is present, H=
the artillery is not present, B = the first witness is reliable, and R = the
first witness is not reliable. It follows from probability theory that:

Pr{H) = Pr(H|R)Pr(R) + Pr(H|R)Pr(R).

Following Shafer's definitions, we interpret m{H) as Pr(R} and =m(H or H) as
Prfﬁ}, In addirtlien, frem our knowledge of Eq (l.e., the mapping from 5, to T
which it establishes), and using {d), we know that Pr{H|R) = L; 1if the witness
fz reliable, then the artillery {s present. Hence, we may write

Pr(H) = m(H) + Pr(H|R) m(H or H)

and thiz gives

Bel(H) = m(H) £ Pr(H) < m(H}4m(H or H) = P1(H),

where Bel(H} and PL{H) are Shafer's belief and plausibility functioms. It
appears, then, that the belief function analysis is simply an incomplete
Bayesian amalysis. Our uncertainty about Pri(H) iz due to our failure, in the
belief function approach, to specify Pr{HfE}. 1.e., the chance of the
hypothesizs being true despite the fact that the present evidence Is
unrelisbhle. This is just another way of saying that Shafer is interested in
the proof of the hypothesis, not its truth. If Pr{Hfﬁ} = 0, Pr(H} = Bel(H);
and if i‘rl.‘.Hli]I =1, Pr(H) = P1{(H). Thus, Bel(H) and P1(H) give lower and up-
per bounds for the Bayesian prebability.
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Let us now see how Dempster's rule works within this Bayesian Interpretation.
Let By and Ry refer to the reliabllicy of the first and second witness,
respectively, and take the case where E; and E; agree. A Bayeslan prebability
Pr{*|*), 18 a function of two arguments, the event and the evidence,
Pregumably, therefore, in using Dempster's rule, the probability to be bounded
Ls Pr{H|Ey,Eq). Let us for the moment, however, ignore this consideration and
use Pr(H). (Mote that in the case of one plece of evidence, we likewise used
Pr(H) inatead of Pr{H|E1}.} By probability theory, we have

Fr(H) = Fr(H|R; or R4)Fr(Ry or R,) + Pr(H|Ry or R,)Pr(R; or R,).
Substituting based on conditiens (a) and (b), we have
Pr(H) = Pr(H|Ry or Ry)[Pr(Ry)+Pr(Ry)-Pr(Ry)Pr(Ry)] + P:{Hlilizjhlil}?rfizj.
By Dempster's rule,
myg(H) = Pr(Ry) + Pr(Ry) - Pr{Ry)Pr(Ry)
and by Shafer's definitioms,
myo(H or H) = Pr(Ry)Pr(Ry).

Using (c) and (d) and the mapping from 51152 to T, PrEH1El or Eﬂ} - 1.

Therefore,

Pr(H) = my(H) + Pr(H[RyRy)myy(H ox H).

It follows that

Belyp(H) = my,(H) £ Pr(H) £ myg(H) + myy(H or H) = Ply,(H).

Thus, Bel{H) and PL{H), when computed by Dempster's rule, continue to give up-
per and lower bounds for Pr(H). (Hote, however, that Bel({') and F1({')} are mot
bounds on what the future probability could be, given further evidemce, They

are bounds on PFr(') implied by our present evidence.) A similar demonstration
can be given for the case where Eq and Ey conflict. This approach can be
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generalized to the case where support is assigned to arbitrary subsets of
hypotheses by regarding "reliability”™ as a set of separately assessed skills
imvolved in diseriminating subsets of hypotheses from their complements.

The problem, of course, is that we have not justified Dempster's rule as a
bound om the Bayesian probability, Fr{HlElﬂz}. When we conditionalize on the

evidence, as we certainly must in a Bayesian amalysis, Pr(Ry or R;) is re-
placed by :

Pr(Ry or Ry|EjEy) = Pr(Ry|E;E;) + PriRy|E Ey) - Pr(Ry|EyEp)Pr(Ry|EqEoRy).

This brings out a curious and eritical feature of Shafer's theory. He is asz-
king us to assess the reliabllity of a witness (or more generally, the status
of an evidentiary process) without taking into account our knowledge of what
the witness sald. In Shafer's canonical example, knowledge of the evidence
enters in only for the mapping from 5 to T, after all the probability work has
been dome on 5. Im a Bayesian analysis, on the other hand, the credibility of
8 witness can be shown to depend both on what is sald amé om its prior
probability, i.e., our original tendency to think it true. If 8 witness says
something which is independently believable, our estimate of his reliability
increases. HMore importantly, perhaps, the credibility of one witness can, in

a Bayeslan analysis, be increased by corroboration of a second witness, and
decreased by contradiction.

Assumption (b) is plausible only in light of this restriction. The strict
Bayesian wersion of (b) is

Hote that EqR, implies H, i.e., if witness 1 is reliable and says H, H is
true. But we would expect, quite generally, that Pr(R,|E;H} > Fr(B,|E{Eq},
i.e., learning for a fact that what the witness sald is true increases his
eredibility more than corroboration by a second witness., On the nthQr hand,
if we are assessing a witness's reliability prior te (or without consideration
of) his testimomy, it does make sense to require that his reliability be inde-
pendent of the reliability of another witness. We thereby preclude shared
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uncertainties (e.g., & conspiracy) in the two evidential processes belng
combined,

A group of Swedish researchers, whose work is summarized and extended in
Freeling and Sahlin (1983), and Freeling {1983}, has explored issues such as
this. Like Shafer, they focus on the reliability of the evidence, rather than
the truth of the hypothesis, i.e., they reject the traditional Bavesian effort
to model the chance of a hypothesis when the evidence is unreliable. But un-
1ike Shafer, they analyze reliablility in the light of the evidence, as Pr(R|E)
rather than Pr(R). In effect, this is an effort te give a proper Bayesian ac-
count of the notion of quality or completeness of evidence, rather than truth.
{As such, it is an alternative to the idea of second-order probabilities dis-
cussed above) The upshot of this research is that if m(H) is equated with
Pr(R|E}), Dempster's rule cannot in general be justified. Depending on the
character of the belief functions being combined, and the kinds of conditional
dependence assumad in the Bayesian analysis, Dempster's rule may be correct, a

good approximation, or entirely off the mark in comparisom to the "proper®
Bayesian rule of combination.

While it faile to fully wvalidate Dempster's rule, the Swedish work alse lacks
most, if mot all, of the virtues of the bellef functlion representation. In
terms of feasibility, formulations which conditionalize on the evidence become
extremely complex even for the simplest examples. The Swedish group has made
little progress in deriving rules for the combination of evidence Inmvelving
the full range of cases to which Dempster's rule applies, in particular, where
varying degrees of support are assigned to arbltrary subsets of hypotheses.
Horeowver, the requirement to assess prior probabllities is incompatible with

the segmentation of evidence which iz vital for the naturalness of inputs in
Shafer's system.

Shafer (in press) explicitly rejects the attempt to provide any sort of
Bayesian foundatien for belief functiens., Arguments based on Dempster's rule
"have their own legie"--based on the appropriate canonical exsmples and an in-
tuitive conviction that the appropriate conditions of independence are
satisfied. As noted above, Shafer's appeal to intuition has mot entirely
succeeded in making that "logic" clear. We propose, however, that it can be
clarified. In opposition to both Shafer and the Bayesians, we would argue the
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merits of the pseudo-Bayesian analysis of Bel(") and PL{") as bounds om Fr{'},
which we {llustrated in this sectlon, It falls to derive Dempster's rule as a
special case of prebability theory, Honetheless, It clarifies the relation-
ship of Dempster's rule to the canonical example, by an argument that
resembles a valid Baveslan argument in most respects. Moreover, the dis-
gimilarity can be crisply and clearly stated: the argument concerning
reliability is conducted without consideration of the content of the evidence,
The latter can be regarded as an explicit decision, justified by encrmous
gains in the simplicity and power of the calculus. This is not egquivalent,
however, to a fixed belief that the content of evidence is irrelevant. In an
fiterative, bootstrapping system, we can guard against the pitfalls of that as-
sumption by ¢untiﬂually reexamining it as an analysis proceeds. In Section 3
we explore the design of a system in which the function of recalibrating

sources of evidence in light of corroboration or conflict is assigned to &
process of qualitative reasoning.

Eole of the assumptions in constructing an analysis. Conditions (b) and (c)
play an important rele as constraints in the construction of a belief functionm
analysis. WVielation requires reassessment of the overall structure of an
analysis, redefining frames for either 8 or T or both {(cf., Shafer, 1984a).
(e} says that elements from both witnesses' testimony must not be required in
order to construct a chaln of reasoning that gets us to T, For example, Lf
one witness gald p and the other said ﬁz. we would need to assume both were
reliable to infer q. Therefore, th-=.*1~¢ statements must be counted as parts
of a single evidential argument. In this sense, Dempster's rule combines
salf-contained "arguments™ rather than "bits" of evidence. And application of

the rule presupposes a more global process of reasoning addressed to problem
structuring.

(b)Y and (¢} represent a limitation on Dempster's rule in a second sense: Once
our evidence has been segmented inte Iindependent arguments, we can combine it
by Dempster's rule, but that rule tells us nothing about how two dependent
pieces of evidence should be combined within a self-contained argument,
Clearly, in any expert system application, Dempster's rule must be supple-
mented by other forms of inference., Interestingly, In & recent paper, Shafer
(1984} himself suggested that expert systems will have to make provision for
dependent evidence, and that the full range of Bayesian operations can be ap-
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plied on probabilities for the background frame, 5. This is a departure from

the position that only Dempster's rule iz appropriate for combining evidence
in the beliesf function context.

We have now noted three different ways in which an expert system application
of Shafer's system might need to be supplemented:

- recalibration of sources of evidence (n cerms of the content of
the evidance,

. reframing evidence and hypotheses te achieve independence of
arguments ,and

. reasoning about dependent evidence within an argument.

Ve may refer to this set of issues as the incompleéeteness of Dempster’'s rule,
in analegy to the Iincompleteéness of Bayesian theory discussed above,

Plausibilicy of instances: Conflict of evidence. To what extent does belief
funcetion theory yield inferences which are intuitive and plausible in specific
applications? A topic of special concern iIn this regard is conflict of
evidence. Zadeh (1984) recently raised an example of the following sort.
Suppose we have two experts vwho we believe to be very reliable and who produce
conflicting judgments, For example, there are three possible interpretations
of an object x in a specified location: Hy--x 1s an 5A-4 installation; Hy--z
is an SA-7 imstallation; Hy--x is not a threat. Analyst A, using photegraphic
evidence, assigns .99 support to Hy and .0l to H,; analyst B, using indepen-
dent intelligence information, assigns .%9 support to Hy and .01 to Hy. We

have the following two support functioms, and may combine them by Dempeter's
rule, as shown in Figure 2-4:

Table 2-2
m_htll WB':‘:' -u':‘}
Hy 0.99 0 0
Hs 0.01 0.01 1.00
Hy 0 0.99 0
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The counterintultive result, according te Zadeh, is that execlusive support is
now assigned to H,, a hypothesis that neither expert regarded as likely.
Horeower, the result iz independent of the probabllicies assigned to Hl of HE'

Shafer's response (in press) is cogent, but ultimately, we feal, off the mark.
If we really regard these experts as perfectly reliable, Shafer says, the ar-
gument as stated is correct. After all, A says that Hy 1s ilmpessible, and B
rules out Hl; that leaves Hﬂ a3 the only remaining possibility. (It is impor-
tant to note that exactly the same result would be obtained in Bayesian
updating, if we interpret the m(') as likelihoods of the evidence given the
hypothesis and assume that prior probabilities for the three hypotheses are
equal.} On the other hand, Shafer argues that experts are seldom in fact per-
fectly reliable, A more reasonable procedure would be to “discount® the
belief functions supplied by the experta to reflect our degree of doubt im the
reliability of their reports. In discounting, we reduce each degree of sup-
port by a fixed percentage, and allocate the remainder to the universal set
[Hy,Hy,Hyl. The result of applying Dempster's rule will now be a belief func-
tion that assigns support te all three hypotheses.

Lat us examine this response in a bit more detail. Recalling that we regard
these experts as highly reliable (though not perfect), suppose we discount A's

belief function by 1% and B's by 2%, The result is the following, as deplcted
in Fipure 2-5:

Table 2-3
=y (") mg(*) mup(")
H1 0.9801 a L6556
Hy 0.0099 0.0098 .013
Hy 0 0.9702 .325
(Hy Hp,Hy) 0.01 0.02 .007

We now have a "bimodal" belief function, with the preponderance of support
goling to Hl and Hﬂ' This appears, at fivat leek, te be an intultively
plaugible result: it reflects our feeling, which we represented in the form
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Figure 2-% Support Functions to Illustrate Combination of
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of discount rates, that A or B (or both) could possibly be unreliable. But
let us leok a little more closely.

The first thing to note is what & vast difference a small amount of discount-
ing makes. In Table 2-2, after combination by Dempster's rule, thers was ex-
clusive support for Hy. In Table 2-3, final support for Hy is only slightly
greater than 1%. The second thing to nmotice is the large discrepancy between
mﬂﬁ{ulj and -hB{HE}. Although we did in fact discount B at twice the rate as
A, the actual numbers (2% and 1%, respectively) and the difference between
them was very small. It is by no means clear that the resulting differemce in
support for Hy and Hy is intuitively plausible. More to the point, the sen-
sitivity of the result for all three hypotheses to very small differences in
discount rates is disturbing. Finally, to dramatize the sensitivity even
further, mote that if suppert for (H;,H;,H;)} were 0 for beth experts, and if A
assigned 0 support to Hy, and B assigned 0 support to H;, these very small
changes render Dempster’s rule indeterminate.

Ferhaps the problem is that our original assessment of the relisbility of the

gxperts was mistaken. Suppose then we discount A by 29% and B by 30%. We now
get:

Table 2-4
|
my () mg( ") myp(")
Hy L7029 0 4243
H, L0071 L0a7 L0085
Hﬂ a0 693 LA,
(Hy ,Hy Hy) .29 .30 1751

Support for H1 and HE after combination is now roughly equal; certainly a more
intuitive result. Then should we have discounted A and B more in the first
place? According to Shafer, presumably, this is indeed the case; the fault is
not in the theory, but in the initial allocation of support. The example,
however, highlights a deeper problem. As we noted above, rellabilicy is to be
asgessed as If we had no knowledge of the evidence actually provided., Thus,
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we are apparently not permitted to use the conflict between A and B as a clue
regarding their capabilities or as a guide to the appropriate amount of
digcounting, We return to this issue wery shortly,

Zadeh himself objectz te the procedure In Dempster's rule of normallizing sup-
port measures te eliminate impossible combinations, But we think this objec-
tion 1s misteken. Normalizsation is in fact the enly way in Shafer's theory
(albelt guite indirect}) that our knowledge of the evidence enters Iinto the

asgessment of reliability. It accomplishes a sort of de facto discounting as

a function of conflict of evidence. MHote in the earlier example of Figure 2-3
that the relisbility of witmess 1, after combinping his testimony with the con-
flicting evidence of witness 2, is Plri'f{l-rlPl'}, This iz less thqn El' the
original assessment of witness 1's rellabilicy,

Although normalization is in itself not prnhlématic, nevertheless, it is not a
complete or adeguate solution to the proeblem of conflict, Filrst, because
there iz no lasting effect on later problems, i{.e., we have not truly updated
our estimate, Py, of A's reliability in the light of his conflict with B.
Second, there is no procedure for exploring potential reasons for the
conflict. A closer examination of (a) the factors that determined our
original reliability estimates, (b) our assumptions regarding independence of
the two arguments, and (c) the internal structure of the arguments employed by

A and B, might lead to a revision in beliefs and assumptions that permanently
improves our knowledge base.

We argue, then, that the revizion of reliasbility estimates is only one pos-

sible result of an iterative, conatructive process of problem solving prompted

by confliet of evidence, (We also have the options of reframing evidence and

hypotheses to reflect revised judgments of independence and of revising
specific beliefs intermal to the conflicting arguments. Therefore, such revi-
sions must be justified by considerations which, once discovered, carry weight
independent of the conflict of evidence that led to thelr discovery, Ideally,
these newly discovered factors could be regarded as sufficlent to justify
revislons in reliability estimates Independently of Ey and E5. (Referring to
these factors as F, we would have Pr(R,|E{E,F}) = Pr(R{|F).] This justilies

the reassessment of reliabilities in the light of the evidence in the Shafer-
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Dempster system, and is the method used in the inference framework to be
described in Sectiom 3.

What iz “conflict of evidence"?7 So far, we have taken for gramted the motion
of conflicting evidence, and that Iin some cases at least special stepz are
Justified in dealing with it. But it is by no means obvious what "conflict"
is, or why steps outside the normal calculus of uncertainty should be required
to handle it. Conflict of evidence does not appear, om the surface, to be the
same 85 incocherence. The formal constraints of Bavesian theory dictate, as we
saw above, that multiple probsbilistic analyses should agree with one another
and with direct judgment. Similar coherence constraints can be derived for
Shafer's theory from the requirement that uncertainty on 5 be measured by a
proebability, But it f{s lfwmpliclt that these analyses are, or should be, based
on the gsame evidence, There appears to be no corresponding guarantee or
prescription that arpuments based on different evidence should arrive at the
same or simllar conclusiens, Dempster's rule is designed explicictly to com-
bine arguments based on independent evidence; hence, there are no direct com-
straints on the extent te which those argusents must agree {(except that there
be at least one pair of meanings from rthe two arguments wvhose intersection is
non-empty) .,

HMevertheless, we propose that the resolutlen of conflict In & belief functlion
analysis be construed es a desire for coheremce, The missing element, which
is responsible for the incoherence, is a judgment, often implicit, regarding
the overall structure which the final belief representation is expected to
have, Such judgments are based on one's knowledge about reasoning im a par-
tiecular problem domain. "Conflicting evidence® is evidence whose combination
produces a structure that violates such a prior expectation. Thus, the
definition of "confliet® will vary from one problem domain to another., The
locus of conflict is not, strictly speaking, between the two sources of
evidence, but between both of them, on one side, and a structural expectation
regarding the outcome of the argument, on the other. When a conflict of this
sort occurs, In an iterative, constructive context, the decision maker has a
choice of either revising the expectation or else making one or more of the
three kinds of changes we discussed above (revising discount rates, frames, or
steps in an argument).
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If belief functions are probabilistiec with discounting (i.e., assign support
only to single hypotheses and to the universal set), then it fs often
plausible to require that hypotheses which recelve very little support from
elther of two arguments not receive predominant suppoert in the combined
analysis. This was the basis of the adjustment of discount rates in the above
example (and also seems to underlie the use of discounting in Shafer, 1982).

Note that an analogous requirement is recommended for Bayesian analysis by
DeGroot {1982},

Other possible structural expectationz regarding the form of a belief function
model include that it be consonant or hierarchical. In these cases, support
is assigned only to nested subsets of hypotheses or to subsets that form a
tree, respectively. Heither of these properties is necesgarily preserved
through combinatiom by Dempster's rule. Yet, as we noted above, such strue-
tural constraints may (a) be guite plausible for particular problem domains
(cf., Gordon and Shortliffe, 1984, on medical diagnosis), and (b) be required
to improve the computational tractability of & Dempster-Shafer model. Thus,
once again, a higher-order process of qualitative reasoning may be necessary

to explore revisions in beliefs and assumptions, in order to handle "conflict"

and to ensure the applicability and plausibility of a Dempster-Shafer caleculus
(see Section 3 below).

An important by-product of requiring conszonance should be noted. One poten-
tial eriticism of Shafer's theory ls that it lacks a cnnndpt of the acceptance
of & hypothesis once it achieves a sufficient degree of evidenmtial support
{(e.g., Levi, 1983; L.J. Cohen, 1377). A precendition of acceptance--and what
makes it a useful concept in some contexts--is that it should yield a logi-
cally consistent and complete story. HNelther is true if a threshold or cuteff
for acceptance is defined on Bel{') in Shafer's system. Both a hypothesis and
its complement could have positive support, and thus conceivably both could be
accopted, yvielding a contradiction. Horeover, two propositlons, p and q,
might be accepted but their conjunction, p&q, rejected. Both of these
problems disappear in a consonant belief function: Since a hypothesis and its
complement are not nested, they cannot both receive support; and it can be

shown that Bel(p&q) = MIN(Bel(p),Bel(q)) and thus that a conjunction is at
least as credible as either of its conjuncts.
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In all these cases, there 1s a tension between the deairability or

plausibilicy of depleting the state of evidence “as it 1s," conflicts and all,
and attempting to produce a reselution or reconciliation within the framework
of some plausible or desirable global requirememt. We elaim that this tension

is at the heart of any truly intelligent and flexibhle reasoning with probabil-
istic systems.

Summary. Shafer‘s theory provides a natural representation of quality of
evidence and relaxes the assessment requirement te the extent that thea
evidence is incomplete. Like Bayesian theory, however, belief function models
impose inordinate input and computational demands unless specialized models
are adopted. The validity of Shaferian theory has not been clearly
established, although it may be illuminated by a partial Bavesian derivation.
A major difference is that Shafer's theory does not permit reassessment of the
quality of an informationm source im terms of what that source says; the
credibility of one witness cannot be inereased by corroboration of a second
witness or decreased by contradictiom. In belief function theory, the outcome
of combining the information from two conflicting data sources can Vary
dramatically, depending on our assessment of thelr credibility. Yet we cannot
use the two sources to crosscheck one another. We argue that this gap in
Zhafer's theory regquires that it be supplemented by a process of qualicative
reasoning that reexamines sources of evidence as an analysis proceeds, and
recalibrates them in the light of corroberation or conflict. The same process
might supplement Shafer's theory in other ways: by reframing evidence and
hypotheses to establish independence of evidential arguments, and by revising
inferential steps which are internal te such arguments.

2.2.3 Fuszy set theory. Nature of the theory. Since L.A. Zadeh advanced
fuzzy set theory in 1965, an enormous amount of interest, and a very large
literature, has been generated. Most of this interest has been theoretical,
concerned with the mathematical implications of the theory, but there have
been a number of attempts to apply the theory to practical problems, This is
in line with Zadeh's original reason for introducing the concept, He argued
that much systems analysis was inadequate because its requirements were too
precise. He felt that our intuitive understanding of concepts and, more
interestingly, our reasoning about those concepts, were typically imprecise,
yet analysis (especlally with computers) required precisification. Te resolwve
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this paradox, he Iintroduced the now well-known concept of the [fuzzy set--a set
with imprecise boundaries. The essential element is the membership function
ugéx) which represents the degree to which an element x belongs to some set A.
If pulx) =1 then x indisputably belongs to A, while 1f H,(x) = 0, x does not
belong to A. An Iintermediate value, such as U (x) = 0.6, Indicates that =
belongs to the set to some degree. Fuzzy sets are thus a precise toal for
representing and manipulating imprecise notions.

Application of fuzezy set theory invelves: first, the representation of im-
precise coencept by fuzzy sets; second, the use of a caleulus to construct
other fuzzy sets representing the output varisbles in an analysis; and third,
reinterpretation of the results in imprecise language (see L.A. Zadeh, 1975).
The first and last steps are crucial if the flavor of the fuzzy theory is to
bae fully captured. The core idea is to comstruct a caleulus for the formal

(i.e., precise manipulation of imprecise concepts, which takes in imprecise
inputs and puts out imprecise ocutputs.

Applications of fuzzy set theory to inference, The theory of fuzzy sets can
be applied in meny ways, In the sense that wherever a mathematical relation-
ship exists, it can be fuzzified, Thus, there are many possibilities for
using the fuzzy calculus in conjunctiom with other inference theories.
Alternatively, it can be applied directly to ordimary imprecise reasoning (by
experts of non-éxperts) in natural langusge. We will introduce some of the
formation of fuzzy set theory by examples of these two types.

Fuzey Logic. Im fuzzy set theory, the statement,
"The installation is large,”

could be represented as a fuzzy membership UL(i}, which measures the degree of
penbership of the installation i in the set of "large® installacions (where O
represents non-membership and 1 denotes complete membership). The degree to

which an installation is both large and modern is the minimum of the two mem-
bership functions:

U-LHI:ZI.} - min{l—lL'L'i:!. -IJH:{i:I:I 5
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Implication in fuzzy set theory is defined as a relatiomn. Thus, "if U is F,

then V is G," where F and G are fuzzy sets on the varisbles u and v underlying
U and V¥V, 1is described by the relation

u“fu{u,v} = min(l,Uy (v} + 1- Hy (u))

uging an obwvious notation. This may be interpreted as the extent to which a
particular value of U implies a particular wvalue of V.

The next step is to combine the rule with a statement about the fact described
in its antecedent. In fuzzy implication, not only may be the concepts in-
volved be fuzzy, but the match between & fact and the antecedent of a rule may
be & matter of degree as well. Thus, we may have & rule stating "If U i{s F

then V is G," but an input stating that "U is F*", where F and F* are not the
same. Zadeh defines this as

Hy(v) = max(min( peu), uufu{u.vllﬁ.
LK

where ¥ is the fuzzy set that results from combining FP* and VI,
Moving back te our example, suppose we have a rule,

"If an installation is modern, then the danger is high."

Ve could express this rule as

the extent to which modernity of am Installation implies high danger of the
installation, HNew, suppose we have ancther fuzzy mesmbership funetiem (i)

representing, perhaps, the input, "the Installation was built recently.® The
result is

uytﬂ} - ﬁfﬂ{hinﬂJE{iﬁ1 UIfn{IrD}:}

= max{min{up (i), min{l,uy(d) + 1 - u(i)))).
i
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This cutput can be Interpreted as a quantitative measure that the danger Is
high, given the fuzzy evidence regarding modernity and the fuzzy Implication
rule, The output may noew be translated Inte an Imprecise natural range repre-
sentation (e.g., "danger Is quite possibly high").

Fuzzy probabilities. Uncertainty about facts (i.e., chance) was not mentioned
above; we just talked about imprecision. Zadeh stresses that the two concepts
are distinct, and that fuzzy set theory should only be used to describe
imprecision., 1If we are impreclse our uncertainties, howewver, then a role ex-
ists for describing that imprecision with fuzzy sets, Watson et al, (1979}
and Zadeh (1981} discuss this idea in the context of decision analysis, but it

can clearly be applied to any use of Bayesian probability theory, or belief
function theory.

The basic tool for fuzzifying a calculus is Zadeh'"s extension principle, which
enables us to compute the fuzzy set membership function for s varisble when it
is a function of variables whose fuzzy set membership functions are knowm.

Let ¥ = F(¥;,X;,...,X). Then iy(y) = max!min{ﬂu1{11}4 Uxifxzj..... Hoo (xq))

L]
where 4{y) is the extent to which a value y belongs to the set of possible

numbers for the output variasble.

Suppose & threat classification procedure leads to a probability p that a

threat should be classified as an SA-4. Imagine we have a loss fumction which
glves unit loss if misclassification occurs, and zerc loss if not. Then the

expected loss from classifying the object as an SA-4 is
l1x(l-p)+0xp=1-p

while the expected loss from classifying the cbject as "not an SA-4" 1s
lxp+0x (l-p) = p.

Clearly, we minimize expected loss by categorizing it as am SA-4 Lf p>1/2.
Wow suppose that we are imprecise about p to the extent that we can only
describe a fuzzy set U(p) about possible values of p. Fuzzy sets for the ex-
pected loss in the two cases (actually ¥(l-p) and H{p)) can be produced using
Zadeh's extension principle. But what conclusions can we draw? Freeling
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(1980) discusses this in some detall, suggesting several altermative

approaches. As we might expect, when results are fuzzy, the analysis may not
indicate any particular decisiom regarding classification.

As with the Bayesian analysis, there are some non-trivial problems in attempt-
ing to apply fuzzy set theory to inference in expert systems.

Feagibilicty. We criticized both Bayesian theory and belief function theory on
the grounds that the analysis involved in practical problems can be gquite
complex., This will also be true of fuzzy set theory. The fact that functions
of variables have to be handled in computations makes the analysis difficult
to handle numerically. WNonetheless, there are indicatioms that the max-min
operations are mumerically easier than the sum-product operations of the eother
theeries. It would be wrong, however, to assert that the use of fuzzy set

theory removes all of the difficulties caused by complexity in the other two
theories examined here.

Validity. For a theory which has had an enormous literature, there is still a

considerable discussion amongst schelars on the justification and interpreta-
tion of the theory.

Semantics: Where do the pupbers come from? This question is raised by mest
people when they first study fuzzy set theory. There are no standard proce-
dures to be applied in every case; anything plausible would seem te do. In
particular, there are neither behavioral specifications nor canonical examples
of the kind Shafer claims to be important. Zadeh would argue that a theory of
imprecision should not need precise inputs, so that we should not bother too
much over the exact nature of the input membership functions. If that is the
case, then answers should not be wvery sensitive to input membership functions,
In many applications, this iz not the case, and indeed, sometimes answers are
sensitive to just one point on & membership function.

What is the meaping of the cutput? Paralleling the uncertainty relationship
between human perceptions of imprecision and the caleculus of fuzzy sets is the
reverse relationship: once we have computed an output fuzzy set, what do we
do with it? We briefly discussed the possibility of linguistiec interpretation
above, This does not appear to have been a satisfactorily implemented
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approach, although in part because people differ in the conclusions they draw
from the same natural language statement.

In the light of these difficulties, it is not surprising that efforts should
be made to assimilate fuzzy sets to some other framework of uncertainty, such
as the Bavesian or Shaferian. It is difficult to do this in a natural way,
however, dus to the difference between imprecision and uncertainty sbout
facts, For example, suppose Analyst A refers to an object x as "long”, after
having measured x exactly. There is no doubt as to x's actual length and al-
though A may regard x as long only to a certaln degree, he is not uncertain
whether or mot ¥ 1s lomg., What fact then could A be uncertain of? We add
three caveats:; (1) 1f A tells a second Analyst B that x 15 long, then B may-
be uncertain regarding x's actual length; (ii1) 1f A had enly glanced at x,
rather than measuring it, he might be uncertain (as well as impreclse) about
x's actual lemgth; (iil) we may in fact be uncertain as te whether a random
English speaker would call the object "long". MNevertheless, the most natural
approach is to treat this kind of uncertainty as the degree to which x (or amn
ocbject of x"s length) is long, rather than the chance that = is lomg. Put
another way, these degrees are part of the meaning (denotatiom) of “long", and

not {(necessarily) a result of uncertainty about what "long" means or asbout the
actual lemgth of an object.

Fonetheless, it may be Hnrihﬂhila exploring ways to represent imprecisiom in
terms of other frameworks. For example, a consonant Shaferian support func-
tion obevs a calculus that closely approximates Zadeh's possibility theory.

Consonant support functions seem appropriate for representing imprecision in
the implications of evidence (it points to a set of nested regions where the
truth could lie). And they have the advantage of a somewhat more secure nor-
mative foundation. Thus, the pessibility of translating between natural lan-

guage expressions and suppert functions might be worth exploring, despite some
coet in naturalness.

Inference: Whet are the appropriate connectives? In terms of either
axicmatic justification or face validity, the procedures Zadeh recommends for
copbining his mesbership functions are not unique, For example, Zadeh argues

that the degree to which an element belongs to a set Ay and another set Ay
should be computed by
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Ha na (%) = min(d, (x) M, (x))
1 2 1 2

This is clearly consistent with the requirement that If both sets are crisp
(1.e., only takes the wvalues 0 or 1), set membership should cbey the usual

rules (i.e., x Ay Ay 1f and only if x A; and x Aﬂ}. Hote however, that this
is not the only commectiwve rule with this property. For example, the family

of commectives

1.0 -
Ein{phlfﬂluh?hﬂ. “ﬁz{xjuﬁ'l{xjjv Ol .

all have this property, where l-a is a power to which the membership function
iz raised. Zadeh choosest= 1; the cheoice of %= 0 gives the Bayesian rule for
the probabilicy of a conjunction {namtly]iﬁiix}uhitx}j. There are many other
possible definitions (see Dubols and Prade, 1984).

Similarly, disjunction, negation and implication all have alternative
representations, and the cholce of the forms uswally emploved is arguable. So
far as we are awvare, very little research has been carried out on the implica-
tions of using different connectives on the results of a fuzry analysis.

There is, therefore, some arbltrariness in the comnectives chosen by Zadeh--an
arbitrariness which pervades the theory,

Plausibilicy of instances: The maln strength of Zadeh's theory is in its
ability to produce instances of reasoning that are acceptable on a case by
case basis. In this regard, it has a richness and scope that no other theory
even attempts to capture. In particular, it is the only theory that attempts
to formalize the combination of considerations based on similarity (e.g., the
closeness of F* to F in the above example) with mere traditional considera-
tions in inference {(e.g., traditional logic or prebability). In this largely

uncharted domain, the (present) absence of deep normative foundations may be
no disgrace.

Honethelesa, there may be cases where fuzzy logic gives implausible (or non-
ugeful) answers., Fuzziness is concerned with what iz possible, rather than
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what is probable. Zadeh sees a possibility distribution as being an upper
bound on a probability distribution. Artieulating the possible may be
important, but if many optiens are possible, it does not help in our search
for what is probable. In practice, this point is expressed by the tendency
for fuzzy sets to produce rather bland angwers, glving high values of the mem-
bership function for large sets of wariables, One can see some applications
when this is not an ohstacle to understanding, if some important optionas are

seen to have very low or zero possibility. In general, it does present a
difficulty.

Summary. Fuzzy logle is a highly flexible and versatile tool for handling
imprecision. It may be applied directly to reasoning with verbal expressions
or, at a higher level, to reasoning with a mumerical caleulus like prebability
theory. Unfortunately, the meaning of fuzzy measures is not always clear; and
the rules for manipulating them seem to lack any deeper justification than the
plausibilicy of the answer In a specific application.

2.3 (ualitative Theories

2.3.1 Clasggical Jogic. Only a brief mention will be given here of classieal
logle, I1ts relevance iz as the traditional paradigm of analytical reasoning,
dating back to the time of Aristotle and achieving maturity in twentieth cen-
tury mathematical logiec assoclated with such names as Russell, Godel, Church,
and Tarskl, Az such, it provides a point of comparison for other theories.

Classical logie 1g buillt upon a firm axiomatic foundation of principles for
reasoning from a set of premises to a conclusion. Straightforward procedures
exist for checking the walidity of an argument. A number of features of clas-
sical logic, however, make it clearly inadequate as the sole basis for an ex-
pert reasoning system, or as an analytical model of real-life human reazoning.

™ Classical legic moves from certain premises te certain
conclusions. No provisiom is made for reasoning in uncertainm
domainas.

] Due to its sbetract nature, there is difficulty mapping messy
real-world problems into the erisp inputs required for loglical
analysis,

. Logical implication is very different from causal implieation.
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L Classical logle is not equipped to deal with causal relationships
among variables.

. Classical logic is monotonic, i.s. the number of provable state-
ments increases monotonically with the number of premises, In
contrast, human reasoners often adopt provisional assumptions,

deriving conclusions which may later be retracted when new infor-
mation invalidates the assumptions.

In Section 2.2 we have seen examples of inference frameworks designed teo

address some of these shortecomings. Jeffreys {1939} developed his axiomatic
function for Bayesian inference as an extension of classical logic to truth
values Intermediate between certainly-true and certainly-false, The various

axiom systems for Bavesian inference are clearly modeled after those for clas-
sical logie.

Zadeh's fuzzy set theory, as we have seen, was developed fo counter the second
proeblem, which is shared by Bayesian and Shaferian theories,

The third problem was also noted in our discussion of Bayeslan theory,
Shafer's theory is better equipped to deal with causal links than is logle or
Bayesian theory. GSpecifically, the link between evidence and conclusion in an
argument on which a bellef function is based may be a causal model according
te which the evidence causes the conclusion,

The next section describes an attempt to deal with the last problem by for-
sulating a reasoning system that reason's from "default assumptions® to con-

celusions which may be retracted Iif the assumptions on which they are based
turn out to be false.

2.3.2 Hon-monotonic reasoning. WNature of the Theory. HNon-monotonic logic
has its roots in the non-numeric traditilon of artifielal intelligence., The
first application of the ideas of non-monotonic reasoning was by 5tallman and
Sussman (1977}, and since that time the theory has generated Intense Interest
in the artificial intelligence and expert systems commumities (e.g., Doyle,
1979; McDermott and Doyle, 1980; McDermott, 1982; Reiter, 1980; Moore, 1985).

Hon-monotonie legie was developed to counter the failure of traditional ap-
proaches to capture the non-monotonicity of human reasoning. Specifically,
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traditional formal axiomatic logics are non-monotonic, in that the mumber of
provable statements in the system increases monotonically in time as new
axioms or premises are added to the system. In contrast, in & non-monotonie

system a theorem may be retracted when nevw information (axioms) are

introduced.

Human reasoning is commonly non-monotenlc, In the face of incomplete
evidence, panpla adopt "default assumptions " acting as 1f they are true until
evidence arises to the contrary. For example, we might adopt a provisional
assunptlon that there is no ECH Iin the ares, which implies that our localiza-
tion of threats is reasonably accurate, If we later discover that there is
evidence of ECM, we drop the initlial assumption and eut confidence In the
threat localizations is degraded. Human reasoners are skilled at incorporat-
ing conflicting data inte existing arguments so as te achleve consistency with
minimal disruption of the established system, MHNon-monotonle reasoning systems

attempt to model this process of reviging systems of bellef to accommodate
conflicting informatien,

We may contrast non-monctenic reasoning with systems based In the probabllity
tradition, which employ numerical measures of uncertalnty, In the above
exampple, a Bayesian or Shaferlan system would assign a numerical degree of
support to the hypothesis that ECHM is present., When further {nformation is
recelved, degrees of support are updated to incorporate the new information.
These systems are monotonic in the sense that once a conclusion is declared
certain, it cannot be retracted. Uncertainty ls expressed by assigning de-
grees of suppert of less than unity to each of the uncertain hypotheses.
Bayesian and Shaferian theory lack a mechanism for accepting an uncertain
hypothesis once it becomes "certain encugh.™ Conflicting evidence is regarded
as stochastic (that iz due to noise in the data) rather than as evidence of an
incorrect model; this leads in some examples to counterintuitive results
{e.g., the example of Figure 2-4). It has been argued that non-monotonic
reasoning captures more fully the features of human reasoning, because of its
capaclty te adopt uncertaln hypotheses as provisional assumptions, acting as
if they were certain and deriving conclusions from them, while retaining the
abilicy to drop them If they later turn out to be implausible, HNewvertheless,
non-monotonic systems suffer from the inability te distinguish degrees of
certainty. The ad hoc nature of thelr mechanisms for belief revision (sce
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discussion below) 1s in large part attributable to this Inability. There have
been suggestions (Ginsberg, 1984; Cohen et, al., 1983} of means of combining
degrees of belief inte non-monctenle systems, but thus far none has been
implemented in an expert system,

Structure of a Non-Honotonic System: Dependency Directed Backtracking. An
important feature of a non-monotonic system is 1its mechanism for revising
beliefs in the presence of new evidence. At any point in time, a non-
monotonic system has a list of currently believed statements, together with a
record of how these beliefs were derived. As long as new Iinformation is com-
sistent with current beliefs, the system incorporates the nmew information by
combining it with the currently believed statements, using its inferemce rules
te derive new beliefs. At some time, however, new information may lead to an
inference that contradicts a currently held belief. When this happens, the
system must change some of its beliefs so as to achleve consistency. PBecause
it retains a record of the proofs of each of the contradictery statements, the
system need only re-examine those beliefs actually contributing teo the
contradiction. Thus, the system traces back through the proofs to find those
beliefs upon which the contradictory inferences depend, and makes the neces-
sary revisions to achieve consistency. This process has been labeled
dependency-directed backtracking.

Dependencies in a non-monotonic system are represented by justificetions of
statements in terms of other statements., The primary form of justificatiom i=

a data structure called a support list. A support list justification for a
statement has the form

Statement @ Statement (5L <inlist> <outlist>),

& statement is believed if it has a walid juscification; a support list jus-
tification is walid if every statement in the inlist is believed and every
statement in the outlist is not believed. We may distinguish three types of

justification: premises, monotonic justifications, and non-momotonic

Justifications.

A premise Is a statement with empty inlist and outlist., For example:
_5_5._



H-1 Agent testifies Invasion 1s planned {8L () ()).

This statement I1s automatically regarded as IN {(i.e.,.. balieved) and cannot
be retracted, Premises might be observational data or unquestioned general

principles. As new observations accumulate, new premises may be added to the
system.

A monotonic justification has a non-empty inlist and an empty cutlist. For
example:

R-2 Imvaslion is planned (5L (Agent so testifles, agent is
trustworthy) (}}.

This justification says that the statement is IN if all items in the inlist
are IN.

Ron-monotonic justifications, or assumptions, have non-empty outlists., For
example:

H-3 Mo invasion is planmed (5L () (Invasion is plamned))
This statement says that N-3 is IN unless there is evidence to the contrary.

How let us see how a non-monotonic system might handle our example. We start
by adding an additional assumption

H-& Agent is trustworthy (5L () (Agent is untrustworthy).

Let us suppose we begin with nodes N-2, H-3 and H-4 as the omnly items of in-
formation in the system. N-3 and N-4 are IN (our having no evidence to the
contrary) and K-2 is OUT. This models the situstion before we received the

agent's report. Once we receive the agent's report, we add the premise N-1.
This causes H-Z to move IN.

We reascned above that N-2 and N-3 were contradictory, and responded by drop-
ping the assumption N-3. To mimic this reasoning, the system needs to know
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that these nodes are ipcompatible, Thus, the system needs to have another
node

H-3 CONTRADICTION (5L (N-2, N-2) ()).

When H-2 mowves IN, this causes the CONTRADICTION node M-5 to move in alseo.
The presence of a CONTRADICTION mode among the currently belief statements

triggers the process of dependency-directed backtracking. When a contradic-

tion is encountered, the sy:fum searches for the set 5 of assumptions respon-

sible for the contradiction. The set 5 will contain any assumptions in the

support lists any nodes invelved in deriving the argument leading to the

contradiction. In this case, 5§ will contain ¥-3 and K-4. Clearly, if N-3 is

taken OUT, H-3 will move OUT and the contradiction will be reseclwed. TIf H-4
is OUT, then H-2 moves OUT and again the contradiction is removed,

The system now sets up & new node of the form

Statement # HOGOOD 8 (CP(CONTRADICTIONY (5) ()

where CP is a conditional-proof justification. This CP-justification is wvalid

if whenever § is walid, the CONTRADICTION i{s believed. In other words, the

validity of the justification depends on the relation between the premise (5)
to the conclusion (CONTRADICTION), irrespective of whether the premise is cur-
rently believed. In our example, the system would define

H-6 HOGOOD (N-3, N-&) (CP(N-5) (N-3, N-4) ()).

This CP-justification is wvalid because N-3 Ls IN whenever N-3 and H-4 are both
IH. This node says that H-3 and N-4 are, taken together, "no good.®

The system now has to decide which of the assumptions in 5 is to be dropped.
A "culprit” € is selected from among those nodes in 5, and the system decides
to deny that assumption. BRecall that to deny an assumption, the system must

believe some member of the outlist of the assumption. The system does this by

gatting up & support list justification for some member O of the outlist of

the culpric. The inlist of this justification contains all the assumptioms in

5 except C, together with the HOGOOD node. The outlist contains all the nodes
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in the outlist of C except 0. Thus, the justification says that If you want
to believe the other assumptions in 5 (other than €} and if you do not believe
any other nodes in the outlist of C, then you should believe 0, The result of
this justification i{s that 0 is believed (provisionally), sending C OUT and
resolving the contradiction, Of course, 0 itself may later have to be
retracted as a resultc of another contradiction, which would lead either to
belief in some other member of the osutlist of C or te the retraction of some
assumption other than C.

Let us return to our example, and suppose that N-3 is selected as the culprit,
The outlist of H-3 has only one member, N-2. A new justification is then set
up for H-2, which now appears as

M-2' Invasion is planned (SL{Agent so testifies, agent is
trustworthy)()).
(SL{N-6)()).

Rote that if N-3 had other nodes in its outlist, the new justification would

have a mon-empty outlist, and would cease to be valid if one of the nodes in
its outlist came IN.

It appears that N-2' can now be justified either by the agent's testimony or
as an assumption required to resclve the contradiction represented by H-6.

But the second justification is circular, because it was N-2 that gave rise to
the contradiction in the first place. Doyle's Truth Maintenance System guards

against such uiruularity hy designating some justifications as "well-founded®
and others as mot,

Feagibility. Dependency directed backtracking is a specles of discrete
relaxation {like Walz filtering, a= described im Cohen and Feigenbauwm, 1982).
It geeks a consistent allocation of truth values across a set of stetements,
by utilizing local consistency constraints between palrzs of statements, rather
than by exhaustive search through the space of all possibilities, Thus, a
high level of computational efficiency can be achieved.

To make this efficiency possible, however, in non-monotonic systems, the
traces of proofs are retained, even though the premises utilized by the proof,
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and the statement that was proved, may (tesporarily) be judged inwvalid or OUT.
Therefore, If the premises become walid or IN at some later time, the work of
rediscovering the proof need not be repeated. The justifications consume
space in memory, and the tradeoff is therefore made between memory storage and
the processing overhead of regemerating proofs on the fly.

Face validity. Implementations of non-monotonic reasoning revise beliefs so
as to arrive at a consistent overall system of beliefs in the face of a
contradiction. But they provide only a very limited capability for deciding
among alternative possible revisions. The selectiom of an assumption as the
"culprit,” and the selection of & member of its gytlist to be assumed as true,
are both highly arbitrary. Some control information is implicit in the order-
ing of modes in the pytlist of statement 5; 1.e., if 5 158 to be rejected, the
system will then assume the truth of members of numbers in the gutlist in the
order shown. But {(a) this is insufficient to remove all ambiguities, and (b)

it makes control information implicit rather than explicit, hence, difficult
to evaluate or modify.

Plausibility of instances: Conflicting evidence. An often volced eriticiam
of non-monotonic reasoning is that uncertainty calculi (e.g., Bayesian,

Shaferian, or fuzzy) can do the same job better.

Although we are convinced of the value of numerical representations of
uncertainty, we will argue that there is an important role of non-monotonic
reasoning (1) in drawing implicationa for the validity of one argument or line
of reasoning from another, even where they are independent, and (2) in reason-
ing asbout the application of the uncertainty calculus itseslf.

The basic idea of (1) is the following: Suppose we have two independent lines
of reasoning, A and B, with regard to the same sets of hypotheses. Each line
of reasoning depends on certain data and certain assumptions, as illustrated
in Figure 2-6. In Argument A, the impsct of Data 1 and Data 2 depends on the

acceptance of Assumption 1; for Arpument B, the impact of Data 3 and Data &
depends on Assumption 2,

What happens when A and B support conflieting hypotheses? In a non-monotonie
system, the set of assumptions that contributed te the contradietion are iden-
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tified and declared inconsistent (as a set). Then a selected member of this
set is rejected, by producing a justification (itself an assusption) for a
member of its gutlist, As & result, at least one of the twe arguments £ails
{or has a different conclusion), and consistency is restored,

The key polnt here is that conflict between A and B ceuses the system to reach
inside each of the arguments. GConflict resolution is a process of reasoning

about knowledge: what are the weakest links in each line of reasoning? where
would revision accomplish the most?

Congider, on the other hand, how an uncertainty calculus such as Shafer's
would handle this problem. We examined the fssue of conflict resclution, in
the context of belief functioen theory, in some detail in Section 2.2.2. There
we found that, depending en the degree of conflict, and on the axlst;ﬁau and
degree of diseounting for the two arguments, we could have: (a) an indeter-
minate result (if thers iz no non-empty intersection between possible meanings
of the two arguments), (b) axelusive support for hypotheses in the intersec-
tion of meanings (if there iz no discounting), or (¢} strong support for each

of the two conflicting conclusions)., Mone of these alternatives examines the

sources of the conflict and zeeks Insights regarding i{ts causes, Adjustments

of discount rates in the light of conflict are likely, morecver, toe be invalid
in the absence of some exploration of reasons for the adjustment.

Monetheless, non-monotonic systems as presently constituted are inadequate in
a nunber of ways. Froblems are chiefly attributable to their exactness, on
two levels. For example, non-monotonic systems provide a way of reasoning
with incomplete informatiom, i.e., by adopting assumptions, tracing their
consequences, and revising them if they lead to an inconsistency. But they
provide no measure of the degree of incompleteness in the support for a
belief, and no comcept of degree of conflict. As we have already noted, a

measure of this sort seems essential in selecting among alternative possible
revisions.

On a second level, the statements whose truth or falsity is adjudicated are
themsalves exact, However, there is mo reason why similar principles of
gqualitative reasoning might not be applied te probabilistie or imprecise com-

straints and data, The need for such a "meta-reasoning” capability is the
- 62 -



chief conclusion of our comments in earlier discussions of Bayesian and
Shaferian calculi. In our view, non-monotonic loglc may have 1ts most conm-
vincing application at a higher level, in controlling the applicatiom of an
uncertainty caleculus itself. Assumptions of more than one sort--about the
quality of uncertainty assessments, about the independence of evidential
arguments, and about the validity of steps in an argument--are inescapable in
the application of such a calculus. Host of these assumptions are not easily
represented in the language of the calculus itself. Hence, non-monotonic
reasoning may be the appropriate tool for keeping track of assumptions and
revising them when they lead te anomalous results. As such, it may be the key
te a truly "intellipent™ or flexible application of those models., It is to
this possibility that we turn in Seection 3,

Summary. Non-monotonic logic is a computatiomally efficient method for
reasoning with incomplete information, i.e., for adopting assumptions and
revising them in the face of conflicting data. Statements are assoclated not
with numerical indices of uncertainty, as Iin the other theories we have
exanined, but with reasons. Certain statements (called assumptions) may be
accepted in the absence of positive support, as long as certain other beliefs
have not been disproven. HNon-monotoniec logic provides a matural method for
revizing beliefs within independent limes of reasoning when they lead to con-
flicting conclusioms. Unfortunately, validity is diminished by the arbitrari-
ness of its procedures for selecting among alternative possible belief
revisions., We argue that the most useful application of nmon-monotonic reason-
ing may be as & control process for the application of an uncertainty

caleulus,

2.3.3 Toulmin's model of logic, The motivation of Toulmin's Uses of Argument
(1958) is to turn away from the highly abstract character of traditional
logic; to examine actual methods of reasoning in different substantive areas,
such as law and medicine; and te develop a theory of logle capable of captur-
ing the rich variety of methods that exizt, In the preface he states, "the
intentions of this book are radical." He relects as confused the "conception
of 'deductive' inference which many recent philesophers [and, we may add, AL
researchers] have accepted without hesitation as impeccable.™
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The basic framework of an argument, according to Toulmin, Is as follows
(Toulmin, et al., 1978):

Backing

Warrant

l

Crounds — - Modal

Qualifiers, Claim

Possible
Bebuttals

A claim, or comcluslion whose merits we are seeking to establish, is supported
by grounds, or evidence. The basls of this support is the existence of a
warrant that states the general comnmection between grounds and conclusion:
&.5., & tule of the form, 1f this type of ground, then this type of
concluslon. The backing provides an explanation of why the warrant is
regarded as reliable, i.e., it provides evidence (theoretical or empirical)
for the existence of a connection between ground and c¢laim. Hodal qualifiers
weaken or strengthen the wvalldity of the claim. Possible rebuttals deactivate
the link between grounds and claim by asserting conditfions under which the
warrant is ipwalid, A way of reading this structure is: Grounds, so
CQualified Claim, unless Bebuttal, since Warrant, on account of Backing.

Toulmin finds serious fault with purely apalytical or logical arguments. In
such arguments (as contrasted with a substantial nrg;uantj the backing in-
cludes the information conveved in the conclusion. As a result, of course,
the backing can be no more certain than the conclusion itself. In ordinary
arguments, hy contrast, "we seek to establish conclusions about which we are
not entirely confident by relating them back to other infermatiom about which
ve have greater assurance." Moreover, the certainty of the conclusion {(&.g.,
a predietion of a future event) is seldom logically emtailed by the grounds
and backing (e.g., past observations of situations like the present one); 1t
iz merely made more plausible (and of course, rebuttals may always turm up to
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reduce its plausibility). Toulmin concludes, "it begins to be a little doubt-
ful whether any genuine, practical argument could ever be properly analytic.®

In particular, Toulmin points to weaknesses In the use of the loglcal term
"universal premise.' His {llustration (p. 113) highlights the weakness.

Jack Is elub-footad,
ALl club-footed men have difficulty in walking.
o, Jack has difficulty in walking.

In a logical pattern of analysis, the general statement "All..." is construed
as an abstract Inference-warrant for deriving the conclusion from the
evidence, In a real arpument, we would never supply such a statement as back-
ing for a concluslon, Our actual backing might be that all club-footed men
obgerved by us have had difficulty walking (an empirical basis), or that the
nature of club foot suggests difficulty in walking (a more theorecical
backing). Toulmin concludes (p. 117}, "the form "All A's are B's' oceurs in

practical arpgument much less than one would suppose from legle textbooks. ™

According to Toulmin (p. 143), "the traditional pattern of analysis has two
serious defects, It is always liable to lead us to pay too little attention
to the differences between the different modes of ericieism to which arguments
are subject®, In addition, the traditional pattern has the effect of
"ghsouring the differences beatween different flelds of arguments, and the
sorts of warrant and backing appropriate to these fields."”

On probability, Toulmin rejects the subjectivist's probability as the degree
of belief on the basis that this is Iincompatible with the requirement that es-
timates of probability be reliable, He also rejects the objectivist's defini-
tion of probability in terms of Erequencies, on the basis that such a defini-
tion confuses the meaning of probability (i.e., as a qualification of a
conclusion) with the reasons for regarding the event as prebable (i.e., the
observed frequencies). In fact, he contends that, "the attempt to find some
'thing', in terms of which we can analyze the solitary word 'probability' and
which all probability-statements whatever can be thought of as really being
about, turns cut to be a mistake" (p, 70). He defines probability as a modal
qualifier asserting, "whether backed by mathematical ealeculations or no, the
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characteristic function of our particular, practical probability-statements is
to present guarded or qualified assertions and conclusions® (p. 93).

Toulmin's framewerk bears some important resemblances to non-monctoenle legle.
Both depart from traditional logic by providing for a process in which conelu-
sions are accepted unless other propositions (members of the putlist;
rebuttals) turn out to be true. There are two lmportant differences: (1)
Toulmin proposes a highly differentiated knowledge structure, in which
grounds, warrant, backing, conclusion, and rebuttals are distinguished, while
non-monotonic logle proposes an essentially homogeneous, undifferentiated

knowledge structure; (2} Toulmin provides for graded or qualified acceptance
af conclusions,

In Section 3, we shall use Toulwmin's basie framework asz a starting point for a
model of argumentation from evidence to conclusion on which a Shaferian belief
function is based. We shall see how, when conflict occura, a process of non-
monotonic reasoning can "reach inside® the arguments, exploring potential

rebuttala, and leading to revision (i.e., discounting) of the component belisf
funcetions and reduction of the comfliet.

2.3.4 Theory of endorsements. Paul Cohen's (19853) theory of endorsements is
another descendant of the AI-based logic tradition. Although non-numerie in
character, there is an interesting commonality in motivation with Shafer's
theory. Both methods focus om the walidity of arguments that purport to es-
tablish a conclusion based on evidence. For Shafer, howewver, ona's belief
about such an argument can be adequately summarized in a numerical measure,
the belief functiom, i.e., the likelihood that the evidence prowves the
hypotheais. To Cohen, by contrast, it seems unnatural to assess the strength
of an arpument without actually examining the argument im detall. They theory

of endorsements provides a conslstent format for represemting such arguments,

In Paul Cohen's theory of endorsements, evidence 1s represented not by numeri-
cal measures of degree of belief, but by symbolic endorsements. A gilven
proposition is associated with a "ledger” of confirming and disconfirming
evidence, Each item of evidence, 1n turn, is associated with a set of posi-
tive and negative "endorsements,” which state grounds for believing or dis-
believing a link between that evidence and the hypothesis. Finally, the
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theory contains rules for ranking different types of endorsements, for deter-

mining when they qualify a hypothesis for acceptamce, and for resolving
conflicts,

Cohen's theory has been lmplemented in a prototype system called SOLOMON
{Cohen, 1983). The user of Cchen's system supplies primary data arnd inference
rules with endorsements (e.g., a rula may be endorsed MAYBE-TOO-GENERAL). En-
dorsements of a rule and the propositions to which it is applied propagate to
the conclusion of the rule (and, as noted above, can be thought of as endorse-
ments for the linkage between the evidence and the conclusion). The system
must be supplied with eriteria for when a propositien is adequately (for a

particular purpose) endorsed; these criteria depend on the poal as well as on

the endorsements for the proposition.

It is worth noting that Cohen's concept of an endorsement encompasses a
variety of distinguishable elements of Toulmin's framework: i.e., warrant,
backing, and rebuttals may all serve as (positive or negative) endorsements

affecting the link between ground (evidence) and conclusion.

Cohen's approach has a unique simplicity and transparency, and may capture a
significant aspect of actual reasoning {(the dependence of belief on qualita-
tive facts about the available evidence). HNeverctheless, as with the other
theories reviewed here, the utilicy of Cohen's theory depends on several un-
resolved fssues, Flrst, the ranking of endorsements is entirely gqualitative.
Cohen expresses concern that for some proposes {t might be desirsble to
specify numerical measures of the strength of endorsements, but seems to
regard this as incompatible with the symbolie reasoning tradition of AI,
Humerical measures of strength of endorsements, coupled with a mechanism for
combining them, would provide a resolution of the second problem: the ad hoc
nature of the mechanism for ranking endorsements. Cohen assumes that the sys-
tem is supplied with rankings for individual endorsements, but there exists
only an ad hoc mechanism for ranking groups of endorsements. Thus, the deci-
sion of whether one proposition is better endorsed than another is to some
degres arbitrary, and the rules can be insufficiently powerful to derive a
conclusion. Third, endorsements are tokens (to the system). The rich as-
sociations a human would bring te an endorsement of, e.g., MAYBE-TOD-GEWERAL,
are opague to Cohen's system. (It is interesting that Cohen's system was
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developad in respomse to a perception of the opacity of mumerical probability
judgments, but his system suffers to some extent from the same problem.)

Finally, Cohen's theory, like the numerically based theories reviewed in Sac-
tiom 2.2, would bemefit from a "meta-reasoning" capacity for re-evaluating en-

dorsements as an argument proceeds.
2.4 Probabillty/logic Jyntheses

2.4.1 Model based on Touwlmin's framework. Lagomasino and Sage (1985) present
a framework for imprecise Inference that purperts to combine Toulmin's logic
of reasoning and the caleulus of probability. In fact, we would argue that
thelr use of Toulmin is quite incidental to their basic approach. A better

characterization iz that Lagomasino and Sage attempt to probabilify tradi-
tional logical relatiomships.

Lagomasino and Sage claim to use Toulmin's model of argumentation to frame the
relations among events, and to structure an inference model. In particular,

the relationship between two events, grounds D and claim G, are represented
as:

‘W= (D+C)

[Their use of the term rebuttal to include the negation of grounds or claim
appears at odds with Toulmin's (1938) definition of rebuttal as "indicating

clrcumstances in which the general authority of the warrant would have to be
get aside" (p. 101}.]

Probabilities serve as modal qualifiers and the caleulus of probability is
used to combine oy aggregate assessments, Within this strueture, both uncer-
tainty and imprecision about uncertainty are represented, Uncertainty about
the wvalidity of a proposition or strength of a claim is presented as a
probability. Imprecision about uncertainty is represented as ranges on
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probabilities, [Toulmin (1958) uses probability only as a modal gqualifier on
claims, ]

Lagomasino and Sage derive a set of consistent relationship equations (CRE)
based on logleally consistent relationships among claims, grounds, and war-
rants (collectively called premises) and possible rebuttals and the rules of
probability. [Again, the approach diverges in spirit from Toulmin (1958), whe
dismisses as trivial the notien of formal wvalidity by noting, "provided that

the correct warrant iz employed, any argument can be expressed in the form
'Data [Grounds in his later terminology]; Warrant; so Conclusion' and so be-

comes formally walid® (p. 119).] The following set of linear, independent
equations and Inequalities is the set of CREs for the above:

P(D=3C) + P(D=5C) 4 P(D) = 2

P(D—C) + P(D3T) + B(C) = 2

P(D—3C) + P(D-3C) - P(C} = 1
0<P(")<1.

This framework is used to derive probability statements concerming any pramiué
or rebuttal by solving two linear programs. The CREs are the set of
constraints, and the objective functioms are determined by the premise or
rebuttal of interest, namely mim P{') and max P{").

As they stamd, the basic sets of CREs do not say anything interesting. That

is;, each P(") has a range of O to 1. Theaea ranges are narrowed only by the
addition of information.

Information is represented in this system as additional constraints. The fol-

lowing are examples of constraints that might be provided by information:

P(D2T) < 2P(D-T),
P({DC) > P(C3D),
P(D) = 75,
In some cases information might contain a term that does not appear in the

canonical representation of CREs. The second example above, which contains
the term PfE—}D}. is such a case. BSuch relationships can be converted to

- G =



canonical form using equivalence relationships. In the example, the equiv-
alence C—#D # D—C is invoked so that P(C+D) = P(D=C). A similar procedurs
can be used to transform information that is provided in other ways. An im-
portant case is conditional probability statements. For example, the state-
ment P(D|C) > .6 can be transformed to canonical form as follows:

F(D|C) > .6
P{DI'IEI
P(C) =6
1-B(D-2C)
B(C) =.6

P(D-?C) + .6P(C) < 1.

The model can be expanded to represent a whole network of events.
Pictorially, Lagomasino and Sage show such a network as,

(e

but from the generality of theilr framework and discussion, the method does not
appear restricted te a spanning tree. The link between any palr of nodes in
the network may consist of a subset of basic premises and possible rebuttals,
As stated, links appear to be quite general (presumably some node's claim
could become another node's rebuttal), and thus the approach appears to lack
the intrinsic structures of Toulmin's logic. Each relationship is modeled as
a set of CREs, and the set of all CREs and additional information constraints
are constralnts in the linear program. This system of relatienships may be
solved to determine the range of probability of any factor of Interesc, If
the linear program bas no feasible selution, then these relationships
specified are legically inconsistent. (This suggests an extension of the

method using goal programming technmigques, but a logical basis for such an ex-
tension iz not apparesnt. )

Lagomasino and Sage do not explain how the informational relationships should

be assessed or estimated, or exactly how new information changes a set of
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constraints, Horeover, Informatlien that leosens as well as tighténs bounds
(i.e., non-monotopnlic reasoning about probabilities) is presumably possible,
but Lagomasine and Sage are silent on how this could sceur in their framework.

Hor is the process of specifying nodes in the network ever defined precisely.
Lagomasine and Sage state that structuring a model Involwes "the specification
of alternative hypotheses at each node™ and that "the set of hypotheses under
consideration at each node should be mutually exclusive and exhaustive."

However, hypotheses are also limited to propositions that obey the consistency
relational equations,

enforced,

It is wnelear how this constraint on assessmént can be

According te Lagomasine and Sage, the method allows for information to be en-
coded about both causal (e.g., P(D-2C)) and diagnostic (e.g., P(D|C))

reasening., This clalm highly dubieous and represents, we think, the most

serious weakness in this approach. P(D—3C) cannot plausibly by construed as

the probability (or strength) of & causal link between D and C as long as
"D-¥C* is interpreted within traditional logic (as the authors clearly
intend). Within traditional logie "D-2C" is true unless D and L are both true
(thiz iz the interpretation used by Lagomasino and Sage in the derivation
described above regarding P(D|C) and F{D—C)). But this is far weaker than a
causal comnection: "If the moon is made of green cheese, then the threat is
an 5A-4" would be true in traditional logic, since the antecedent {s false;
yet clearly there is no causal connection. A warrant construed in this way is

quite trivial: when the antecedent is true, the warrant merely states that

the conclusion iz true, It gives no Iindicationm of any physically real connec-

tion betwesn the two,

An alternative Interpretation of "D-3C" 15 as an impliecit universal
generalization, i.e., all instances of D are also instances of €. This runs
into the ohjections broached by Toulmin., In particular, a single coun-

terexample (i.e., a case of D and mot-C) is sufficient to establish the fal-

sity of such a generalization; i.e., F(D=JC) would be zero. Yet we oftem as-

gart the existence of causal relations (e.g., "the baseball's hitting the win-
dow caused it te break®™) even when the relationship is subject to exceptions
(soma baseballs would not have broken some windows).
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In the light of these problems, two broad courses of action are available:

(1) we can interpret "-3" outside of classical logic, &.g., in terms of modal
logics for causality. 1In this appreoach, D=9C is true {(i.e., D causes C), for
example, only if € is true in all the physically possible worlds where D is
true. Perhaps the degree to which D causes C is the percentage of D worlds
where C 18 also true. This option invelwves enormous difficulties computa-
tionally (i.e., in specifying CRE's within & modal framework) and semantically
{i.e., in defining the notion of a "posaible" world precisely enough so they
can be counted). (2) A simpler option is to take a causal (or other
theoretical) link as a basic unanalyzed notion, and te assezs the probabllity
of its existence. This is esssentially Shafer's approach in his notion of
evidential support. Thus, mg(H) can be interpreted (with gualifications dis-
cussed in Sectiom 2.2.2 sbove) as the chance that the evidence E proves or eag-
tablishes the hypethesis H. In cases of causal reasoning, this is the chance
that E causes H or that H causes E. (For example, the reliability of a wit-
ness who claims that artillery is present i{s simply the probability that his
testimony was in an appropriate causal relationm to the presence of artillery.)

In the framework te be described below, we In essence adopt course (2).
However, we supplement Shafer's simple representation by an explicit analysis

of the basls of the alleged evidential link in each argument: f.e., its back-
ing and its possible rebuttals,

2.4,2 Hilsgon's probabilistic logie, HNilzsen (1984} presents an appreach
that, on the surface, appears very similar to that of Lagomasino and Sage.
Nilsson proposes a method for characterizing the truth-values of first-order
sentences as probabilities. The method is applicable to "any logical svstem
for which the consistency of a finite set of sentences can be established.”
Thisz methed iz presented as a generalization of claszsical first-order leglc
that is "appropriate for reprasenting and reasoning with uncertain knowledge. ”

Hilzson starts by specifving a logical sentence whose truth values are of

interest, These could be any conjunction of sentences of first-order logic.
For example, a sentence could be:

5 = [(@y)A(y), (Vx)[A(x)B(x) |, (Fz)B(z)}.
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The truth-value of any one of the three components of this sentence is bounded
by logical consistency relationships. For example, all three components could
be true; this is logically consistent. However, the three components could
not all be false; this is inconsistent., HNote that this bounding is on the
combination of truth-value for all components of the sentence, not for any in-
dividual component. Indeed, in the example any component could be true or
false (value of 0 or 1); it is only combinations that are prohibited.

Each permissible combination of truth-values represents a "possible world,"
that is, a possible combination of true and false components. If the truth or
falsity of each component is represented by the number 1 or 0 respectively,
then a possible world can be represented as a three-dimensional vector of

geros and ones for a permissible state, In the example above, the follewing
five vectors represent all possible werlds:

[1,1,1]
[1,0,1]
[1,0,0]
[0,1,1]

[(@,1,07.

If each component of the sentence 1= thought of as a dimension in three-space,
then possible worlds are represented as five points in that space.

Hilsson mext generalizes the Interpretation of the wvector by allowing prob-
abilistic "smearing" over worlds., This is done by allowing probablility dis-
tributions over different worlds and by constraining these probabilities to be
logically "permissible.® The implication of the definition of probabil-
istically permissible is to constrain probabilities to be within the comvex
reglon bounded by the set of possible worlds as defined above. This leads to

the following, rather tortured, interpretation of a probability of a componentc
of a sentence:

the probability of a component is the sum of probabilities of all pos-
sible worlds in which it is true.

Since consistency is a criterion that rarely determines probability uniquely,
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Hilszon investigates additiomal techniques. He both solves for "maximum
entropy” probabilities and those produced by geometric projectiom. Heither
methed is provided with a basis or defended., This step might take place after
the permissible reglon is reduced by additional constraints on the probabilicy
values of sentences. HNo mention is made of the source of these additiomal
constrainta, So, the output of Hilsson's model is elither a description of a
reglon of permlssible probabilities or a probability that is determined by an
ad hoc method, although one could presumably assess probabilities eof "possible
worlds® to derive the desired probabilities (ignoring the assessment problem).

The principal difficulty of Nilsson's approach, from the present viewpoint, is
that (like Lagomasine and Sage} 1t falls te capture true causal, or other
evidential, relatienships, As noted above, these are not well represented in
the first-order predicate caleulus, and it is not clear how effectively
Hilsson's method could be extended to handle consistency constraints among
gentences in a modal logic. In any case, it is clear that the assessment task

would be emormously complicated (e.g., by the intreduction of poszible worlds
containing sets of posaible worlds).
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3.0 AN ADAPTIVE PROBABILISTIC INFERENCE FRAMEWORK

This section describes an innovative inference framework, for use in expert

systems., The framework was developed to address some of the shortcomings of
current approaches to reasoning in uncertain domains.

Human experts typlcally use an iterative process of reassessment and revision
vhen they reason in complex domains characterized by uncertainty. One or more
models are tentatively adopted (usually requiring assumptions that are, at
best, only approximately satisfied) and conclusions are derived. The
plausibility of the results is assessed, by testing model results against in-
tuition or against the results of other medels. Sometimes, in additiom, the
model makes predictions which can be tested asgsinst actusl observations. When
results of an analysis meet such tests of plausibility, confidence in model
assumptions is evhanced; otherwise, the human analyst searches for ways to

relax or change model assumptions to achieve mere acceptable results.

Curtrent approaches to expert systems' reasoning under uncertainty, however,
fail to capture this iterative revision process. Usually, some form of prob-
abilistic model (e.g., Bayes, Shafer, or certainty theory) is encapsulated
within the modular rules used by the system in reasoning. Mo provision is
made for altering the probabilistic medel to accounmt for the extent to which
regults confirm or disconfirm model expectations. In many of these systems,
morecver, there is no explicit representation of the completeness or

reliability of a probabilistie argument--of the extent to which the analysis
is "shiftable” with new evidence.

Another problematic feature of current expert aystems is the confounding of
knowledge about uncertainty with utility, or knowledge about preferences. For
example, the MYCIN system handlezs 2 disease it considers serious (a utility
consideration) by inereasing ite certainty factor (acting "as if" it is more
probable than warranted by the evidence)}, Another common tactic is to embed
utility considerations in the ordering of rule application. Such confounding
makes it very difficult to maintain a knowledge base in the face of

independently shifting preferences and belliefs and to communicate system
reasoning to users.
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Our inference framework iz designed to capture important features of the
iterative revision process characteristic of human reasoning. The framework
takes explicit account of the "shiftability" of model assumptions, searching
for potential revisions among those arguments identified as least reliable.
Uncertainty i1z kept separate from preferences, allowing for greater normative
justification of system results, for more informative user/system imteraction,
and for rapid adaptation to changes in system goals (this last feature being
espacially important in time-stressed military environments).

Figure 3-1 illustrates the representation of a single evidential argument
within our reasoning framework. The representation is based on Toulmin's
(Section 2.3.3) proposed model of an argument. The evidence corresponds to
Toulmin's grounds. The claim (the conclusion im Figure 3-1) is linked to the
grounds through the warrant (the rule), with backing provided by a causal or
other theoretical model. In our framework, however, the conclusion is nmot a
definite hypothesis, but rather a belief function which represemnts the
gystem's state of uncertainty about the range of possible hypotheses. Thus,
the rule links evidence to a belief function over possible hypotheses. This
fits with Toulmin's conception of the role of probability as modal gqualifier
of a claim--the belief function represents a gqualified (by a belief functiom)
claim, linked te the evidence through a rule for computing the belief
function, with the rule in turn backed by a causal or other theoretical model.
Finally, Toulmin's framework sllews for representing the reliasbility of the
evidence, through what he calls possible rebuttals. In Figure 3-1, the pos-
gible rebuttals act to discount the belief function. Im Sectionm 2.2.2, in our
discussion of belief functions, we saw that discounting of belief functions
was a4 means of incorporating the judgment that there was some chance that the
evidence and the hypothesis were not linked, 1.e., that the evidential link
was invalld due to some deactivating factor,

As shown in Figure 3-1, this inference framework has the advantages of
Shafer's belief function theory: in providing & measure of the reliasbility of
evidential arguments, in permitting modular analyses of separate lines of
argument, and in the possible use of Bayesian (as well as other) types of

models as special cases,
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A crucial additiomal featura of our system, however, is that beliaf functions
are not reprasented as "black boxes;" the system is provided with a frame
(Figure 3-1) representing the basis for computing the belief funetien,
together with knowledge of the factors which could diseredit the link between
the evidence and conelusion. Thuas, the system has access not only to numeri-
cal measures of uncertainty, but to the structure of the arguments on which
these measures are based. This feature provides the potential for "reaching
inside® an argument and altering the resultant belisaf function, the alteratiom
being based on the firmness of the components of the argument.

Figure 3-2 illustrates the combination of two arguments. The belief function
representation provides for a straightforward mesns of combination: the ap-
plication of Dempster's Rule. When the two srguments are in basic agreement,
confirming each other, the inference procedure ends with the application of
Dempster's Rule, However, it is possible that the arguments are in confliet,
that they assign significant belief to mutually exclusive conclusions. BSuch a
gltuation waz discussed in Section 2.2.2, and Lllustrated im Figure 2-3. When
such conflict occcurs, the system (as would & human expert) takes it as
evidence that one or more of the component arguments may be flawed; and it
sets out to determine where the flaw i=., As shown In Figure 3-2, the process
of conflict resolution in this system can involve the applicatien of different
strategles across several different stages.

{1} Tha firast step of confliet resolution is to search for informatiom that
may discredit ome of the component arguments. Thus, the system tries to ob-
talin information about the factors influencing the discount rate; thiz search
is prioritized by balancing the cost of information search against the poten-
tial benefit of the information in conflict reduction. The result of the in-
formation search may be to increase belief in the presence of a factor dis-
crediting one of the arguments; if this results in lowering the confliet te an
acceptable level, the conflict resolution process is concluded.

(2} As a secomd step, however, the system may seek additiomal independent
evidence related te the conclusion. This typically will result in an Increase
in conflict, but it may provide insight into which compoment argument is
flawed (by supporting only one of the original conflicting argumemts). Then,
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by looping back to step (1), the system utilizes this additiomal information
to reprioritize its search for the presence of discount factors.

{3) Thirdly, the system may explore modifications in the theoretical basis
for one of the conflicting arguments, For example, the system may decide to
modify the causal model underlying one of the inference rules, or it may
decide that the arguments are not based on independent evidence, inmvalidating
the applicability of Dempster's Bule. ©Clearly, such modifications are at a
higher level than those discussed bafore, and require a system with a high-
level adaptive capacity for altering the structure of its own reasoning

processes in the face of unanticipated ebservations,

{(4) Finally, if significant conflict remains, the system discounts all com-
ponent arguments by an amount reflecting their contribution te the comfliect,
This reflects the comclusion that some element in at least one of these argu-
ments is flawed, but that insufficient data are available (at an acceptable
cost) to identify the flaw precisely.

In the demonstration system (Section & below), steps (1) and (4) sbove have
been implemented.

The process of discounting belief functions when conflicting evidence is en-
counteresd is non-monotonic in character, amnd possesses Important parallels to
Doyle's (1979) non-monotonic logie, discussed above in Section 2.3.2. In a
strict Shaferian system, the input belief functions remain fixed throughout
the analysis, and combination of these functions by Dempster's Rule after the
addition of new evidence always reduces the amount of mass allocated to the
universal set. Yet Shafer himself responded to the example of Figure 2-4,
where the existence of conflict resulted in a counter-intultive resule, by
proposing a non-monotonic revision (discounting) of the input belief
functions. Our framework provides a sechanism for implementing this non-
monotonic process within an expert system. Belief fimctions are represented
as based on assumptions (for exsmple, until evidence to the contrary is
obteined, the system acts &= if a particular discount factor is asbsent). When
conflict among belief functions iz observed (conflict being analogous to
Doyle's system encountering a contradictlion among sentences), the system
searches for a "culprit assumption”™ (e.g., the absence of the above-mentionsd
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discount factor) and loocks for evidence to discredit the asgumption through a
test which might establish the presence of the facter. The result is a
modification of the assumptions leading to one of the belief functioms, and
hence a discounting of that belief functiom and a reduction of comflict. It
is worthy of note that in our system (unlike Doyle's) the prioritization of
the search for "culprit" assumptions is made explicit, and is based omn a
benefit-cost tradeoff. Moreover, if a revision in assumptioms cannot be jus-
tified (by the outcome of some test), the revision does not take place, and
the system uses the device of across-the-board discounting {(step (4)) to rep-

resent the overall less in confidence in its system of beliefs.
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4.0 APFLICATION TO A FROTOTYPE ADAPTIVE ROUTE REPLAMNNING (ARR) SYSTEM

4.1 Implementation

Our inference framework has been implemented in a small-scale prototype system
designed to support pilots on deep interdietion or offensive counterair
missions. The focus of the demonstration software ig in-flight route replan-
ning in the face of strategic pop-up threats, i.e., threats which are dis-
covered at sufficient rangea to permit time for rerouting the airecraft (in
contrast, for example, to the immediate evasive actiom required against an

airborne misaile). Further, the main focus among strategie threats is

surface-to-ailr missile sites or artillery.

The Adaptive Boute Eeplanner (ABRR) is assumed to begin its missien with prior
ipformation [represented by a belief function) about the locatlon of a par-
ticular surface-based anti-air threat. During flight, the system is notified
of a second threat localization (from a SAR signal), which may be more or less
distant from the likely locatiom of the first threat. This second plece of
information is likewise represented by a belief function for the location of
the threat. As part of its inference task, the system pust assign degrees of
belief among three possibilities: (1) the two belief functions represent the
same thfaat, in the same locatiom; (2) the original threat has moved to a new

location; and (3) the second signal comes from an entirely mew threat, pre-

viously undetected.

To perform this task, the ARR utilizes its knowledge about the original threat
location and the locatiom of the new signal, as well as general information
gsuch as how far threats can move, how thorough the prier area Iintelligence was
(and therefore, how likely to have missed a threat), and how far from the
original threat a second threat is likely to be. (Other kinds of information,
&.g., characteristics of the SAR signal that might help te identify the type
of threat and establish whether it iz the same or different as the original
threat, would be included in a full-scale eperational system. Due te the con-
straints of a limited Phase I effort, it was decided to incorperate only a
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small subset of potentially available information sufficient te illustrate the
inference mechanisms.)

Each of the above pleces of evidence iz represented as a belief function, as
described in Section 2.2.2. The system operates on these bellef functions in
three passes. (1} Forward-chaining combination of belief functions using
Pempscer's Rule., The result is a belief function over the three
possibilities- -unchanged, moved, or different--as well as a belief function
over the location of the threat{s) under each of the possibilities. The
analysis ends here if there is no significant conflict in the resulting belief
function; otherwise, a second pass is taken. (II) Prioritization and
(possible) performance of tests. In the second pass, the system decides on an
action to take (e.g., test for ECH in the area) that might discredit one of
the belief functions and result in a lessening of conflict. If the test is
performed, and if a non-monotonic process of discounting occurs based on the
test result, then the combination of belief functions is recomputed. Again,
analysis ends 1f results are satisfactory. (I1I) Across-the-board discounting
of all arguments, Otherwise, all component arguments are discounted based on
their contribution to the comflict, and Deapster's Bule is again recomputed.

After arriving at a satisfactory Inference with respect to threat
classification, ARR derives the action implicatioms of the inference.
Specifically, it combines its beliefs with regard to whether the threat is
unchanged, moved, or new with its knowledge of the danger contours associated
with the threats, and, based on this information, evalustes several candidate
routes and selects the best. (The present implementation does not gemerate
routes, nor does it compute danger contours from more basic informatiom.

These functions have been taken as "black box" pieces of its knowledge base,
in the initlal phases of this research.)

ARR computes the Value, or "expected utility,® of a route Lﬁ’E&:ﬁhﬁaﬂ by the
following formula, bhased on Bayesian decision theory:

Valuea of Route = (the probability of arriving at and damaging the
target) x (the value of the target) - (the probabilicty of the

aircraft being destroyed anywhere on the route) ® (the value of the
aircraft).
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This equation highlights two important features of route planning or
replanning: (1) two major uncertainties must be considered: the probabilitcy
of damaging the target and the probability of own aircraft destruction
{lethality); hence, it distinguishes between risks on the ingress and risks
associated with the entire route; and (2} 1t requires a comparison between
target value and the walue of friendly aircraft. In essence, what this equa-
tion says is that for a route to be acceptable, the chance of damaging the
target (i.e., success on ingress) and the value of the target must be great
enough to outweigh the chance of being destroyed.

Tradeoffs involving these factors may be critical in route replanming when a
pop-up threat appears during the ingress. For example, two revised route op-
tions for avoiding a pop-up threat may be available, which differ in how they
allocate risk between ingress and egress. Route A plays it safe on the
ingress, detouring significantly to aveid the pop-up threat; but on egress it
pust pass quite close to another threat due to fuel constraints. BRoute B
takes a more direct path to the target than Route A, placing it in jecpardy
from the pep-up threat, but leaving it with enough fuel on egress to avoid the
other threat. It might be that Boute B is on the whole safer (i.e., has a
lower teotal lethality); but Boute A might be preferable, even so, because it
affords a better chance at the target. According to this model, choice be-
tween Route A and Route B depends on how much chance of damaging the target is
worth how guch risk to own aircraft. The present system takes such tradecffs

inte account (through the above equation) in its evaluation of routes.

The Bayesian approach just described ignores the fact that inferential argu-
ments underlying the system's evaluation of candidate routes may invelve vary-
ing degrees of unreliability. As a result, the evidence may not uniquely
determine an evaluation "score®™ for each route according to the above formula,
Nevertheless, in a successful rercuting aid the potential lethality of a route
to own alrcraft and the likely damage inmflicted on the target must be sum-

marized in some way; different routes must be compared; and recommendations
mist be made to the pilet in a timely fashiom.

ARR extends the traditional decision-theoretic approach to accommodate these

requirements. It provides two lethality measures for each route: a lower

lethality measure Tepresenting the lowest danger consistent with the evidence,
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and an upper lethality measure representing the greatest danger consistent
with the evidence. These measures are computed by appropriately reallecating
uncommitted support, i.e., support assigned to subsets of hypotheses, to the
elementary hypotheses in those subsets., Similarly, ARR provides both a lower
and an upper measure of the chance of arriving at and damaging the target. By
this means, the system computes an upper and a lower Value for each route;

The upper Value 1z cbtained by utilizing the lower measure for lethality and
the upper measure for damaging the target; hence, LIt represents the most op-
timistic assessment of the route that is consistent with present evidence,

The lower walue iz obtained by utilizing the upper measure for lethality and

the lower measure for damaging the target; hence, it represents the most pes-
simistic supportable assessment.

Determination of a route recommendation (from a set of previously generated

routes) now proceeds in two stages: (1) If the lower Value measure of a route

iz higher than the upper Value measure for another route, the first route is
elearly preferred (and is recommended by our system). (2) In other cases,
however, where the Value intervals for different routes overlap, the evidence
available to the system is imsufficient for a definitive cholce (assuming that
all cost-effective information cellection options have been exhausted), In
these cases, the system utilizes one of two normatively defensible, user-
gelected "decizion attitudes®™ to determine a route recommendation. According
te the pessimism (or worst case) attitude, upper measures are used for the bad
outcome {(i.e., lethality) and lower measures are used for the good cutcome
(i1.e., damaging the target). According to the conservatism attitude, Values
are computed utilizing the above equation with lower measures for all ocutcomes

fl.e,, weopsltted support is disregarded rather than reallocated, and only
what the evidence positively supports is considered),

The following sections describe the inference mechanism in more detail, and
present sample products of its ocperation.

4.2 The Belief Functions

ARR beginz with prior area Intelligence about threats in an area A (for
simplicity, we assume A to be Z-dimenslonal space). This intelligence is rep-
resented as a belief function on A. En route, the system is notified of new
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evidence of a threat in A, again expressed as a belief function on A. ARR
must make inferences about whether the second item of evidence represents a

new threat or the same threat, and if the same threat, whether it has moved to
a new locatien.

To make this inference, ABR first extends the two belief functions to the set
Ax AxT, where the two coples of A represent the system's knowledge about
the two threat localizations, and T = {5,D) is the set indicating vhether the
two signals represent the same or different threats.
T are interpreted as follows.

The elements of A ® A ®

(x,x,8) 1 Same threat, unchanged location x.
(x,¥,8) : Original threst at x has moved to locatilen y.
(%,%,0) : Different threats at locations x and v,

Fow ARR must incoerporate lts prior knnwledga about whether threats are likely
to move, and if so, how far; as well as its knowledge about whether there are
likely to be gaps in area intelligence, so that some threats may have been

missed; and its knowledge about the typical or expected spacing of separate

threats. Each of these items of evidence can also be expressed as a belilef

function over A % A x T.

ARR's evidence is summarized by five belief functions, described below. Table

-1 defines formal notation for the focal elements of each of the belilef func-

tions and the belief assigned to each. A finite mumber of focal elements is

assumed for each belief function.

Eallz Summarizes pricr evidemce about the location af the flrst threat,
Belief is focused on circleas of increasing radius centered at a,.
This evidence provides no information about the location of the

second (or mowed) threat or about whether the two threats are the
csame or different.

BalE: Summarizes ewvidence about the location of the second threat,
Balief is focused on clrcles of increasing radius centered at a,.
This evidence provides no information about the eriginmal threat or
aboit whether the twe threats ave the same or different,

Bely: Summarizes evidence about movement. This evidence provides mo in-
formation about whether the two threats are the same or different,
but if they are the same, there is evidence about whether there
was movement (e.g., cbserved transport activity) and if so, how
much (based on time available and estimated speed capabilities).
Thus, belief is focused on the disgonal H in AxA (threats in the
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Belief Functiom Focal Element Belief Assignment

Bel, s (a;) = A x {5,0} -1(1] (Zm, (x)=1)
Bel, Ax Erlazl x {8,D} ﬂ?{ﬂ (Zm, (y)=1}
5513 (Hx {shHUA x & x {D]) s
(Ew x {3HWA x A x {D]) 'Iljf'-‘} (I?ﬂa{'ll'}-i-s}
Bal& Ax A {5} q
Ax Ax {50} 1-q
Bals {lin15 x {Dhuia x A x {5shH Iljfﬂ {Eli(:]'l}

Definition of symbols:
Sx{al}l = {a : |a-31| < x}
Byiaz} = {a: la-azl <y}
H= {(a,a) : aeA}

G = {(a,b) : £,(w) < |a=b| < £2(w)}

(where f_(w) and f*(w) are lower and upper bounds for the distance
range af the set ﬂ“]

B, = {(a,b) : g,() < |a=b| < g* (=)

(where g, (z) and g*(z) are lower and upper bounds for the distance
range of the =set sz

Table 4-1: Summary of Belief Functions for Pilot Adid
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game location), and on sets C ,each of these representing a range
of distances the threat might have mowved.

Be14: Summarizes evidence about the thoroughness of intelligence.
Belief is focused on subsets of T (whether the threats are the

same or different); this evidence provides no evidence about loca-
tion or separatiom of the threats,

EalE: Summarizes evidence about the separation of different threats (if
threats are diffatent they are likely to be separated). Belief
iz focused on sets , @ach of these representing a range of dis-
tances the threats might be separated. This belief function
provides no information about whether the threats are the seme or
different, or about their separation in case they are the same.

These five belief functionms may be combined by Dempster's Rule to obtain a

belief function Bel, over A x A x T. Table 4-2 summarizes the focal elements

of the combined belief function and the belief assigned to each. The belief

function Bel, is obtained by normalizing these belief assignments (dividing by
1l minus the total belief assigned to the null set).

The steps in combining
the belief functions are summarized below.

1. Combinae Bael, and ﬁ:li to obtain a new belief function with focal
alements 51 al}xﬁr{az}ﬂ{ﬁ.ﬂ}. cach with belief mlfﬂlig{T}-

2. Cembine Bel; and Belg to ebtain a new belief fumction with focal
elements (Hx(S5))U(B_x(D}) (belief sm;(z}) and (C x(S})U(B_x[D}}
(belief my{wimg(z}). The first type of focal element represents the
belief that if the threats are the same, there iz no movement;
otherwise, their separation is described by the range of distances
reprasented by The second type of focal element represents the
belief that if re is movement, it is represented by C; if the
threats are different, separation is described by B,.

Combining the results of Steps 1 and 2 gives a belief functiom
with two types of focal element. The first type of focal
element is [(5,(a)x8_(a;) MHx(8)] [(S,(a))=5 (a;))INB_=x|{D]]
representing belief a single threat unmoved, or a different
threat. The second type of focal element is

[ (8, (aq)x5, (ay)NCx(5}] [(S;(ay)x5 (ay)InB,x(D])], representing
halief in mﬁvad or & diffarant thteat.

4. The final step is to add in Bel,, the belief in a single threat.
The regsult is the same focal elements as in 3 (representing the un-
committed belief), as well as the focal elements 5 {a x5 {Hﬂjﬂﬂxﬁﬁ]
and 5, (a))x5, (apInC x(5), representing belief in a Bingla threat
Hith Lfie d location or with location change described by C,.
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Table 4-2a  Combined Bellef Assignments
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Table =20 Combined Belief Assignments

Facal Element Balief (non-normaliged) Comdition Belief Assignment
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Table 4-2¢c: Combined Belief Assignments

Focal Element Belief (non-normalized) ) Condition Belief Assignment
(U=unchanged, M=moved, D=differe
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A belief function over the three possibilities unchanged (U), mowved (M), and
different (D) can be defined by the marginal belief function of Bel,. Table
4=3 gpives this marginal belief function.

Table &=1 presents quite complex mathematical conditions for belief im the
three hypotheses (unchanged, moved, different) and their various combinations.
These conditions can be greatly illuminated by describing them verbally in
terms of reasons for bellef in the hypotheses.

- Contours: degrees of overlap - The threat can be unchanged only if
it is possible that the two signals could have come from the same
locatiom. Thus, belief inm an unchanged threat is supported to the
degree that the location contours of Bel, and Bel, overlap.

» Distance: possibility of movement - Movement is possible only when
the separation between the threats (described by Bel and Bel,) is
consistent with the distance a threat might have mﬂvaé {as described
by the distance ranges of Bel,}. Thus, belief in a moved threat is
supported to the extent that the contours of Bely and Balz BTE& COn=
sistent with the distance ranges of Eala-

[ Likelihood of movement - Bal, also has a focal element representing
positive belief in no movement. Belief in movement is supported to
the extent that this focal element has low belief.

" Distance: possibility for different threats - Different threats are
possible only when the threat separation (described by Bely and
Bel,) is consistent with threat spacing information Eduﬁcr}bad by
Bel:). Thus, balief in different threats is supported to the extent

that the contours of Btli and Bal2 are consistent with the distance
ranges of Bels.

. Threat coverage - The threats can be different only if it is pos-
sible that a threat was missed. Thus, belief im different threats

is asupported by a low belief in the thoroughness of intelligence (as
described by Bel.).

The system has the capability for selecting which of the above reasons
provides primary support either for or against each of the hypotheses. The
display informs the user, then, not only of the bellef in each hypothesis, but
of the reasens supporting that belief,
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Table 4-3: Marginal Beliaf Function over (U,M,D)

Focal Element Belief
(u) Bel, (Hx(S))
(M) Bel, (Hr(S)) -
(D} Bel, (AxAx(D))
(U, M) Bel, (AxAx(5])
{u,D} Bel,(AxAx(D}) + Bel, (Hx(3))
(M,D} Bel, (AxAx{D}) + Bel,(Hx{5))
(U.M,D} 1

4.3 Conflict Resolutjien

Wa see from Table 4-1 that cosbining bellef functions with mass focused on in-

compatible subsets results in belief assigned to the null set. We use as a

measure of conflict the amount of belief assigned to the mull set when apply-
ing Dempsater's Hule.

and by Cohen (1985).

Thiz iz the measure of confliet used by Shafer (1976)

Viewed in another way, conflict oceurs to the extent that there is evidence
against all three hypetheses (unchanged, moved, different). TFor each of the
six null-set entries in Table 4-1, we can identify the reasonms for the cccur-

rence of the conflict, in terms of the taxonomy given at the end of the pre-

vious section, Table 4-4 glves the reasons for the six types of comflict,

For example, the first type of conflict occurs to the extent that belief is

assigned to non-overlapping contours, to non-movement, and to distance ranges
incompatible with location contours.

When combination of the five belief functions results in conflict greater than

thresheld t_, the system's confliet resolution procedure is invoked.

fliet resolution procedure is,

The cons=
in effect, a mechanism for searching within the

arguments leading te each of the Five belief funct t Lt 1duE-
Eum E alie ungﬂ%:::ﬂ%ﬂm:ghaf Emp hj{
tify potential weaknesses in the arguments. Hh-nhnu:h weaknesses ALe

¢d£hti££E5. the corresponding bellef functions are discounted, leading to
reduction in conflict. As long as potential weaknesses can be identified,. the

process of conflict resolution continues until confliet is reduced to below
t

[= f
-

"
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CONFLICT TYPE CONTOUR DISTANCE EVIDERCE EVIDERCE DISTARCE  COVERAGE

{(From Table MO - FRECLULDES FOR MOVE-  AGAINST FRECLUDES GOOD
&-B) OVERLAF HOVEMENT  MENT (if MOVEMENT DIFFERENT
same threat)

(1) X X X

{2} X X ; X

(3 X X X

(4) X X X

(5) X X X

(6) X X i

Table 4-4: Reasons for Conflict--5ix Types of Conflict

As indicared in Figure 3-1, each bellef funcrion has associated with it a set
of potential disecount facrors, or factors Influencing the reliability of the
link between the evidence and the conclusion. An example of such a discount
factor would be the presence of ECHM in the area when a SAR =zignal iz observed;

such presepce would tend to disceredit the location estimate derived from the
SAR signal.

Each discount factor has associated with it an initial belief functiom. This
function represents the "default™ assumption the system wishes te make about
the presence of the facter, prior to testing for its presence. A reasonable
initial beliaf function might be wvacuous, assigning all belief to the univer-
gal set, and thus representing no information about the factor's presence or
ahsence. Alternatively, there might be evidence available initially, whether
gpecifie to this mission, or based on prior experience. The initial belief
function allows such information to be incorporated into the analysis.

Each discount factor also has an associated test for factor presence. The
test may have several possible sutcomes. Each test ocutcome o is associated
with a belief function which summarizes the impact of observing test cutcome o
on belief in factor presence. If a test is performed with outcome o, the as-
sociated belief function is combined via Dempster®s Rule with the initial
belief functionm to obtain an updated belief function for factor presence.
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Belief functions are discounted according to the amount of belief directly
committed to factor presence. (This practice corresponds to an assumption
that the evidential link is valid until evidence is observed to the contrary.)
If By is the amount of belief directly committed to the presence of discount
factor k, then the discount rate for the corresponding bellef functiom ia:

II..--

§=E
Pk

where the summation 1s over those dizcount factors associated with the given
belief function. The number w, 1is a measure of the impact of the presence of
factor k on the discounting. The wy are assumed to be positive and to sum to
1. The resulting discount rate ranges between 0 and 1, with a discount rate
of 0 corresponding te complete discrediting of the evidential link, and a dis-
count rate of 1 corresponding to no discounting relative to the inicial bellef

function.

The belief function Bely is discounted by multiplying the belief associated
with each focal element by the discount rate &. This results in beliefs sum-
ming to less than 1; bellef is now added to the universal set to correspond to
the helief subtracted from each of the focal elements,

When the initial belief functions for some of the discount factors for Bel;
are non-vacuous, the system must discount belief funttlﬁn'htli before inicial
application of Dempster's Bule (described in Section 2.2.2). Thus, the ini-
tial pass of the inference mechanism incorporates any discounting deemed ap-

propriate prior to combination of the evidence.

We mow describe the process initiated whenm combination of initial belief fune-
tions (which incorporate the imitial discount rates) results im conflict ex-
ceeding the thresheld t. . ARR meves toe the "second pass® of its inference
mechanism, described by the following five steps.

1. Decide which discount factor for which belief function is the
provisional "culprit™ and which test to perform on the culprit.
{Thiz step is the crux of the algorithm and the selection criteria

are discussed in detail below.) If no culprit can be found, initiate
Pasgs 3,
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2. Perform the test and revise belief in the appropriate discounting
factor,

3, Compute & revised discount rate and apply 1t te the culprit bellef
function, resulting in a new belief functionm.

&, Recombine the belief functions ascording te Dempster's Rule, as

degeribed in Sectiom 2.2.2. The result iz & new combined belief
funetion, and a new measure of confliet,

5. If conflict is below t,, stop. Otherwise, return to Step 1.

The test chosen is based om potential for confliet reduction, balanced against
the cost of performing the test.

Each test, then, must have a cost assoclated with 1it, Tt is in these costs
that a crucial difference between ground-based and in-flight aids comes te the
fore. An in-flight aid would associate a wery high cest with performing any
test for which results could not be obtained very quickly. Moreover, the
costs might change dynamically with flight progress (some tests being feasible

early on when the time stress is not so great, but becoming infeazible later
in the mission).

To decide which test to perform, our prototype system first evaluates each
test to see which has the maximum potential for conflict reduction., To do
this, the system computes a measure of the impact of discounting each of the
component belief functions on conflict (a partial derivative of conflict with
respect to the discount rate on the component belief functiom). It then iden-
tifies for each test associated with each belief function the maximum poten-
tial for discounting the associated belief functiom (taken over all test
results). This maximum discount rate is multiplied by the partial derivatiwve
to obtain & measure of the meximum possible impact on conflict for the given
test. This quantity is then divided by cost to obtain a measure of maximum
conflict reductlion per unit cost. The test is chosen for which this measure
is the highest. (Hote that there is no guarantee that conflict reduction will
be as great as indicated by this measure--the measure is based on the most
favorable result for the test, which may not be the result cbserved.)

Formally, let §; be the initial discount rate for belief function i, and let c
be the conflict computed under discount rate 51 (i.e., the conflict from Pass
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1 of the algorithm). Lat cy ba the partial derivative of ¢ with respect to
&gy. How, for a given test t, let f§#*{t) be the maximum discount rate (over all
test results) that can be obtained for that test. HNow, for each discount fac-
tor £, let t(f) be the test for factor presence, ¥ (t{f)) the cost of the test,
and 1{f) the index of the asscclated belief functiom., Then let

w(f) = - (F*(E(£))-5,)e /WL

the gquantity wi(f) can be thought of as the utility of testing for discount
factor f (the negative sign occurs because conflict varies inversely with dis-
count rate).

The test t(f) is performed for the factor £ for which u(f) iz maximized,

Even in the face of extreme conflict, discounting a contributing argument may
net be appropriate. There must be a reasonably stromg case that the most
likely cause (or causes) of the conflict have been identified. It may be the
case that the system cannot find a test te perform, whether because no test
has the potential for significant conflict reduction, becausze all tests cost
too much to perform, or because all possible tests have already been
performed. We saw above that in this case, the system resorts teo a third pass
of discounting all belief functions, according to a formula by which those
belief functions contributing most to the conflict are discounted the most.
The mechanism for this across-the-board discounting iz quite a matural exten-
gion of the present framework for representing evidential reasoning. Each
evidential arpument is associated with a discount factor called "comfliect with
other evidence." Across-the-board discounting inwvolves an increase in the
belief in the presence of this factor, proportional te the eontribution of a
given argument to the confliect. The weight on this factor, for a given
argument, reflects the firmness with which the system will retain commitment
to that particular evidential link in the face of conflicting data.

4.4 Sample Begulisg

In this section, we describe some of the results produced by applying the in-
ference mechanisms within our prototype system to sample data. We stress that

the following discussion is net meant as a description of the user-system
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interface; these results would obwviously not all be presented to users im this
form (see Sectlon 4.5 below).

Figures 4-la through 4-le {llustrate the output of Pass 1 through the system's
inference mechanism, for each of five different inputs. Each of these figures
describes the input belief functions, the combined threat classification
belief function, and the amount of conflict in the evidence.

In the first analysis (Figure 4-la), belief contours for the first and second
threats are centered at a distance of 5 units (szay, miles) apart. The loca-
tion contours describe how certain we are of these localizations. Thus, for
the first localization, there is belief of .18 that the threat lies within ,93
units of the center (2,2). There is belief .54 (.18 + .18 + .1B) that the
threat lies within 1.5 units of (2,2). We zee that the localization of the
second threat is less precise than that of the first--the belief contours have
greater radius. Belief of .3 is committed directly to the hypothesis that the
second threat, if the same, has not moved; belief of .10 iz uncommitted about
whether or how far it meved, and the rest of the belief is distributed acros=s
nested intervals of distances the threat may have moved. Belief of .7 has
been assigned to the second localization representing the same threat as the
first (indicating fairly high confidence in area intelligence). Fimally, if
the threat has moved, we place belief .17 on its having moved at least 6.1

miles, and belief .68 (.17 + .17 + .17 + .17) on its having moved at least 3.2
miles.

The resulting belief function places the highest weight on the hypothesis of a
gingle threat that has moved. This result is consistent with our confidence
in area intelligence, as well as & small amount of belief placed on the
threats being the same. Conflict iz not too large, at a level of .17, (We
have tentatively adopted a conflict thresheld of .25 for initiation of Pass 2;

more experience is needed to determine what level is best in this
application.)

The second set of inputs (Figure 4-1b) is the same as the first, except that
the belief assigned to an uvomoved threat has been raised from .3 to .7, with
corresponding reductions in belief for the intervals the threat might have
moved., The result iz what we would expect: relative to the first set of
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Input Belief Functions:

Bely: Center of Contours = (2,2)

Radius Ak .93 1.5 2.2 3.3 5.0
Committed Belief .18 .18 .18 .18 .18 .10

EalE: Center of Comtours = (5,6)

Radius .B8 1.9 3.9 4.3 6.6 10.0
Committed Bellef .18 .18 .18 .18 .18 .10

Belq: Bellef Assigned to Diagomal = 0.3

Lower Distance 1.02 B8 .75 B3 0.0
Upper Distance 1.3 1.53 1.78 2.14 e
Committed Belief 15 15 .15 .15 .10

Balﬁ: Belief Assigned to Same Threat = 0.7

Bt15: Lower Distance 6.1 .9 &, 0 3.2 2.6 2.0

Upper Distance = = - e = ;
Commicted Belief A7 17 17 17 .17 .15
Comb B - sl t
(U = unchanged; M = moved; D = different)
Bel, ((U)) = .15 Bel, ((U,M)) = .63
Bﬁl*(t“]} = 43 Btl..{{U.DH - .31
Bﬂ:l*({n’} = .09 B-ll.,,.'[{H'.DH - 71

Bel,((U,H,D}) = 1.0

Figure 4-la: Output of Pass 1 of Inference Mechanism
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Input Belief Functions;

Bﬂlli Center of Contours = (2,2)

Radius Sk .93 1.5 2.2 3.3 5.0
Committed Belief .18 .18 .18 .18 .18 .10

Bely: Center of Contours = (5,6)

Radius .88 1.9 .9 4.3 6.6 10.0
Committed Belief .18 .18 .18 .18 .18 .10

Bely: Bellef Assigned te Diagonal = 0.7

Lower Distance 1.02 . BB - B3 0.0
Upper Distance 1.34 1.53 1.78 2.14% o
Committed Belief .05 .05 .05 .05 10

Bnln: Belief Assigned to Same Threat = 0.7

5315: Lower Distance 6.1 5.9 i, 0 3.2 2.6 2.0
Upper Distance = w o o i m
Committed Belief 17 17 17 .17 .17 .15

C i B [} H
(U = unchanged; H = moved; D = different)

Bel, ({U})) = .38 Bel, ((UM}) = .61

Bel,((M]) = .18 Bel,((U,D})) = .66

Bal, ((D}) = .12 Bel ((M,D)) = .38

Bel,([U,H,D}) =1.0

Conflict (Mass Assigned to Null Set) in Combined Belief Function = .

Figure =12 Gutput of Pass 1 of Inference Mechanism
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Input Balief Functioms:

!nll: Center of Contours = (2,2)
Radius .y .93 1.5 2.2 3.3 5.0
Committed Belief .18 .18 .18 .18 .18 I i
Btlz: Center of Comtours = (3,4)
Radius .88 1.9 3.9 4.3 6.6 10.0
Committed Balief .18 .18 .18 .18 .18 .10
Bely: Belief Assigned to Diagonal = 0.7
Lower Distance 1.02 B8 .75 B3 0.0
Upper Distance 1.3 1.53 1.78 2.14 S
Committed Belief .05 05 .05 .05 10
Bel,: Bellef Assigned to Same Threat = 0.7
Eals: Lower Dlatance 6.1 4.9 4.0 3.2 2.6 2.0
Upper Distance o o wax o m

Commltted Belief

.17 A7 .17 .17 A7 .15

(U = unchanged; H = moved; D = different)

Bel, ((U]) = .4E Bel, ({U.M}) = .70

EBl*{[H!‘} - -15‘ hl*{l“,b]} L nﬁg'

Bel,((D]) = .01 Bel ((M,D)) = .22
Bel,(({U,H,D}) = 1.0

Figure 4=-1c;
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Input Belief Functioms:

lall: Center of Contours = (2,2)

Radius Gl .93 1.5 2.2 3.3 5.0
Committed Belief .18 .18 .18 .18 .18 .10

Bulz: Center of Contours = (8,8)

Radius .88 1.9 3.9 4.3 6.6 10.0
Committed Balief .18 .18 .18 +18 .18 .10

Bely: Belief Assigned to Diagonal = 0.3

Lower Distance 1.02 A8 ] B3 0.0
Upper Distance 1.34 1.53 1.78 2.14 o
Committed Belief .15 .15 .15 .15 .10

Bel,: Belief Assigned to Same Threat = 0.3

Belg: Lower Distance 6.1 6.9 4.0 3.2 2.6 2.0
Upper Distance 0 o0 L @ e s
Committed Belief 17 .17 .17 .17 .17 .15

Combined Belief Function: Classificat
(U = unchanged; M = moved; D = different)

Bel,((U)) = .02 Bel, ((U,M}) = .14
Bel, ((M]) = .11 Bel,{{U,D})) = .59
Bal,((D}) = .51 Bel,({M,D}) = .89

Bel,((U,M,D}) = 1.0

Figure 4-18: Output of Pass 1 of Inference Mechanism
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Input Belief Punctions:

hll:

hl-z H

lu13:

Bﬂlﬁ:

5115:

Bely((U)) = .08
Bely((M}) = .38
Bel,{(D}) = .31

Conflict (Mass Assigned to Wull Set) in Combined Belief Function -

Center of Contours = (2,2)

Radius Al 93 1.5
Committed Beliaf 18 .18 18

Center of Contours = (8,8)

Radius BB 1.9 3.9
Committed Belief .18 .18 .18
Belief Assigned to Diagomal - 0.3
Lower Distance 1.02 .88 .15
Upper Distance 1.34 1,53 1.78
Committed Belief .15 «13 .15
Belief Assigned to Same Threat = 0.7
Lower Distance 6.1 &£.9 4.0
Upper Distance - oo o
Committed Belief A7 .17 17

o= - Ak ¥] Ly
= unchanged;, M = moved;

il wjy O

Bel, ((LU,M,D}) =1.0

D = different)

Bel, ((U,M}) = .49
Bel, ({U,D}) = .42
Bel ((M,D}) = .85

2.2
.18

4.3
.18

.63
2.14
.15

3.3 5.0
.18 .10
6.6 10.0
.18 .10
0.0
.10
2.6 2.0
17 .15

Figure &4-le: Output of Pass 1 of Inference Mechanism
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inputs, belief assigned to an unchanged threat has increased, and belief in a
moved threat has decreased. Comflict has increassed a little, and is now near
the threshold for imitiation of Fass 2. This reflects the fact that the owver-
lap in the location contours is little enough that there is reasonable con-
flict in attributing both to an umnmoved threst.

Kow consider a third set of imputs identical to the second, except that the
centers of the contours move closer together (Figure &-lec). As expected,
belief in an unchanged threat is greatly increased relative to that in a moved
threat. Moreover, conflict has decreased to nmearly zero, indicating the ex-
tent to which the conflict in the second set of belief functions was due to

non-overlapping contours.

The fourth set of inputs (Figure 4-1d) iz the same as the first, except that
the centers of the location contours are now farther aspart, and belief in the
thoroughness of area intelligence has decreased to 0.3 (indicating a fairly
high peassibility that a threat may have been overlooked). The result iz a
high belief in the two localizations representing different threats, The con-
flict level, .18, is not suffieciently high to trigger conflict reduction,

Our final example (Figure &4-le) illustrates what happens when the threat
logalizations remain widely separated, but confidence in area intelligence is
raised again to .7. The combined belief functionz assign nearly equal weight
to moved and different threats (the overlap in the contours being small enough
that very little belief is assigned to an unchanged threat). But most
importantly, conflict is greatly increased; nearly half of the belief in the
combined functions is assigned to the null set. This set of inputs results in
triggering of Pass 2, the conflict reduction step.

In Pass 2, our system first chooses to test for the presence of ECM in the
area. The result is a discounting of the belief contours of Bel, by a dis-
count rate of .31, After discounting, Dempster's Rule is reapplied (Flgure &-
2}, and the new level of conflict is greatly reduced to 0.29. This lewvel
remains above the thresheld of .25, so a second pass of conflice reduction is
initiated. The system next chooses to reassess the thoroughness of area
intelligence. It searches for information about area Intelligence (whether
from the pilot or by querying ground-based sources), and decides te discount
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Bala by a discount rate of .1%. After this final discounting, conflict ias
reduced to an acceptabls .23, Figure &4-2 reports the system's inferences
about threat classification. Most of the mass has been allocated to a com-

bination of the hypotheses that tha threat has moved or is diffearent (total
mass .76 in the final pass).

Belative to Figure &4-1d, there is a higher degree of belief that the threat
has moved. This 1s because the high confidence in area intellligence tends to
discredit the hypothesis of different threats, Hote that the final pass, in
discounting Bel,, has resulted in decreased confidence in area intelligence
{.7 is discounted to (1-.19) = .7 = .57). This results in higher belief in
different threats after the final pass than on the previous pass,

In summary, we see that the mmerical results in the examplea given conform to
intuition. Increasing initial belief inm an unchanged threat increases com-
flict to the extent that contours do not overlap, and slso increases final
belief in an unchanged threat. Moving the signals closer together increases
final belief in an unchanged threat; moving them far spart increases belief in
different threats. Incompatible imitial beliefs (threats far apart but missad
threat unlikely) results in conflict, which is resolved by discounting.

4.5 Hardware

In the interests of efficiency of coding and portabllicy, the demonstration
ayatem iz implemented in the C language on an IBM AT with an 80287
coprocessor, at least 51IKB of random access memory, and IBM Erhanced Graphics
Adaptor (640 x 360 pixels with 16 zimultaneous colors), and TEM Enhanced
Graphics monitor, and a mouse input device, The mouse, though clearly inap-
propriate as a cockplt instrument, should provide an adequate fupnctional
simulation for demonstration purposes of other "pointing® input modes, such as
eye movements, A fully function cockpit hardware configuration is likely to
differ in other respects as required by the cockpit environment,
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Flest Conflict Resalutlon Pass:

Classification of Second Threat

Bel ((U}) = .14 Bel ((U,H}} = .58
Bely((M)) = .40 Bel,({U,D}) = .37
hl*{‘n}} - -1? 531*{“{::“:' L -?'!I-

Bel,{(U,H,D}} = 1.0

Conflict in Assigned Belief Function = .29

Second Conflict Resolution Pass:

Clasgification of Second Threat

Bel ((U)} = .10 Bal (({U,M)}) = .43
Bal, ((M]) = .30 Bal,((U,D}) = .41
Bal, ({D)})) = .23 Bel ([M,D}) = .76

Bel, ([U,M,D}} = 1.0

Conflict in Assigned Belief Function = .23

Figure &4-2: Qutput of Pass 2 of Inference Mechanism
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3.0 HUMAN COMPUTER INTERFACE FOR THE ADAPTIVE ROUTE REPLANNING AID

3.1 Basie Approach

The user computer Iinterface for an effective Inflight rerouting ald must
successfully balance a set of competing objectives: it must (a) minimize
demands on user time and effort, while at the same time (b) communicating both
recommendations and reasons for those recommendations in a way which maximizes

user understanding, and (c) permitting rapid, effective user inputgwhere they

might be eritical for mission success. A

Traditional appreoaches to the human-computer interface have proven largely inm-
adequate for achieving the multiple objectives outlined sbove. On the one
hand, automated sensor and communication systems have amplified the volume of
data available to users without providing significant assistance im the inter-
pretation of that data and in fits use for the decision-making process. Om the
other hand, expert systems and decision aids which have been more recently
proposed have gone to the other extreme, by offering a single rigid appreach
to analysis and decision making., Few current systems have attempted to deal
in a flexible manner with the diversicy of decision-making situations in real-
world combat enviromnments and the variety of user-preferred problem-solving
and declslon-making styles. Our goal has been to sketch the design of an
adaptive, highly flexible user interface to implement the inference mechanisms
described in the previous sections. The goal is, ultimately, to produce an
aid that 1s both personalized In the sense that it accommodates a variety of
user-preferred knowledge representations and information-processing
strategles, and preseripeive, in the sense that it encourages and in some

cases prompts user actions that overcome deficlencies in the user-preferred
approach.

At the highest level, the cognitive interface between a user and a computer-
based decision aid, such as ARR, can be characterized by five gemeric fumc-
tions (see Cohen, Thompson, and Chinnis, 1985):

] Salect: Users may personalize displays of information by organizing
them around alternative meaningful user-designated objects (e.g.,
time periods, spatial regions, options, components of options, at-
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tributes of options). The user can examine any significant input,

inferance rule, intermediate conclusions, or final result concerning
a glven object.

. Modify: The user can alter values of any database element and im-
mediately observe the impact on results downstresm in a chain of
reasoning; users may undo thelr modifications and restore the

original values; user Inputs may be at any level of fuzziness or
precision.

. Generate: Users may define options at any level of abstractness,
completeness, or precision, and with respect to any time horizom;

automatic option generation procedures work within whatever con-
straints a user has provided,

. Analyze: 1In the evaluation of options, users may examine predicted
outcomes according to any preferrved scheme (e.g., static or
temporal /dynamic; organizing information by attributes or by
options), and may order the relative importance of different evalua-

tive criteria to any degree of completensss/incompletensss and fuz-
ziness or precision.

- Alert: The system prompts a user when events occur or facts are
learned which would play a significent role in user-preferred modes
of reasoning and organizing information.

Within the constraints of the presemt work, only a partial demonstratiom of

the user interface has been implemented. The demonstration system consists of
about &40 screens embedded within a "live”™ menu system. Although many of the
sereens reflect the output of the inference algorithm, others are "canmed®,
and serve the purpose of illustrating the interface design in a fuller way
than the inference mechanism implementation itself permits. The screens
provide appropriate displays for a moderate mumber of menu reguests, Tepre-
senting a specific route replanning exsmple. Inmput and output operations for
some of the live displays are also operational. A user who stays within the
broad boundaries of the example may, therefore, get a fairly good feeling for
the intended operation of the aid. The resulting demonstration system serves
several important purposes as a design tool: by demonstrating the relevant AI
inferencing technology in a specific subproblem; by providing a feel for the
quality of the user-computer interface and an cpportunity to walidate its

effectivenass; and by serving as an initial prototype to guide further
development of the overall system.

5.2 Overview of the Ipterface

Interface features of the Adaptive Route Replanner are intended to minimize
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the attentlion users must devote simply to operating the aid., Virtually all
displays present Information graphically, by a combination of maps and charts.
All user inputs are by means of a single imput device, which implements a
poeinting function. In the present demonstration this device 1s a mouse and
azgociated function keys, In a final cockpit implementation however, the in-

put device might invelve touching a screen, eye movements, or any functionally
equivalent method.

The Adaptive Route Eeplarmer main memu includes the following items:
SITUATION RECOMMEND POSSIBILITIES REASONS CREDIBILITY LETHALITY ACCEPT

SITUATION provides the pllet a baslie view of the current tactical environment
(Figure 5-1). In the present demonstratlon, it displays threat danger con-
tours which integrate all available information about threat locations, threat
IDs, threat capabilities, and terrain. (In the demonstration system the
derivation of these contours takes place in a "black box™ and 1is represented
by canned screens. Technically, such contours represent the differemtial
change in the probability of destruction for an aircraft at the given location
for a specified period of time. In a completed implementation, the user would
have the additional capability of calling up displays which depict threat
location uncertalnty, ID uneertalnty, ecapability, and terrain.) The situation

display also shows the eurrent route and the location of the aireraft on that
route.

Vhen a pop-up threat oceurs, the situation display provides eritical informa-
tion (Figure 5-2). The display, however, minimizes the information processing
burden on users by (a) alerting with regard to such a threat only when it mat-
tars (i.e., when the increase in lethality of the current route dus to the new
threat exceeds a preset threshold): (b) using displays that emphasize changes
from the expected situation: {1i.s., sareas where danger has Increased dus to
the pop-up threat by x percent or more are highlighted in red; and (c) prompt-
ing users only in regard to theose uncertainties in the evidence that are
critical for the decision-making task (see below).

After the occurrence of a pop-up threat has been indicated by the aid, the

user has several alternmative courses of action available, (1) He may select
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Figure 5-1
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MT4: Redar signal at bearing = 183°, W/C at 36° leng., 42° lat.
Saurce: EAR Reasan: Hew Theeal

Figure 5-2
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BRECOMMEND, and the aid will automatically suggest a route which accommodates
the new information about the pop-up threat (Figure 5-1); (2) he may par-
ticipate in the route generation process by providing inputs which constrain
the routes generated and recommended by the aid (this capability has not been
demonstrated in the present system); {3) he may explore in greater decall the

lines of reasoning underlying the SITUATION display and the route
recommendation.

Optioen (3) is implemented by the EEASONS and the CREDIBILITY displays.

BEASONS as shown in Figure 5-4 displays the main alternative hypothezes for
interpreting the current data about the pop-up threat, Imn particular, in this
example a SAR sipgnal has been recelved by the alreraft and may represent (a) a
new signal from a previcusly identified statlonary thresat, (b) a new slgnal
from & previously ldentified threat which has meoved, or (e¢) a signal from &
previously unknown threat. The BREASONS display shows the relative strength of

each of these hypotheses given the available evidence, resulting from applica-
tion of ARR's inference mechanism.

Perhaps more importantly, beneath each bar in thiz histogram is a "ledger™ (P,
Cohen) of reascns for or against that particular hypothesis., Thus, for
example, support for the hypothesis that the SAR signal represents a
stationary, previously identified threat might come from: the high overlap in
locacion contours represented by the nev signal and by the previous
localization, intelligence assessments which indicate a low mobility for the
threat type fovelved, or a high assessment of the thoroughness of prior area
intelligence. Similarly, possible reasons in support of the hypothesis that
the signal represents a moved threat include: relatively low overlap in the
location contours for the two localizations, high confidence in the thorough-
ness of prior area intelligence, and an intelligence assessment that the
relevant threat type doss possesa the requisite mobility. Finally, reasons
that might support the possibility that a new threat has emerged in the area
include: low confidence inm the exhaustiveness of prior area intelligence and
a distance between the two signals which conforms with our understanding of
enemy siting practice. The REASONS display automatically indicates which of

these possible reasons have in fact influenced the ewvaluation of the new
signal.
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If he wishes, the user may explore in even greater depth the line of reasoning
vhich leagftn the current sltuation assessment, He may do this by selecting
the CREDIBILITY screen (Flgure 5-3)., CREDIBILITY displays a histogram which
represents the degree of credibility or confidence in the sources of evidence
underlying the REASONS screen. Thus in the present example evidence is avail-
able from a prior localization based on HUMINT, a new signal from SAR, and
three different types of specific Intelligence (concerning threat siting,
mobility, and thoroughness of intelligence coverage).

In addition to indicating a degree of credibility for each of these sources,
however, the CREDIBILITY screem shows the gualitative basis for such
eredibility judgments in a highly natural way, im the form of positive and
negative "endorsements®™ (F.Cohen). TUnder each bar of the histogram is a set
of credibility factors which influence, either positively or negatively, our
confidence in the relevant source.

The Adaptive RBoute Planner allows the user to modify inputs or intermediate
values at any level of analysis. Thus, the user may modify the degres of
belief in the hypotheses represented in Figure 5-4, the degree of credibility
assigned to different sources in Figure 5-3, or the status of credibility fac-
tors shown in the lower part of Figure 5-%. (Only the latter two have been
implemented in the present demonstration.}) In each case, the results of the

adjustment are reflected in sutomatic inferences farther dewnstream in the
reasoning.

For example, the pilot may feel greater (or lesser) confidence in the
reliability of SAR evidence than does the automatic inference process. If so,
he may adjust the credibility assessment simply by pointing to the desired
height on the histogram. Alternatively, the user may have information regard-
ing a specific credibility factor. In that case, he may adjust the status of
the credibility factor (which im turn will heve an automatic effect on the
heights of the histogram). For exemple, if the aid indicates a high ground
reflectance (based, for example, on DMA maps), but the pilot's direct observa-
tion indicates low reflectance, he may alter this factor by peinting te
reflectance, eyeling through a set of values (including low, moderate, high,
and unknown), and selecting. Similarly he may adjust ECM (unlikely, poszsible,
probable, and unknown), weather, and so on. As these credibility factor
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assesaments are changed, the degree of support for relevant hypotheses in
Figure 5-4 is adjusted automatically.

Up to this peint, we have discussed the pilot's ability te explore (and to
participate in) an inference task i1.e., determining the nature and extent of
the pop-up threat. But the pilot may also be concerned to evaluate the effec-
tivenszs of a recommended route revislon., For this purpose, he may select the

LETHALITY screen (Figure 5-6). This screen provides a representation of

lethality, 1.e., probabllity of own alrcraft leossz, as a function of time on a
particular route. The two curves in Figure 5-6 represent the current route
and the recommended route revision, respectively. Each curve is cumulatlive,
showing how the risk on a route increases with time on that route, The final
level on the ordinate for each route represents total chance of own aircraft
destruction on that route., The slope on any glven portion of a curve indi-
cates the local danger in that portion of the route: steeper portions of the
curve representing more dangerous areas and shallew portions of the curve rep-
resenting less dangerous areas. I and T represent the initial point and the
target, respectively, on each route. Generic symbols representing SAMs,

radar, and artillery sites on these curves are keyed to corresponding symbols
in the situstion display.

At any time the user can indicate his acceptance of a route [either a recom-

mended route or ome gemerated by hiz own inputs) by selecting ACCEPT., When he
does 8o, the accepted route becomes the new "current route® in all future
displays.

It is inevitable that in many warfare situations, the available evidence will
be incomplete or conflicting, or both., As discussed above, the present in-
ference mechanism design is tallored to deal with those contingencies in a
highly adaptive fashion. The interface design likewise in intended to
facilitate user understanding and effective response to such contingencies.
Figure 5-7 shows a SITUATION display in which significant inconsistency among
sources of evidence has been indicated. The nature of the inconsistency is
briefly summarized: the SAR signal may represent the presence of a new threat
or it may originate from a previously identified statiomary threat.

The incensistency prompt occurs only when the system's automated processes of
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BaTh: Radar signal af bearing = 1007, VG ot 38" long., 427 lat.
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Figure 5-7 .
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inference, conflict resolution, and sensor redeployment have falled thus far
to resolve the conflict. 1In effect, it represents a test for the presence of
a discount factor which treats the user as a potential source of information.
This prompt alerts the user that he may possess information which matters in
the resolution of the conflict. Such prompts do not occur trivially. Their
occurrence is determined (as we have seen above) by a comparison of the
utility of the test (i.e., the information that may be possessed by the user)
with the cost of requesting that Informatiom. The estimate of cost should, in
principle, be highly sensitive to the current prevailing workload and time
stress on the pilet. It should reflect the cost of diverting the pilet from
other tasks, as well as the system-computed time remaining until & decisiomn
regarding the pop-up threat must be made. In ARR, therefore, the degree of
human interactionm will wary automatically with circumstances. (Note that even
when he has been prompted, the user may decline to respond. Im that case, the
automated conflict resolution process will resume, for example, by proceeding
to a higher ceost test or to the phase of overall discounting.)

In the time-stressed cockpit environment, under conditions of conflieting
evidence, the CREDIBILITY screen directs the pilot's attention to thoze
assessments {a) about which he is likely to have some information, and (b)
which are 1likely to have the most impact on conflict resolution. Credibility
factors which satisfy these criteria are highlighted.

Under conditions of inconsistent evidence, the SITUATION display serves a dual
purpose: (1) it prompts the user regarding the conflict (if appropriate), and
indicates the mature of the conflict (in yellow) on the spatial display; (2)
at the same time, however, its primary purpose remains the display of an ag-
gregated set of danger contours incorporating all relevant information. Thus,
it does not provide a vivid or concrete plceture of the lmplications of the
conflict to the pilet, Similarly, the RECOMMENDED display provides a route
revision which incorporates all currently available information. That is,
this is the "compromise”™ route considered optimal by the ald under the condi-
tion that no further information (¥which might resolvwe the conflict) were to be
obtained. If he chooses however, the user may examine inm a "what-if" fashion
various ways in which the conflict might be resolved and their implications
for route selection, Thus by selecting POSSIBILITIES, he may view alternative
confliet resolutions., For example, screen 5-8 shows danger contours which
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Figure 53-8
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would exist 1if we were to assume that the correct interpretation of the new
SAR signal imveolves a previously unidentified threat. Correspondingly, Figure
5-% showas dangar contours which would exist wers we to assume that the correct
interpretation of a SAR signal imvelves a previously identified threat. If
the user now selects RECOMMEND under either of these posalbilities, the aid
displays the recommended route revision which would be appropriate if the cur-
rently selected "possibility" were to be realized (Figures 5-10 and 5-11).

By these means, the user 1s able to obtaln & gquick appreclation of the nature
of the conflict (i.e., how his mental pleture of the tactieal situation would

change under different conflict resolutions) and the implications of the con-

flict for his choice of a route, Such a concrete representatiocn of alterna-

tive possibilities is a more natural representation of uncertainty in this
situation than the more aggregated (but equally necessary) "compromise® dis-
plays provided by the SITUATION screen. It corresponds to the pilot's desire
to think concretely about "what is out there", and yet at the same time does
not permit him to ignore the uncertainty inherent in that process.

The implemented demonstration system focuses primarily on the resclution of
cemflict regarding the number and localization of threats, However, the in-
ference mechanism and interface design are equally applicsble to conflict of
evidence in virtuwally any inferential problem. Figure 5-12 illustrates a
SITUATION screem in which conflict regarding the ID of a threat is indicated.
In this case, the REASONS screen (Figure 5-13) shows the relative support for
various ID possibilities (5A-2, SA-4, etec.) and indicates the reasons which
confirm or disconfirm each possibility; similarly, CREDIBILITY indicate fac-
tors which influence the credibility of each source of evidence. The PO5-
SIBILITY screens (Figures 5-1& and 5-15) show the implications in terms of

danger contours for each possible resolution of the comflict, and RECOMMEND
shows the implications for route selection. -

A somewhat different, but equally appropriate, use of the !ﬁmrﬁﬂaﬂt interface
design iz for in-flight retasking. Figure 5-16 illustratesz a SITUATION screen
in which the aireraft has been instructed to engage a different target, and

the pilot has used BEECOMMEND to request ARRE to provide a recommended route
revision.
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Figure 5-10
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Figure 5-14
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Figure 5-16
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6.0 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Development of an adaptive self-revising inference engine for handling uncer-
tainty can make a significant contribution te the technology of decision
aiding in real-time tactical enviromnments. The research described above has
demonstrated the feasibility of such a concept. It has produced a design for
expert systems Inferencing with very wide applicability. Im wvirtually all
problem solving domains where expert systems technology might be introduced,
there is need for explicit and valid gquantitative modeling of uncertainty. At
the same time, there 1s need for a metastructure of qualitative reasoning in
which the assumptions utilized in the probability model are reassessed and
revigsed in the course of the argument. These are the dual requirements
addressed by the inference framework described im Sectiom 3 and implemented in
the system described in Sections & amd 5 sbowe.

The next logical step in this research is to go beyond the prototype system
described in Sections 4 and 5, to the development, implementation, and testing
of a completed system for in-flight route replamming. The resultant system
should have immediate relevance to current Alr Force efforts to introduce
highly promising new technologies Iinto aircraft avionics.

Successful development of such a system would have repercussions going well
beyond the specific application of in-flight route replanning. Together with
the theoretical framework described above the successful implementation of a
completed system would result in the existence of a powerful techmelogy for
the building of expert systems in a wide variety of domains. What is learned
in this application could be applied in much greater generality, enabling the
building of systems capable of accommodating uncertainty both at the level of

probabilistic reasoning and at the level of qualitative testing and revising
of assumptions.

A completed in-flight route replanning system would require further refine-
ments in the design and algorithms implemented im the prototype system
developed during the present effort. Particular developments needed are the
exploration of more general forms of discounting, alternmative ways of
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pricricizing information search, more general sensor management and user in-
teraction capability, as well as other refinements. In all of these
refinements, the aim is to implement the Inference mechanism in as modular a
fashion as possible and as independently as possible from specific domain
knowledge, Such an effort woudl result in a generically useful expert systems
building teol, suitable for a wide varlety of applications domains.

Another cruclal feature of expert systems Implementation is the incorporation
of expert knowledge inte the system. Desplte itz fmportance, knoewledge
elicitation continues to be an ill-defined and eclectic art which demands
enormous amounts of time from both computer scientists and domain specialists,
Another promising avenue for other research, therefore, is an exploratien of
the implications of our inference framework for knowledge elicitatien, both

specific to the in-flight route replarming application, and more generally
across application domains.

The inference framework developed under this research may contribute in three
different ways to progress in automating and streamlining the knowledge
elicitation process. First, our framework, by allowing the building of
adaptive, self-improving systems, already provides mechanisms for learning and
altering the system's reasoning mode in changing enviromments. Second, by of-
fering a highly structured framework for representing knowledge and manipulat-
ing arguments, it provides a type of support for the knowledge elicitation
process not afforded by other expert system frameworks. Finally, it may form
the eventual basis of an automated knowledge elicitation tool which applies
and reconciles sultiple methods of eliciting expert knowledge.
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