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1.0 INTRODUCTION 

1.1 Scope and Structure of Report 

The primary purpose of the present research has been to demonstrate the 

feasibility of designing intelligent systems with the capacity for adaptive, 

flexible reasoning in uncertain and changing environments. The overall goals 

of the project are (1) the development of innovative inference frameworks for 

reasoning in avionics environments characterized by high stakes, large volumes 

of complex and conflicting information, and the need for rapid response; and 

(2) to lay the groundwork for a more general understanding of the process of 

choosing and designing inference frameworks for avionics expert systems 

applications. The achievement of these objectives would have far-reaching im- 

plications for the successful application of artificial intelligence technol- 

ogy in both military and civilian contexts, allowing the development of sys- 

tems which fully exploit, while significantly improving upon, human intel- 

ligent reasoning. The ultimate result should be improved performance, at com- 

paratively little cost, of a wide range of combat systems. 

This report details the contributions of the initial phase of this research. 

The remainder of this introductory section provides background on the problem 

and briefly summarizes specific objectives. Sections 2 through 5 report on 

the results. Section 2 is a critical review of alternative inference 

theories. The review highlights the shortcomings of current approaches in 

providing fully adequate representations of uncertainty, and fully adequate 

techniques for adaptively manipulating uncertain beliefs. Section 3 describes 

the main product of the effort, an innovative framework for expert system in- 

ference in uncertain domains. Section 4 describes the application of that in- 

ference framework to an Air Force combat environment in a small-scale 

prototype system for in-flight route replanning. Section 5 describes a com- 

plementary line of research on concepts for human-computer interaction, and 

discusses their application in the prototype system. Section 6 summarizes the 

work and briefly explores directions for the future. 



In recent years techniques of artificial intelligence (AI) have been employed 

to replicate, or improve on, human reasoning in an increasing sphere of in- 

ference and decision-making tasks (Hayes-Roth et al., 1983; Buchanan and Duda, 

1982). Expert systems have now been developed for medical diagnosis and 

treatment (e.g., Shortliffe, 1976), geological exploration (e.g., Duda et al., 

1979), chemical analysis (Lindsay et al., 1980), military planning (Engleman 

et al., 1979), and other areas of specialized human skill. 

Unfortunately, the introduction of A1 technologies into real-time tactical en- 

vironments has been relatively slow. Among the reasons for lack of progress 

are a set of technical obstacles arising largely from the complexity of the 

inference task in these problem domains: (1) Near-future avionics environ- 

ments will be characterized by high stakes and increasing numbers of high per- 

formance threats both in the air and on the ground, heightening both the time 

pressure and the uncertainty under which systems must function. Avionics 

decision aids must support real-time decisions in rapidly changing 

environments, while utilizing data sets which are large, incomplete, 

unreliable, and often inconsistent. (2) In air-to-air and air-to-ground 

combat, conflicts between critical objectives occur frequently and must be 

resolved. E.g., the requirements to communicate with other units, to localize 

threats by means of active emissions, or to move into proximity to a potential 

target all may conflict with the goal of concealing one's presence and 

location. (3) New advances in avionics technology have often led to the in- 

troduction of "black boxesn which are poorly integrated with other hardware or 

software components, and whose displays and controls are incompatible. Future 

systems therefore will involve exchange of outputs among subsystems which 

utilize radically different methods of representation and inference, e.g., 

rule-based architectures for predicting threat capabilities versus mathemati- 

cal or statistical techniques of signal analysis, and must utilize a common 

set of user-system dialogue procedures. (4) In these environments human 

abilities to deal with unanticipated events, or ill-defined concepts, may be 

crucial. To obtain true synergy between human and computer capabilities, the 

aid must permit a dynamic and flexible partitioning of reasoning task com- 

ponents between human and computer, be able to communicate both the degree of 



confidence and the rationale behind its recommendations, and facilitate intel- 

ligent override at any point in the reasoning process. 

In recent years, serious attention has turned in the AI/expert systems com- 

munity to the problem of reasoning about uncertainty (e.g., Buchanan and 

Shortliffe, 1984); and tentative theoretical steps have been made toward 

flexible systems capable of adaptive learning (e.g., Michalski et al., 1983). 

Nevertheless, current expert systems technology has for the most part failed 

to capture the capability of many domain experts to respond adaptively and 

flexibly to conditions which violate the original assumptions, to create new 

methods of reasoning where required, and to develop new ways of organizing 

data and collecting information based on unanticipated events. An adaptive 

capability of this sort is required in order to build systems that address the 

challenges of the modern battlefield. 

We believe that a significant opportunity for addressing these shortcomings 

exists in recent work on inexact reasoning in artificial intelligence and in 

statistics. 

The design of methods for inexact reasoning has in the past several years 

moved from the background into the forefront of attention in expert system 

research, and in A1 more generally. .In addition to the ad hoc numeric methods 

developed in such early systems as MYCIN and PROSPECTOR, a variety of formally 

justified quantitative approaches are now being discussed and implemented. 

Among the most prominent are variants of Bayesian probability theory, belief 

functions (Shafer, 1976), and fuzzy set or possibility theory (Zadeh, 1965, 

1972). Nonnumerical approaches to reasoning with incomplete information have 

also been developed, and are perhaps closer to the mainstream A1 tradition of 

symbolic reasoning: e.g., non-monotonic logic (Doyle, 1979; Artificial Intel- 

ligence (special issue), 1980); and the theory of endorsements (Cohen, 1985). 

Although there have been a few attempts (e-g., Nilsson, 1984; Ginsberg, 1984; 

Cohen, 1985) to integrate the numeric and non-numeric traditions, for the most 

part they have remained separate. 

Uncertainty calculi will eventually be judged by how successfully they con- 

tribute to a variety of expert system functions; for example: (1) deriving 

the uncertainty of a conclusion from uncertainty in data and rules across 



potentially lengthy lines of reasoning; (2) combining different items of 

evidence or outputs of different analytical subsystems; (3) resolving con- 

flicts between different lines of reasoning (e.g., by collecting more informa- 

tion or by revising assumptions); and (4) displaying conclusions, 

explanations, and measures of confidence to users in ways that are readily 

understood. In time-stressed environments additional functions may include: 

(5) efficient allocation of resources among different lines of reasoning or 

information collection options, (6) halting computations when results are 

"acceptable enoughn in the light of prevailing time and resource constraints. 

Unfortunately, no current systems effectively encompass these diverse 

capabilities. Moreover, there has as yet been little systematic investigation 

of the impact of alternative inference frameworks on expert system functions. 

Alternative frameworks differ in the concept of uncertainty they attempt to 

capture (e.g., chance, imprecision, or incompleteness of evidence) and the 

degree to which appropriate normative justifications have been achieved. 

They differ also in the demands they impose on experts for assessments, in the 

computational burden they impose on the system, and in the ease with which 

they represent distinctions and yield conclusions which are natural to a par- 

ticular expert, user, or problem domain. Design choices, in short, must be 

multidimensional. But it is by no means clear how tradeoffs among these com- 

peting considerations should be resolved. 

Perhaps more importantly, current expert systems have typically incorporated 

rather primitive knowledge representation schemes (e. g. , a homogeneous collec- 
tion of rules), and such systems have been unable to duplicate the adaptive, 

iterative model revision process practiced by human experts. 

The present work represents an initial effort to address these technical chal- 

lenges in the context of avionics expert systems. The ultimate objectives are 

to develop improved inference architectures for pilot decision aid applica- 

tions and to develop a more general understanding of the process of choosing 

and designing inference frameworks for avionics expert system applications. 

Existing approaches to reasoning about uncertainty have been critically 

analyzed and an innovative inference framework has been developed which incor- 

porates elements of a variety of existing approaches and which provides a 

unique capability for adaptive self-improving inference. The feasibility of 



this concept has been demonstrated in a specific avionics application area: 

i.e., inflight route re-planning in the face of strategic pop-up threats. A 

prototype aid has been developed for demonstration purposes which illustrates 

both the inference framework and the user/computer interface, and which will 

serve as a foundation for continued research and development. 

1.3 Summary of S~ecific Objectives of the Research 

In sum, the specific objectives of the present research (described in detail 

in the following sections) were: 

o to perform a critical review and evaluation of alternative inference 
frameworks (including Bayesian, Shaferian, fuzzy, non-monotonic), iden- 
tifying strengths and weaknesses for use in expert systems designed for 
real-time tactical environments (Section 2); 

o to develop improved inference frameworks for real-time tactical expert 
systems (Section 3); 

o to develop concepts for human-computer interaction (Section 5); 

o to implement the developments of Phase I in a small-scale prototype sys- 
tem in a selected avionics context (Sections 4 and 5 ) .  

The overriding aim of the present research effort was to demonstrate the 

feasibility of our inference framework. From the results reported below it is 

clear that this objective has been met. Section 6 discusses directions for 

future research, both theoretical and applied. 



2.0 REVIEW AND CRITIQUE OF ALTERNATE INFERENCE FRAMEWORKS 

2.1 Overview. 

For purposes of this review, we divide inference theories into three general 

categories. The first category is that of quantitative theories for repre- 

senting and manipulating uncertainty. Of these, Bayesian probability theory 

(e.g., Savage, 1954) has the longest and most distinguished history. 

Recently, a great deal of attention has been devoted to two newer numerical 

theories: Shafer's (1976) theory of belief functions and Zadeh's (1965) 

theory of fuzzy logic. 

The second category of inference theories is a set of qualitative, non-numeric 

inference frameworks. Our discussion begins with a brief mention of classical 

logic. Based on classical logic is the theory of non-monotonic logic (Doyle 

1979), which is an outgrowth of theorem-proving systems in artificial 

intelligence. Non-monotonic logic allows for provisional acceptance of uncer- 

tain premises, which may later be retracted when they lead to contradictory 

conclusions. Toulmin (1958) introduces a new theory of logtc based on an 

analogy with jurisprudence rather than the abstract mathematics of classical 

logic. Paul Cohen's (1985) theory of endorsements is another outgrowth of the 

artificial intelligence tradition. Cohen's system represents uncertainty 

about a rule or conclusion by qualitative endorsements, which are propagated 

through inferences to conclusions. 

The third category of inference mechanisms consists of systems attempting to 

synthesize logic and probability in some way. Two approaches are discussed: 

Lagomasino and Sage (1985) ostensibly base their theory on Toulmin's theory of 

logic, while Nilsson (1984) uses classical logic. 

2.2 Numerical inference theories. 

2.2.1 :. Using probability theory for inexact 

reasoning. Probability theory has become central to modern scientific 

culture. As such, it is the obvious calculus to consider for handling inex- 

actness in expert systems. Its supporters in this role date back to the early 

work on probabilistic information processing (see Edwards, 1966) and earlier; 



more recent contributors have been de Dombal (1973), in the field of medical 

decision making, and Schum (1980) in the intelligence field. 

The application of probabilistic reasoning to rule-based expert systems is 

complex, but it can be illustrated with a simple example. Part of an expert 

system for avionics applications could be a threat classification system. A 

rule in such a system might be: 

IF (OBSERVED SIGNAL HAS FEATURE X) 
THEN (THREAT IS SA-4) LR - 2.3) 

where LR quantifies the impact of the evidence (the signal feature) on the 

hypothesis (that the threat is an SA-4). LR is a likelihood ratio, i.e., the 

probability of a signal with feature of type X given that the threat is an SA- 

4 divided by the probability of that signal feature given that it is not an 

SA-4. Satisfaction of the antecedent of this rule would lead to a process of 

Bayesian updating, in which the impact of the new evidence is combined with 

the prior odds of the hypothesis being true. Suppose H is the hypothesis that 

the object is an SA-4. Then Bayes' Theorem gives, in odds-likelihood form, 

where D is the data that the signal has feature X, and H is the hypothesis 

that some other classification of the threat is appropriate. To carry out a 

simple analysis of this kind, three assessments are required, namely Pr[DJH], 

pr [D J H ~ ]  and Pr [HI , i. e. , the likelihoods and the prior probability. 

Work on Bayesian approaches to inference has advanced from a simple one-step 

application of Bayes' rule to the elaboration in recent research of rather 

complex structures capable of capturing a wide diversity of human inference 

tasks and prescriptive intuitions (e.g., Schum, 1979, 1981). Bayesian 

techniques, for example, are able to accommodate a number of different ways 

that items of evidence can be related to one another with respect to a 

hypothesis (Schum and Martin, 1980): e.g., they may be contradictory 

(reporting and denying the same event) , corroboratively redundant (reporting 

the same event), cumulatively redundant (reporting different events which 



reduce one another's evidential impact), or non-redundant (reporting different 

events which enhance or do not change one another's evidential impact). In 

other, more complex cases of interdependence, Bayesian techniques capture the 

evidential impact of biases in an information source or non-independence of 

information source sensitivity with respect to what is being observed. 

The following discussion highlights the major strengths and weaknesses of the 

Bayesian approach to uncertain reasoning in expert systems. 

Feasibility: Quantity of inputs. When one attempts to use Bayesian probabil- 

ity theory on real inference problems, one quickly becomes aware of the com- 

plexity of the task. This complexity led Shortliffe (apparently) to construct 

his calculus of certainty factors as an alternative (see Shortliffe, 1976, 

Section 3.2). Schum (1980, p. 207) ends his advocacy of the Bayesian approach 

with a negative note: "...now we have other problems. I believe nobody real- 

ized how many ingredients there would be and how complex the judgments about 

these ingredients would be even in apparently simple cases." In all but the 

most trivial cases, a proper Bayesian analysis requires a great many condi- 

tional probabilities to be assessed. Schum presents the analysis of a fairly 

simple legal trial involving 7 pieces of evidence (Salmon's pills) and shows 

that at least 27 probability judgments are needed, even if all reasonable in- 

dependence conditions hold. As well as requiring a very large number of prob- 

ability assessments, the relations between them are difficult to organize, and 

the coherence of the total set of assessments is often difficult to determine. 

Two important lines of defense for Bayesians are (a) that simplifying assump- 

tions can always be made, e.g., equal prior probabilities, conditional inde- 

pendence of events; and (b) that variables which one does not care to deal 

with may be "integrated out," i.e., the resulting probabilities are regarded 

as marginal ("averages") with respect to possible values of the ignored 

variables. Thus, a Bayesian model may be created which is as simple as one 

likes. 

Unfortunately, however, the situation is not quite as clear cut as this. 

"Simplifying assumptions" must in some sense be judgments (e.g., that priors 

are roughly equal, that events are conditionally independent). Otherwise, one 

sacrifices the validity of the Bayesian approach. As one Bayesian (Lindley, 



1984) has put it, the Bayesian argument shows you the things you have to think 

about; so, think about them. From the Bayesian point of view, an argument 

which omits these factors is simply spurious. In the case of "integrating 

outn certain variables, no formal problem presents itself, since from a 

theoretical point of view the results with and without such variables should 

be the same. In actual fact, however, the difference in plausibility of the 

overall analysis can be very great (as we shall note below). Thus, although 

the required number of assessments may in fact be reduced by either of these 

means, the difficulty of the judgments required to do so may be considerable. 

Schum speaks of them as "exquisitely subtlen. 

A quite different approach, which we shall explore in greater detail below, is 

to regard simplifying strategies as assumptions whose validity is tested im- 

plicitly through their use in reasoning. If the outcome of using such assump- 

tions is plausible, the burden of explicitly judging their validity is 

avo ided . 

A related tactic is to accept the Bayesian framework as, in principle, the 

correct way to handle uncertainty, and divert our research interests to ap- 

proximations that are as close as possible to the Bayesian norm. Indeed, 

Shortliffe (1976, p. 164) originally saw certainty factors as a device in this 

direction. Shortliffe, however, did not explicitly derive his theory as a 

special case of the more general Bayesian model. Adams (1976) showed that as- 

sumptions necessary to derive Shortliffe's postulates in some cases do not 

exist, and in other cases are far more restrictive and implausible than the 

usual assumptions of equal priors and conditional independence. We shall 

return to this topic in the discussion of Shafer's theory (Section 2.2.2). 

Computational tractability. There is no known, computationally tractable 

method for propagating uncertainties consistently through an arbitrary 

Bayesian network. Restrictions of some sort on the kind of model that is 

utilized are necessary. The only question (as in the previous discussion of 

inputs) is whether the restrictions will be plausible (i.e., define a 

meaningful, useful special case of Bayesian modeling) or ad hoc. PROSPECTOR 

adopted the latter approach. More recently, Pearl (1982) and Kim (1983) have 

explored the former. They show that independence assumptions make sense, and 

probabilities can be propagated by simple local computations, if the inferen- 

- 9 -  



tial network has (a) a causal interpretation, and (b) the form of a Chow tree 

(i.e., 'it lacks undirected cycles). Unfortunately, not all real problems will 

fit this special structure. 

If validity is not to be sacrificed, computational tractability for a Bayesian 

system can be purchased only in special cases; and even then, only at the cost 

of complex and subtle judgments regarding interdependence among items of 

knowledge and the overall structure of the inferential argument. As we shall 

see, the situation is quite similar for Shaferian belief functions. For this 

reason, Shafer (1984a) has recently argued, the introduction of probability 

into expert systems appears to be inconsistent with the modularity of 

knowledge representations that up to now has been the most salient charac- 

teristic of such systems. 

In Section 3 we shall return to some of these questions. We will propose that 

a careful use of qualitative reasoning, superimposed upon a probabilistic 

system, may reduce the requirement for experts (or users) to address issues of 

interdependence and model structure explicitly, and make such assessments 

easier when they are required, without undo compromise of validity. In Sec- 

tion 4, we describe a small-scale pilot implementation of an avionics expert 

system based on this approach. 

Validity: Axiomatic derivation. Bayesian probability theory has a 

preeminent, though perhaps not conclusive, claim to validity among current 

proposals for the handling of uncertainty. De Finetti (1937/1964) showed that 

unless your beliefs conform to the rules of probability, a clever opponent 

could make you the victim of a "Dutch book," i,e., a set of gambles you would 

accept, but in which you lose regardless of the outcome of an uncertain state 

of affairs. More recently, Lindley (1982) has given a new derivation. Sup- 

pose that people are going to measure the uncertainty of events by some 

method, and we wish to know how good they are at doing so. If we devise a 

scoring system of any sort--as along as (a) the score is a joint function of 

the uncertainty measure and the event's truth or falsity, and (b) scores are 

additive across different events--then no matter what events actually occur, 

the best achievable score will always go to a form of Bayesian probability. 

Lindley concludes that "only probability is a sensible description of 

uncertainty." 

- 10 - 



A common objection to this sort of demonstration is that we are not in fact 

always (or usually) faced with a malicious adversary or, indeed, with a scor- 

ing system. But the point is not that we are, or should somehow presume that 

we are, always subjected to such peculiar circumstances. Even if we never en- 

counter these conditions, other things being equal, a system which has the 

property of working well in them is more desirable (in all circumstances) than 

one which does not. It is plausible than an adequate system of uncertainty 

would guard against a Dutch book. It is plausible that such a system would 

score high if we ever chose to score it. 

The more fundamental objection, in our view, is that while probability theory 

has been shown uniquely to possess a desirable property, but has not been 

shown to be uniquely justified. Other systems of uncertainty may have 

desirable properties that probability theory lacks. (In particular, alterna- 

tive theories might deal more adequately with different kinds of uncertainty, 

such as incompleteness of evidence or imprecision. In this regard, note that 

De Finetti's and Lindley's arguments do not apply to systems which provide 

more than a single measure of uncertainty for each event, such as the upper 

and lower measures in Shafer's theory, or fuzzy probabilities in Zadeh's.) 

Nonetheless, it seems incontrovertible to us that the existence of founda- 

tional arguments such as those described is a strong plus for Bayesian theory. 

Plausibility of instances. The thrust of Bayesian analysis is to improve, 

rather than to replicate ordinary thinking. Bayesians argue that if one's or- 

dinary intuitions are probabilistically incoherent, they ought to be changed. 

We might expect, nevertheless, that these revisions of belief would typically 

lead to judgments that are regarded as more plausible after reflection. In 

other words, the plausibility of the axioms should outweigh the initial 

plausibility of an incoherent set of judgments. In some cases, this seems 

true, e.g., most people who understand an explanation of the "gambler's 

fallacy" seem to accept that it is a fallacy; in other cases, perhaps, it is 

not true (e.g., Slovic and Tversky, 1974). 

There is another issue here which is, we feel, more important. Even if 

revised (hence, coherent) beliefs are more plausible than unrevised, in- 

coherent ones, all the credit cannot go to Bayesian theory. The reason is, 



that the selection of a specific revision is not uniquely determined by the 

requirement of coherence. Consider, again, the example above of inferring the 

chance of H, i.e., that a particular threat is an SA-4, based on analysis of a 

signal A. Bayesian theory tells us only that our assessment of Pr[H] should 

be the same as Pr[HJA]Pr[A] + Pr[HJA]Pr[A], which is based on our assessments 
of Pr[H(A], Pr[A], and Pr[H(A]. The theory provides no guidance in the case 

where the two are not equal. Coherence by itself does not dictate that the 

result of an analysis is to be preferred to a direct judgment. We might 

choose to revise one or more of the assessments in the analysis, rather than 

to revise Pr[H]. 

This problem, which we may call the incompleteness of Bayesian theory, is ex- 

acerbated by the fact that in any problem there is more than one possible form 

of analysis. Many advocates and many critics of the Bayesian approach seem to 

imply that there is only one way a probabilistic analysis could be carried out 

and only one possible conclusion. To see that this is not the case, we return 

to the example of inferring H. Let B be intelligence information that the 

country in question had purchased in the last year an important component 

required for construction of an SA-4 installation. Instead of, or in addition 

to, conditioning our assessment on A, as above, we could condition on B, 

namely 

Pr [HI - Pr [H J B] Pr [B] + ~r [HI;] ~r [s] . 

Yet again, we could condition jointly on A and B: 

A 
Pr [a] - Pr [H ( AB] Pr [AB] + Pr [H JAB] Pr [El + Pr [H (kl pr [GI + pr [H (El pr [El . 

Still more choices are open to us: for example, we could assess Pr[AB] 

directly, and/or further analyze it as Pr[A(B]Pr[B], and/or as Pr[BJA]Pr[.A]. 

The Bayesian theoretical attitude is straightforward, namely that it does not 

matter which sf these forms of analysis we perform or which answer we select, 

since coherent probability assessors should derive the same nwnber whichever 

method they choose. Theory, however, is of use because we are not ordinarily 
coherent in our assessments. An analysis may well give us a different es- 

timate of Pr[H] than if we directly judged it; otherwise, we wouldn't bother 



with the analysis. Moreover, different analyses may well give us different 

answers; otherwise, we would have no cause for regarding some analyses as 

"bettern than others. 

An important assumption of Bayesian theory is that all analyses (by the same 

person) are based on the same evidence; they do not differ in the knowledge 

they draw upon. We would argue that this is, psychologically, not true. Dif- 

ferent ways of formulating the same problem may well tap different internal 

stores of information. What is missing from the Bayesian framework is some 

notion of the quality of probability inputs, i.e., the amount of knowledge or 

completeness of evidence that underlies them. Several points can be made: 

Revision of probabilitf judgments should be guided by a judgment 
of their quality, i.e., the amount of knowledge they represent. 

More than one analysis may be of value, if they bring different 
knowledge to bear in a prbblem (cf . , Brown and ~indle~, 1982, 
1985). 

The application of Bayesian theory to a problem is not necessarily 
a linear process in which inputs are provided and conclusions 
computed. It is (or often should be) an iterative process, in 
which comparison of conclusions arrived at by different methods 
leads to revisions of inputs and assumptions, until overall con- 
sistency is achieved. 

In ordinary statistical problem solving, perhaps, judgments of may 

safely remain implicit. But a major limitation in the automation of Bayesian 

theory within expert systems is the lack of an explicit measure of complete- 

ness of evidence, and a mechanism for its use in the revision of probability 

estimates. 

This will be a major focus in our discussion of Shafer, below, and in the new 

developments to be described in Section 3. 

Semantics: Behavioral specification. Bayesian theory provides a clear be- 

havioral interpretation of probabilities in terms of preferences among bets. 

We can know what someone's probabilistic beliefs are by observing their ac- 

tions under specified conditions. By contrast, a common complaint by 

Bayesians regarding other theories is the difficulty of knowing what the basic 

measures mean. 
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There are three different, but related, misunderstandings of this "operational 

definition." First, critics point out that betting may be an awkward and in 

some cases an impossible method for eliciting probabilities. It is often 

easier to ask for direct verbal judgments. There is a standard answer to this 

point by sophisticated Bayesians: Meaning need not be equated with evidence. 

Bayesians can use any method they like for estimating your probabilities, if 

there is a reasonable expectation that the result will match, or at least 

approximate, what they would have gotten had they used the betting paradigm. 

This response hides a more subtle misunderstanding. It is still assumed that 

we can, at least in principle, always know what a person's probabilities are, 

simply by testing his preferences among bets. Since the operational defini- 

tion specifies a situation where he must make a choice, it is implied that any 

person "hasn probabilities waiting to be uncovered or "elicited". Is 

Bayesianism thus inevitable? This conception seems to be contradicted by the 

incoherence we typically find in people's unaided judgments, and which is 

amply documented in the experimental psychology literature (e.g., Kahneman, 

Slovic, and Tversky, 1982). 

The sophisticated Bayesian was right, we suggest, in distinguishing meaning 

and evidence. But--sophisticated as he is--he has not absorbed the full im- 

plications of that distinction. Although he permits other kinds of evidence, 

he is still equating meaning with a particular observable operation. The 

problem, as pointed out by Quine (1953) and others in a more general critique 

of positivism, is that the selection of this rather than some other component 

of the theory as a "definitionn is arbitrary. To return to our earlier 

example, suppose we equate Pr[H] for a person X with X's betting behavior in 

regard to H. Then we determine in the same way his value for Pr[HIA], 

Pr[HIA], and Pr[A]. Finally, we compute a new probability of H, Pr9[H], from 

the latter three values. Why shouldn't we define X's probability for H in 

terms of this operation, i.e., as Pr9[H]? One reply is that this operation 

requires a theoretical assumption viz., that X is coherent, to justify the 

computation of Prt [HI from Pr[HJA] , P~[HJ~], and Pr[A] . But the earlier 

"operational definitionn could be regarded as theoretical, too, since it is a 

theoretical hypothesis (i.e., that X acts so as to maximize subjectively ex- 

pected utility) that enables us to derive X's probability for H from his 



preferences among gambles involving H. Conversely, we could regard the 

definition in terms of Prg[H] as purely "behavioral", by ignoring the 

theoretical hypotheses implicit in our calculations. 

It is far more natural to regard all these potential "definitionsn simply as 

theoretical predictions. How then, without definitions, do we assess the 

probabilities and utilities required to derive the predictions? The answer is 

that testing a theory is, inevitably, a bootstrapping operation, in which we 

use the theory, as if it were true, to estimate values for an interrelated set 

of parameters, then test for consistency of the results. If the results are 

consistent, the theory is confirmed; if not, it is disconfirmed. (For a 

general discussion see Glymore, 1980.) To the extent that people are prob- 

abilistically incoherent, therefore, probability theory is disconfirmed, and 

they cannot be regarded as "having" probabilities at all. 

Have we overlooked the difference between descriptive and prescriptive 

theories? Perhaps "operational definitions" make sense for probabilities be- 

cause they form part of a prescriptive theory. On the contrary, we suggest 

that there is a strong and important parallel between theory testing, as we 

just described it, and prescriptive analysis. Just as in descriptive science, 

we assume the prescriptive theory to be true, use it to perform a set of in- 

terrelated analyses, and then test them for consistency. However, if we find 

inconsistency among alternative prescriptive analyses, or between an analysis 

and direct judgment, we do not (necessarily) drop the prescriptive theory; we 

may choose to revise the values in one or more analyses so as to make them 

consistent. In so doing, we construct rather than discover or confirm a prob- 

ability model for our beliefs. 

What then is left of the Bayesian claim that operational definitions are 

required for clarity of concepts? The third and final misunderstanding we 

wish to address is the notion that because "operational definitionsn are 

arbitrary, and do not guarantee the applicability or even the relevance of a 

prescriptive theory, that behavioral specification is of no use. In fact, it 

is quite critical: without it, there is no link, or else no clear link, be- 

tween the prescriptive theory and action. With it, the prescriptive process 

described above, in which a coherent set of judgments is arrived at through 

successive iterations, also produces a clear set of implications for action. 



In expert system applications, such implications are typically the reason for 

developing the system. Moreover, such specifications may play a clarifying 

role for the decision maker in the process of iteratively arriving at an ap- 

propriate set of judgments. The existence of such specifications must, 

therefore, be counted as a plus for the Bayesian theory. 

Naturalness of inputs. Behavioral specification is not sufficient to 

guarantee the usefulness of an inference framework. A common objection to 

Bayesian theory urged by proponents of alternative views, is that the inputs 

it requires exceed, in various ways, the capabilities of the decision makers 

it is designed to aid. A distinction must be made between two types of claim 

against Bayesian theory: that it fails adequately to deal with imprecision 

and with incompleteness of evidence. 

Bayesians assume that experts are capable of quantifying their uncertainties 

and values to an arbitrary degree of precision. But this is true of no other 

known process of measurement. Experts may simply not know, to the required 

exactitude, what their beliefs or preferences are. 

Alternately, the evidence may be incomplete in that it does not justify the 

degree of confidence suggested by use of a single number to assess an 

uncertainty. Some assessments (e.g., the probability that the Soviets will 

invade Western Europe within the next year) are less well supported than 

others (e.g., the probability that a coin in my pocket will land heads if 

tossed). In the former cases, the available evidence may justify no more than 

a range of probabilities rather than a single number. 

There is an important distinction between these two complaints: the first is 

consistent with the basic prescriptive adequacy of probability theory, but 

seeks to accommodate human shortcomings in the assessment task. In contrast, 

the second objection has a normative basis: probabilities themselves are in- 

appropriate where evidence is incomplete. We shall explore these positions in 

more detail in our discussions of Zadeh and 'Shafer, respectively. 

A related problem is that the Bayesian framework addresses probabilistic and 

not causal relationships. In many instances (particularly for applications 

for which rule-based expert systems are suited) people's reasoning processes 



are naturally causally oriented (Abelson, 1985; Ross, 1977; Tversky and 

Kahneman, 1982). People may interpret probabilistic information causally, 

leading to commonly observed biases such as ignoring base rates or the con- 

junction fallacy. The persistence of such biases (Tversky and Kahneman, 1983) 

points to the difficulty of translating causal reasoning into probabilistic 

judgments . 

Concepts of uncertainty.  Bayesian theory is clearly designed to capture the 

concept of chance, or uncertainty about facts. We argued that an important 

gap in Bayesian theory is the lack of a measure of completeness or quality of 

evidence, i.e., the lack of a distinction between firm probabilities (.5 as 

the probability of heads on a coin toss) and those based on guesswork (.5 as 

the probability of a Soviet invasion). Intuitively, the weight of evidence 

supporting some probability judgments is stronger that that supporting others. 

We argued that this concept in fact plays an important role in ordinary ap- 

plications of probability theory, by guiding the choice among potential revi- 

sions of belief in the light of an analysis or set of analyses. We hope to 

demonstrate below (Section 3) that an explicit measure of this sort is criti- 

cal for the control of reasoning in an expert system that intelligently 

handles uncertainty about facts. 

To what extent could Bayesian theory itself be extended to cover the concept 

of completeness of evidence? Lindley et al. (1979) have recently attempted to 

formalize the intuitive notion that we are firmer about some probability 

assessments than others. The tool they introduce is a second-order probabil- 

ity distribution over possible values of the true first-order probability. 

The spread of the second-order distribution is a measure of the firmness of 

the original probabilities. Lindley et al. have described procedures for 

statistically aggregating inconsistent probabilistic analyses by means of such 

second-order judgments. 

These efforts have failed, in our opinion, for a variety of reasons. 

Feasibility: The quantity and difficulty of required inputs is increased, 

rather than decreased, to the degree that one's evidence is incomplete. Com- 

putational intractability will certainly be increased as well. V a l i d i t y :  

Axiomatic justifications and behavioral specifications which apply to first- 

order probabilities become much less convincing at higher levels, where, for 



example, gambles or scores which depend on one's own "truen probabilities, 

rather than actual events, lack plausibility. Face validity is dubious as 

well: e.g., if we attempt to measure the quality of our second-order prob- 

abilities in the same way, we are threatened with an infinite regress. Per- 

haps the most serious difficulty, however, is the implausibility of the in- 

ferences to which this model gives rise. In brief, the procedure for ag- 

gregating probabilistic analyses assumes that they disagree only because of 

"noise," or random error, in the assessment process; hence, it yields results 

which do not reflect the possibility that different analyses have drawn on 

different evidence. We suggest that from a psychological point of view, dif- 

ferent analyses may tap different portions of our store of knowledge, even 

when performed by the same individual. These points are amplified in Cohen et 

al., 1984, and in a planned paper by Cohen and Lindley. 

Summary. Bayesian probability theory is strong in the formal aspects of 

validity. Its logical foundations are perhaps uniquely compelling in applica- 

tion to the concept of chance. However, the input and computational burdens 

which it imposes, except when specialized models are adopted, are 

considerable. It has no adequate resources for representing the quality of an 

inferential argument, and requires an arbitrary degree of precision in numeri- 

cal judgments. Even its validity, in a more informal sense, can be 

questioned. Bayesian theory, as it stands, implies that one's beliefs should 

be coherent but provides no guidance for choosing among alternative equally 

coherent analyses. Moreover, by assuming that all assessments are based on 

the same evidence, it closes off the most promising source of such guidance. 

We have argued that the application of Bayesian theory to a problem is not 

linear process in which conclusions are computed from inputs. It is (or often 

should be) an iterative bootstrapping process in which comparison of conclu- 

sions arrived at by different methods leads to revision of inputs and 

assumptions, until overall plausibility is maximized. This process of revis- 

ing probability assessments should be guided by a judgment of their quality. 

A more satisfactory account of completeness of evidence is, therefore, 

essential. 

2.2.2 Belief functions. Nature of the theory. In the theory of belief func- 

tions introduced by Shafer (1976), Bayesian probabilities are replaced by a 

concept of evidential support. The contrast, according to Shafer (1981; 



Shafer and Tversky, 1983) is between the chance that a hypothesis is true, on 

the one hand, and the chance that the evidence means (or proves) that the 

hypothesis is true, on the other. Thus, we shift focus from truth of a 

hypothesis to the evaluation of an evidential argument. As a result, the sys- 

tem (a) is able to provide an explicit measure of quality of evidence, (b) is 

less prone to require a degree of definiteness in inputs that exceeds the 

knowledge of the expert, and ( c )  permits segmentation of reasoning into 

analyses that depend on independent bodies of evidence. 

In Shafer's system, the support for a hypothesis and for its complement need 

not add to unity. For example, if a witness with poor eyesight reports the 

presence of an enemy antiaircraft installation at a specific location, there 

is a certain probability that his eyesight was adequate on the relevant occa- 

sion and a certain probability that it was not, hence, that the evidence is 

irrelevant. In the first case, the evidence proves the artillery is there. 

In neither case could the evidence prove the artillery is not there. 

To the extent that the sum of support for a hypothesis and its complement 

falls short of unity, there is "uncommittedn support, i.e., the argument based 

on the present evidence is unreliable. Evidential support for a hypothesis is 

a lower bound on the probability of its being true, since the hypothesis could 

be true even though our evidence fails to demonstrate it. The upper bound is 

given by supposing that all present evidence that is consistent with the truth 

of the hypothesis were in fact to prove it. The interval between lower and 

upper bounds, i.e., the range of permissible belief, thus reflects the un- 

reliability of current arguments. This concept is closely related to com- 

pleteness of evidence, since the more unreliable an argument is, the more 

changeable the resulting beliefs are as new evidence (with associated 

arguments) are discovered. These concepts are not captured by Bayesian 

probabilities. 

In Shafer's calculus, support m(') is allocated not to hypotheses, but to sets 

of hypotheses. Shafer allows us, therefore, to talk of the support we can 

place in any subset of the set of all hypotheses. In the case of three 

hypotheses, HI, H2 and H3, for example, we could allocate support to HI, H2, 

Hg, (HI or H2), (HI or H3), (H2 or H3), and (HI or H2 or H3). As with 

probability, the total support across these subsets will sum to 1, and each 



support m(') will be between 0 and 1. It is natural, then, to say that m(') 

gives the probability that what the evidence means is that the truth lies 

somewhere in the indicated subset. 

Suppose, for example, that we know in the case of three hypotheses that H3 is 

false, but have no evidence to distinguish between HI and H2. In that case, 

we would put m((H1 or H2)) - 1, and give zero support to all the other pos- 
sible subsets. Alternatively, we may feel that the evidence either means that 

H3 is true, or that {HI or H3) is true, or that it is not telling us anything 

(i.e., (H1 or H2 or H3) is true), and that the weight of evidence is just as 

strong with each possibility. In that case m(H3) - m({H1 or H3)) - m((H1 or 

H2 or H3)) - 1/3. In a Bayesian analysis, arbitrary decisions would have to 

be made about allocating probability within these subsets, requiring judgments 

that are unsupported by the evidence. 

This same device, of allocating support to subsets of hypotheses, enables us 

to represent the reliability of probability assessments. Suppose, for 

example, that the presence of feature X in a signal is associated with an SA-4 

70% of the time and with other threats 30% of the time, based on frequency 

data from a set of previous signal analyses. If we are confident that an 

image now being analyzed is representative of this set, we may have m(SA-4) - 
.7 and m(other) - .3. But if there is reason to doubt the relevance of the 
frequency data to the present problem (e.g., due to possible presence of ECM 

in the region), we may discount this support function by allocating same per- 

centage of support to the universal set. For example, with a discount rate of 

30%, we get m(SA-4) - .49, rn(other) - .21, and m ({SA-4, other)) - .30. The 
latter reflects the chance that the frequency data is irrelevant. 

Shafer's belief function Bel(') summarizes the implications of the m(') for a 

given subset of hypotheses. Bel(A) is defined as the total support for all 

subsets of hypotheses contained within A; in other words, Bel(A) is the prob- 

ability that the evidence implies that the truth is in A. The plausibility 

function PI(') is the total support for all subsets which overlap with a given 

subset. 

Thus, Pl(A) equals 1- el (x) ; i . e . , the probability that the evidence does not 
imply the truth to be in not-A. In one of the examples above, with 
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we get: 

Dempster's r u l e .  Thus far, we have focused on the representation of uncer- 

tainty in Shaferls system. For it to be a useful calculus, we need a proce- 

dure for inferring degrees of belief in hypotheses in the light of more than 

one piece of evidence. This is accomplished in Shaferls theory by Dempster's 

rule. The essential intuition is simply that the "meaning" of the combination 

of two pieces of evidence is the intersection, or common element, of the two 

subsets constituting their separate meanings. For example, if evidence El 

proves (HI or H2), and evidence E2 proves (H2 or H3), then the combination El 

+ E2 proves H2. Since the two pieces of evidence are assumed to be 

independent, the probability of any given combination of meanings is the 

product of their separate probabilities. 

X Let X be a set of hypotheses HI, H2, ...,%, and write 2 for the power' set of 

X, that is, the set of all subsets of X. Thus, a member of 2' will be a sub- 

set of hypotheses, such as (H2, H5, H7), H3, or (HI, H2, H3, H4), etc. Then 

if ml(A) is the support given to A by one piece of evidence, and m2(A) is the 

support given by a second piece of evidence, Dempster's rule is that the sup- 

port that should be given to A by the two pieces of evidence is: 

The numerator here is the sum of the products of support for all pairs of sub- 

sets A1, A2 whose intersection is precisely A. The denominator is a normaliz- 

ing factor which ensures that m12(') sums to 1, by eliminating support for im- 

possible combinations. 
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Consider, for example, the following two support functions: 

Table 2-1 

1 ml(.) m2(') m12( ' 

In the third column, we have used Dempster's rule to compute m12('). For ex- 

ample 

where 

C - ml(Hl) [m2(H2) + m2 (H3) + m2(H2H3) 1 + ml(H2) [m2(H1) + m2(H3) + m2(H1H3) 1 

+ ml(H3) [m2 (HI) + m2 (H2) + m2 (H1H2) I + ml(H1H2)m2 (H3) + ml (HlH3)m2(H2) 

+ ml (H2H3)m2 (HI) 

and so 

Let us now examine the performance, or at least the potential, of Shafer's 

theory within our evaluation framework. 

Feasibility: Quantity of inputs. One of the main difficulties standing in 

the way of a Bayesian analysis is its complexity. At first sight the 

Shaferian approach seems simpler, since complicated independence judgments and 

conditional probability assessments appear not to be required. This ap- 

pearance is illusory. Support functions must be assessed over not just the 

hypothesis set, but over the power set of the hypothesis set. With 10 
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hypotheses, for example, the support distribution has 1,023 elements. For 

both Bayesian and Shaferian models, the required number of assessments or 

judgments increases exponentially with the number of events or hypotheses. To 

see the parallel, compare the Bayesian rule: 

with Shafer's rule: 

Bel((A or B)) - m(A) + m(B) + m((A or B)). 

In each case, to get an uncertainty measure for a disjunction (i.e., a member 

of 2X), we must make one assessment in addition to the measures already 

assessed for the elements. For Bayesians, the extra assessment is a condi- 

tional probability Pr[BIA]; for Shaferians it is the direct evidential support 

m((A or B)). 

A Shaferian response to this, in parallel with the Bayesian response, is that 

specialized models may be developed that require far fewer assessments. In 

fact, the belief function framework admits a variety of interesting special 

cases: e.g., 

a simple support functions: all support goes either to some one 
subset or to the universal set X. Either the evidence limits the 
truth to lie within one particular subset or it is totally 
unreliable. 

discounted probabilistic support functions: all support goes to 
individual hypotheses (as in a standard probability distribution), 
with some additional support possibly going to the universal set X 
(reflecting a judgment of the quality of the evidence for the 
probability distribution) ; 

consonant support functions: all support goes to a nested series 
of subsets of hypotheses; i.e., the evidence points in a certain 
direction but is unclear how far we should go; 

hierarchical support functions: the evidence supports subsets of 
hypotheses that can be arranged in a tree. 

Here again, however, (as in the Bayesian case) complex and difficult judgments 

must be made to determine that a particular specialized model is applicable, 



before savings in quantity of assessments can be realized. 

The problem for Shaferians may even be deeper. The applicability of 

Dempster's rule to two bits of evidence El and E2 is not automatic. It 

requires rather careful and difficult consideration of a whole set of indepen- 

dence assumptions. We shall return to this point in our discussion of the 

validity of Shafer's theory. 

Computational tractability. Here again the story is parallel to the Bayesian 

case. The employment of unrestricted belief function models would involve 

prohibitive computation. As a result, Gordon and Shortliffe (1984) propose to 

modify Dempster's rule to simplify computation in MYCIN. Shafer (1984a) has 

argued in response that ad hoc modifications of this sort might be avoided by 

a control strategy that intelligently exploits the structure of restricted 

belief function models, such as the hierarchical structure proposed for MYCIN. 

Here as in the Bayesian case, feasibility is purchased only in special cases, 

and, evidently, at the cost of complex and subtle judgments regarding the 

structure of the overall argument. 

Validity: Semantics. Shafer argues that the requirement for a behavioral 

specification of probabilities is irrelevant. People bet in a certain way be- 

cause of their beliefs and preferences; observing their own betting behavior 

will not help them to assess those beliefs. Shafer thus urges a shift from 

the positivist to a more cognitive orientation. He argues that uncertainty is 

quantified on the basis of an analogy between one's problem and a "canonical 

example". In Bayesian modeling, we assess the probability of an event by com- 

paring its likelihood with the likelihood of a frequency-based event, such as 

a random drawing from an urn. Thus, for Shafer, to say that the Bayesian 

probability of an event is x is to say that it is "like" the chance of drawing 

a white ball from an urn with a proportion of white balls equal to x. 

Similarly, to say that your Shaferian belief in a proposition is y, is to com- 

pare it to canonical examples in which the reliability of an evidential source 

is determined by chance. 

Unfortunately, Shafer's position is weakened by two considerations: First, 

his canonical examples, as we shall see below, are far more complex and less 

obviously usable, even from a cognitive point of view, than the Bayesian 



examples. Second, behavioral specification probably plays a cognitive role in 

clarifying the sense of a canonical example. For example, what does it mean 

to say that my uncertainty about whether an object is a building is "like" my 

uncertainty about drawing from an urn? In what respects must they be similar? 

Many people will find it illuminating when told it means that I would bet at 

equal stakes on either event. 

A major strength of Shafer's theory, nevertheless, is the naturalness of the 

input format it imposes: 

Assessments need go no further than the evidence justifies. As we 
have seen, "ignorance" is naturally represented by assigning sup- 
port to a subset of hypotheses, with no further commitment to an 
allocation within the subset. A Bayesian must decide among quite 
definite and distinct, but equally arbitrary, allocations of 
probability. 

Weight or completeness of evidence is quite intuitively repre- 
sented as the degree to which the sum of belief for a hypothesis 
and its complement falls short of unity. 

Assessments may be based on distinct, separable bodies of 
evidence, rather than requiring--as in Bayesian theory--that all 
assessments be based on all the evidence. 

Face validity. Belief function theory possesses no deep axiomatic justifica- 

tion comparable to the de Finetti and Lindley arguments for Bayesian theory. 

Not coincidentally, however, Shafer has offered a view of model "validation" 

which contrasts sharply with the axiomatic approach. On Shafer's view (1981; 

Shafer and Tversky, 1983), theories of inference are tools which can be used 

to help us construct (rather than elicit or discover) a set of probabilities. 

The justification for applying a particular tool to a particular problem is 

that we see an analogy between that problem and the canonical example underly- 

ing the theory. For example, to the extent that the Bayesian theory has any- 

thing to contribute, it is by establishing a persuasive analogy between your 

problem and a situation, like drawing balls from an urn, where the truth is 

generated by known chances. 

Bayesian analogies of this sort, according to Shafer, will usually be 

imperfect, because in the canonical example we know the rules of the game that 

determine how the truth is generated (e.g., the composition of the urn and the 



procedure for drawing a ball). In real problems, there are nearly always many 

aspects of the situation where comparable rules cannot be given without making 

numerous assumptions. When these assumptions become very extensive, it may be 

better to switch to a simpler kind of model, which is more plausible despite 

not giving a complete picture of how the truth is generated. Such simpler 

models can be based on canonical examples in which the meaning of the evidence 

rather than the truth is generated by known chances. 

We comment on Shaferls position at two levels: First, how convincing is his 

concept of validity? Second, how plausible or useful are the canonical ex- 

amples underlying belief functions? 

Concept of validity. For Shafer, validity reduces to face validity and 

plausibility of instances. His argument for this position, however, contains 

some confusion. Shafer mistakenly assumes that the adoption of an axiomatic 

framework implies a belief in pre-existing rather than constructed 

probabilities. Thus, Shafer (1984a) speaks derisively of assessment in the 

Bayesian context as "pretending" that one already has probabilistically 

coherent beliefs and preferences, and then, somehow, "trying to figure out 

what they are. " 

Our own view is that Shafer is correct to regard probability frameworks as 

tools for the construction, rather than discovery, of probabilities. But he 

is wrong in supposing that the axiomatic derivation of a framework detracts 

from this role--as long as we understand, as argued above, that axiomatic 

derivation is only one argument in favor of a given framework. If taken 

seriously, Shafer's argument would declare as nnon-constructive" any set of 

prior constraints on the way uncertainty is represented or manipulated; thus, 

it applies as strongly against belief functions and Dempster's rule as to 

Bayesian probabilities. The solution in our view is not to drop constraints, 

but to drop the view that any particular set of constraints is inevitable. 

Thus, probability assessment as we understand it is an iterative and construc- 

tive process, in which a tentative framework (e.g., Bayesian or Shaferian) is 

adopted, assessments are made within the framework, checked for consistency, 

and revised; if the overall result is unnatural or implausible, the framework 

itself may be rejected or revised. In other words, "pretendingn that a 

framework is correct is a legitimate strategy in uncertainty assessment; 
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indeed, it is the only possible strategy. A framework is of use as a tool 

precisely because it does impose (tentative) constraints on the assessments 

that are produced. It challenges the expert to actively shape a previously 

disorganized and perhaps even unverbalized set of beliefs. It serves as a 

medium or language in which the expert "thinksn about uncertainty and in which 

he expresses those thoughts. A supposedly "neutral" framework, that imposed 

no format or structure, beyond that already present, would not help the expert 

in the process of construction and could not advance his or our understanding 

of his beliefs. (See Cohen, Mavor, and Kidd, 1984, for a more general argu- 

ment in the context of knowledge engineering.) 

In sum, Shafer's argument for a constructive process of probability assessment 

is correct. But he appears to have drawn two unnecessary conclusions: (1) It 

in no way contradicts the added plausibility that may be lent to a framework 

by the existence of an axiomatic derivation; and (2) it should not blind us to 

the importance of the iterative strategy of tentatively adopting a framework 

and testing its implications. 

Shafer's canonical example. As noted above, when we apply a belief function 

analysis, we "pretend" that the meaning of the evidence is generated by known 

chances. In order to evaluate Shafer's theory in terms of face validity, we 

must examine this analogy more closely. In particular, we must focus on the 

independence assumptions embodied in the canonical example which are required 
t 

to license an application of Dempster's rule. It turns out that these assump- 

tions are the primary constraints imposed by Shafer's theory on the process of 

evaluating evidence; hence, they are its main contribution to the 

"construction" of probability judgments. They have also been the major source 

of controversy between Shafer and Bayesians. Early critics of Shafer's work 

(e.g., Williams, 1978) complained about the obscurity of Shafer's notion of 

"independent evidence." In a recent paper, however, Shafer (in press) has 

clarified this concept considerably. 

Shafer's interpretation of belief functions involves two sets of hypotheses 

(or "framesw) as shown in Figure 2-1. One frame, S, is a set of background 

hypotheses which concern the state of the process that produced the evidence 

at hand. For example, if the evidence El is a witness's testimony that he saw 

antiaircraft artillery in a certain location, the frame S may simply be the 
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two possibilities (the witness is reliable, the witness is not reliable). The 

other frame, T, contains the hypotheses of primary interest, e.g., (the artil- 

lery is present, the artillery is not present). To get a belief function, we 

only need (i) a probability distribution over S, i.e., standard probabilities 

P1 and P2, for the reliability and unreliability of the witness; and (ii) a 

mapping from S to T based on the content of the evidence. Since the evidence 

is the witness's report of artillery, reliability in S maps onto (the artil- 

lery is present) in T; unreliability in S maps onto the set (the artillery is 

present, the artillery is not present] in T. Support m(A) for a subset A in T 

is just the probability for hypotheses in S that map only onto A. (We have 

referred to this, somewhat loosely, as the probability that the evidence 

"means" A). Bel(A) for a subset A in T is the sum of the probabilities for 

hypotheses in S that map onto subsets of T that are contained in A .  Thus, in 

our example, Bel(artil1ery is present) - PI; Bel((present, not present)) - 
P1 + P2. 

Suppose we now receive a second piece of evidence, E2, which is the testimony 

of a second witness that he saw artillery in the same vicinity. We define a ' 

new belief function for this witness by specifying a frame S2 with the ele- 

ments (the second witness is reliable, the second witness is unreliable), and 

by assessing probabilities PI1 and P2' over S2. What is our new overall 

belief in the elements of T? Naming S as S1, Figure 2-2 shows a new frame, 

SlxS2, which results from combining elements of S1 and S2. Each cell has a 

probability which is the product of the probabilities of the elements from S1 

and S2; and each cell is mapped onto a subset of hypotheses in T, based on 

knowledge of El and E2. According to this mapping (as shown by the labels in 

the cells), support for the artillery being present equals the chance that 

either witness 1 or witness 2 is reliable, i.e., PIP1' + PIP2' + P2P11. This 
is the result given by Dempster's rule. 

What if the report of the second witness contradicts, rather than confirms, 

the first? That is, E2 is a report that artillery is not present in the 

specified location. In that case, the new frame, SlxS2, appears as in Figure 

2-3. The only change is in the mapping of the cells to subsets in T--a change 

required by the change in E2. It turns out, however, that the cell cor- 

responding to both witnesses being reliable does not map to any subset in T. 

Since El and E2 are contradictory, both cannot be true. Thus, we use our 
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FRAME S1 X S2 

Reliable 

(P; 

* Witness 2 

Not 
Reliable 

Artillery Not 
Present 

(p2P; I 

Artillery {Artillery Present, 
Present Artillery Not Present) 

Reliable 
(PI) 

Witness 1 

Not Reliable 
(P, I 

Figure 2-3: Canonical Example for Combination of Conflicting Evidence 
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Conflicting Evidence by ~empster's Rule 



knowledge of El and E2 to prune out impossible cells in SlxS2. According to 

the mapping, support for artillery being present equals the chance that wit- 

ness 1 is reliable and witness 2 is unreliable, i.e., P1P2'/(1-PIP1'), nor- 

malizing to remove the impossible case. Once again, this is the result of ap- 

plying Dempster's rule. 

In many of Shafer's discussions, he appears to argue that Dempster's.rule is 

justified in situations which "resemblen this canonical example, because it is 

the correct rule for the example (just as Bayesian rules are correct for the 

case of drawing balls from an urn). But what makes it correct? Even these 

simple examples may seem too complex for such a direct appeal to intuition. A 

recent paper by Shafer (in press) contains a more extensive discussion of the 

preconditions of Dempster's rule. We can use Dempster's rule, he says, only 

if the following judgments are made: 

(a) Before consideration of the mapping to T, any hypothesis in S1 is 
compatible with any hypothesis in S2 (so SlxS2 can be defined as a 
new frame) . 

(b) Probabilities for elements of S1 are independent of elements in S2 
(e.g., we do not alter our es'timate of the reliability of one wit- 
ness based on the reliability or unreliability of the other 
witness). 

(c) If we could draw a conclusion about the truth of a subset in T by 
knowing that a certain combination of hypotheses from S1 and Sp 
was the case, then we could have drawn the same conclusion by 
knowing that either one or the other of the hypotheses (from S1 or 
S2) was the case. (In the example of concurring witnesses, we can 
conclude that artillery is present if both witnesses are reliable; 
but all we needed was one or the other to be reliable). 

(d) The evidence we use for assessing S1 and S2 tells us nothing more 
directly about T. (All the work of reasoning about T is trans- 
ferred to reasoning about S.) 

Having enumerated these assumptions, we must remark that our original question 

about the rationale for Dempster's rule remains unanswered. It has not been 

demonstrated in any way that Dempster's rule "follows fromn these 

preconditions. Perhaps Shafer means simply that when these particular condi- 

tions are met, Dempster's rule will appear more plausible or natural. 

Note, however, that the canonical situation described by these conditions in- 



cludes a chance model: Because of assumptions (a) and (b), the probability 

for a component of SlxS2 is simply the product of the probabilities assigned 

to the components of S1 and S2. It is tempting, therefore, to view the belief 

function model as a special case of a Bayesian analysis, defined by the 

restrictions outlined in (a) - (d). In that case, Dempster's rule should be 

justifiable from (a) - (d) by the rules of probability theory. Moreover, 

Shafer's model would then inherit the axiomatic justification of the Bayesian 

model in the special circumstances where it applied. 

A Bayesian foundation for belief functions? To see how this might work, con- - 
sider the simple case of Figure 2-2, with H ; the artillery is present, H - 
the artillery is not present, R - the first witness is reliable, and - the 
first witness is not reliable. It follows from probability theory that: 

Following Shafer' s definitions, we interpret m(H) as Pr(R) and m(H or %) as 
~r (k) . In addition, from our knowledge of El (i . e . , the mapping from S1 to T 
which it establishes), and using (d), we know that Pr(H(R) - 1; if the witness 
is reliable, then the artillery is present. Hence, we may write 

and this gives 

where Bel(H) and Pl(H) are Shafer's belief and plausibility functions. It 

appears, then, that the belief function analysis is simply an incomplete 

Bayesian analysis. Our uncertainty about Pr(H) is due to our failure, in the - 
belief function approach, to specify Pr(HJR), i.e., the chance of the 

hypothesis being true despite the fact that the present evidence is 

unreliable. This is just another way of saying that Shafer is interested in 

the proof of the hypothesis, not its truth. If P~(H@) = 0, Pr(H) - Bel(H) ; 

and if Pr (H 15) - 1, Pr (H) = Pl(H) . Thus, Bel(H) and P1 (H) give lower and up- 

per bounds for the Bayesian probability. 



Let us now see how Dempster's rule works within this Bayesian interpretation. 

Let R1 and R2 refer to the reliability of the first and second witness, 

respectively, and take the case where El and E2 agree. A Bayesian probability 

Pr('('), is a function of two arguments, the event and the evidence. 

Presumably, therefore, in using Dempster's rule, the probability to be bounded 

is Pr(HIE1,E2). Let us for the moment, however, ignore this consideration and 

use Pr(H). (Note that in the case of one piece of evidence, we likewise used 

Pr(H) instead of Pr(HIE1).) By probability theory, we have 

Substituting based on conditions (a) and (b), we have 

By Dempster's rule, 

and by Shaf er ' s definitions , 

Using (c) and (d) and the mapping from SlxS2 to T, Pr(HIR1 or R2) - 1. 
Theref ore, 

It follows that 

Bel12(H) = m12(H) 5 Pr(H) 5 m12 (H) + m12(H or %) = Pl12(H) . 

Thus, Bel(H) and Pl(H), when computed by Dempster's rule, continue to give up- 

per and lower bounds for Pr(H). (Note, however, that Bel(') and PI(') are not 

bounds on what the future probability could be, given further evidence. They 

are bounds on Pr(') implied by our present evidence.) A similar demonstration 

can be given for the case where El and E2 conflict. This approach can be 



generalized to the case where support is assigned to arbitrary subsets of 

hypotheses by regarding "reliabilityn as a set of separately assessed skills 

involved in discriminating subsets of hypotheses from their complements. 

The problem, of course, is that we have not justified Dempster's rule as a 

bound on the Bayesian probability, Pr(H(E1E2). When we conditionalize on the 

evidence, as we certainly must in a Bayesian analysis, Pr(R1 or R2) is re- 

placed by 

This brings out a curious and critical feature of Shafer's theory. He is as- 

king us to assess the reliability of a witness (or more generally, the status 

of an evidentiary process) without taking into account our knowledge of what 

the witness said. In Shafer's canonical example, knowledge of the evidence 

enters in only for the mapping from S to T, after all the probability work has 

been done, on S. In a Bayesian analysis, on the other hand, the credibility of 

a witness can be shown to depend both on what is said and on its prior 

probability, i.e., our original tendency to think it true. If a witness says 

something which is independently believable, our estimate of his reliability 

increases. More importantly, perhaps, the credibility of one witness can, in 

a Bayesian analysis, be increased by corroboration of a second witness, and 

decreased by contradiction. 

Assumption (b) is plausible only in light of this restriction. The strict 

Bayesian version of (b) is 

Note that EIRl implies H, i.e., if witness 1 is reliable and says H, H is 

true. But we would expect, quite generally, that Pr(R2(E2H) > Pr(R2(E1E2), 
i.e., learning for a fact that what the witness said is true increases his 

credibility more than corroboration by a second witness. On the other hand, 

if we are assessing a witness's reliability prior to (or without consideration 

of) his testimony, it-does make sense to require that his reliability be inde- 

pendent of the reliability of another witness. We thereby preclude shared 



uncertainties (e.g., a conspiracy) in the two evidential processes being 

combined. 

A group of Swedish researchers, whose work is summarized and extended in 

Freeling and Sahlin (1983), and Freeling (1983), has explored issues such as 

this. Like Shafer, they focus on the reliability of the evidence, rather than 

the truth of the hypothesis, i.e., they reject the traditional Bayesian effort 

to model the chance of a hypothesis when the evidence is unreliable. But un- 

like Shafer, they analyze reliability in the light of the evidence, as Pr(R1E) 

rather than Pr(R). In effect, this is an effort to give a proper Bayesian ac- 

count of the notion of quality or completeness of evidence, rather than truth. 

(As such, it is an alternative to the idea of second-order probabilities dis- 

cussed above) The upshot of this research is that if m(H) is equated with 

Pr(R(E), Dempster's rule cannot in general be justified. Depending on the 

character of the belief functions being combined, and the kinds of conditional 

dependence assumed in the Bayesian analysis, Dempster's rule may be correct, a 

good approximation, or entirely off the mark in comparison to the "propern 

Bayesian rule of combination. 

While it fails to fully validate Dempster's rule, the Swedish work also lacks 

most, if not all, of the virtues of the belief function representation. In 

terms of feasibility, formulations which conditionalize on the evidence become 

extremely complex even for the simplest examples. The Swedish group has made 

little progress in deriving rules for the combination of evidence involving 

the full range of cases to which Dempster's rule applies, in particular, where 

varying degrees of support are assigned to arbitrary subsets of hypotheses. 

Moreover, the requirement to assess prior probabilities is incompatible with 

the segmentation of evidence which is vital for the naturalness of inputs in 

Shafer' s sys tem. 

Shafer (in press) explicitly rejects the attempt to provide any sort of 

Bayesian foundation for belief functions. Arguments based on Dempster's rule 

"have their own logicu--based on the appropriate canonical examples and an in- 

tuitive conviction that the appropriate conditions of independence are 

satisfied. As noted above, Shafer's appeal to intuition has not entirely 

succeeded in making that "logicn clear. We propose, however, that it can be 

clarified. In opposition to both Shafer and the Bayesians, we would argue the 



merits of the pseudo-Bayesian analysis of Bel(') and PI(') as bounds on Pr('), 

which we illustrated in this section. It fails to derive Dempster's rule as a 

special case of probability theory. Nonetheless, it clarifies the relation- 

ship of Dempster's rule to the canonical example, by an argument that 

resembles a valid Bayesian argument in most respects. Moreover, the dis- 

similarity can be crisply and clearly stated: the argument concerning 

reliability is conducted without consideration of the content of the evidence. 

The latter can be regarded as an explicit decision, justified by enormous 

gains in the simplicity and power of the calculus. This is not equivalent, 

however, to a fixed belief that the content of evidence is irrelevant. In an 

iterative, bootstrapping system, we can guard against the pitfalls of that as- 

sumption by continually reexamining it as an analysis proceeds. In Section 3 

we explore the design of a system in which the function of recalibrating 

sources of evidence in light of corroboration or conflict is assigned to a 

process of qualitative reasoning. 

Role of the assumptions in constructing an analysis. Conditions (b) and (c) 

play an important role as constraints in the construction of a belief function 

analysis. Violation requires reassessment of the overall structure of an 

analysis, redefining frames for either S or T or both (cf., Shafer, 1984a). 

(c) says that elements from both witnesses' testimony must not be required in 

order to construct a chain of reasoning that gets us to T. For example, if 
3 one witness said p and the other said pq, we would need to assume both were 
Ir 

reliable to infer q. Therefore, these two statements must be counted as parts 

of a single evidential argument. In this sense, Dempster's rule combines 

self-contained "arguments* rather than "bitsn of evidence. And application of 

the rule presupposes a more global process of reasoning addressed to problem 

structuring . 

(b) and (c) represent a limitation on Dempster's rule in a second sense: Once 

our evidence has been segmented into independent arguments, we can combine it 

by Dempster's rule, but that rule tells us nothing about how two dependent 

pieces of evidence should be combined within a self-contained argument. 

Clearly, in any expert system application, Dempster's rule must be supple- 

mented by other forms of inference. Interestingly, in a recent paper, Shafer 

(1984) himself suggested that expert systems will have to make provision for 

dependent evidence, and that the full range of Bayesian operations can be ap- 

- 38 - 



plied on probabilities for the background frame, S. This is a departure from 

the position that only Dempster's rule is appropriate for combining evidence 

in the belief function context. 

We have now noted three different ways in which an expert system application 

of Shafer's system might need to be supplemented: 

recalibration of sources of evidence in terms of the content of 
the evidence, 

reframing evidence and hypotheses to achieve independence of 
arguments,and 

reasoning about dependent evidence within an argument. 

We may refer to this set of issues as the incompleteness of Dempster's rule, 

in analogy to the incompleteness of Bayesian theory discussed above. 

Plausibility of instances: Conflict of evidence. To what extent does belief 

function theory yield inferences which are intuitive and plausible in specific 

applications? A topic of special concern in this regard is conflict of 

evidence. Zadeh (1984) recently raised an example of the following sort. 

Suppose we have two experts who we believe to be very reliable and who produce 

conflicting judgments. For example, there are three possible interpretations 

of an object x in a specified location: H1--x is an SA-4 installation; H2--x 

is an SA-7 installation; Hg--x is not a threat. Analyst A, using photographic 

evidence, assigns .99 support to H1 and .O1 to Hz; analyst B, using indepen- 

dent intelligence information, assigns .99 support to Hg and .Ol to H2. We 

have the following two support functions, and may combine them by Dempster's 

rule, as shown in Figure 2-4: 

Table 2-2 



The counterintuitive result, according to Zadeh, is that exclusive support is 

now assigned to H2, a hypothesis that neither expert regarded as likely. 

Moreover, the result is independent of the probabilities assigned to H1 or H3. 

Shafer's response (in press) is cogent, but ultimately, we feel, off the mark. 

If we really regard these experts as perfectly reliable, Shafer says, the ar- 

gument as stated is correct. After all, A says that Hg is impossible, and B 

rules out HI; that leaves H2 as the only remaining possibility. (It is impor- 

tant to note that exactly the same result would be obtained in Bayesian 

updating, if we interpret the m(') as likelihoods of the evidence given the 

hypothesis and assume that prior probabilities for the three hypotheses are 

equal.) On the other hand, Shafer argues that experts are seldom in fact per- 

fectly reliable. A more reasonable procedure would be to "discount" the 

belief functions supplied by the experts to reflect our degree of doubt in the 

reliability of their reports. In discounting, we reduce each degree of sup- 

port by a fixed percentage, and allocate the remainder to the universal set 

H , H , H 3  The result of applying Dempster's rule will now be a belief func- 

tion that assigns support to all three hypotheses. 

Let us examine this response in a bit more detail. Recalling that we regard 

these experts as highly reliable (though not perfect), suppose we discount A's 

belief function by 1% and B's by 2%. The result is the following, as depicted 

in Figure 2-5: 

Table 2-3 

We now have a "bimodal" belief function, with the preponderance of support 

going to H1 and H3. This appears, at first look, to be an intuitively 

plausible result: it reflects our feeling, which we represented in the form 
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Figure 2-1: Support Functions to Illustrate Combination of 
Conflicting Evidence with Discounting 
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of discount rates, that A or B (or both) could possibly be unreliable. But 

let us look a little more closely. 

The first thing to note is what a vast difference a small amount of discount- 

ing makes. In Table 2-2, after combination by Dempster's rule, there was ex- 

clusive support for H2. In Table 2- 3, final support for H2 is only slightly 

greater than 1%. The second thing to notice is the large discrepancy between 

mAB(H1) and mAB(H2). Although we did in fact discount B at twice the rate as 

A, the actual numbers (2% and 1%, respectively) and the difference between 

them was very small. It is by no means clear that the resulting difference in 

support for H1 and Hg is intuitively plausible. More to the point, the sen- 

sitivity of the result for all three hypotheses to very small differences in 

discount rates is disturbing. Finally, to dramatize the sensitivity even 

further, note that if support for (H1,H2,H3) were 0 for both experts, and if A 

assigned 0 support to H3, and B assigned 0 support to H1, these very small 

changes render Dempster's rule indeterminate. 

Perhaps the problem is that our original assessment of the reliability of the 

experts was mistaken. Suppose then we discount A by 29% and B by 30%. We now 

get: 

Table 2-4 

intuitive result. Then should we have discounted A and B more in the first 

(HI ,H2 , H 3 )  

place? According to Shafer, presumably, this is indeed the case; the fault is 

not in the theory, but in the initial allocation of support. The example, 

.29 .30 .I751 

however, highlights a deeper problem. As we noted above, reliability is to be 

Support for HI and H2 after combination is now roughly equal, certainly a more 

assessed as if we had no knowledge of the evidence actually provided. Thus, 



we are apparently not permitted to use the conflict between A and B as a clue 

regarding their capabilities or as a guide to the appropriate amount of 

discounting. We return to this issue very shortly. 

Zadeh himself objects to the procedure in Dempster's rule of normalizing sup- 

port measures to eliminate impossible combinations. But we think this objec- 

tion is mistaken. Normalization is in fact the only way in Shafer's theory 

(albeit quite indirect) that our knowledge of the evidence enters into the 

assessment of reliability. It accomplishes a sort of de facto discounting as 

a function of conflict of evidence. Note in the earlier example of Figure 2-3 

that the reliability of witness 1, after combining his testimony with the con- 

flicting evidence of witness 2, is P1P2'/(1-PIP1'). This is less than P1, the 

original assessment of witness 1's reliability. 

Although normalization is in itself not problematic, nevertheless, it is not a 

complete or adequate solution to the problem of conflict. First, because 

there is no lasting effect on later problems, i.e., we have not truly updated 

our estimate, PI, of A's reliability in the light of his conflict with B. 

Second, there is no procedure for exploring potential reasons for the 

conflict. A closer examination of (a) the factors that determined our 

original reliability estimates, (b) our assumptions regarding independence of 

the two arguments, and ( c )  the internal structure of the arguments employed by 

A and B, might lead to a revision in beliefs and assumptions that permanently 

improves our knowledge base. 

We argue, then, that the revision of reliability estimates is only one pos- 

sible result of an iterative, constructive process of problem solving prompted 

by conflict of evidence. (We also have the options of reframing evidence and 

hypotheses to reflect revised judgments of independence and of revising 

specific beliefs internal to the conflicting arguments. Therefore, such revi- 

sions must be justified by considerations which, once discovered, carry weight 

independent of the conflict of evidence that led to their discovery. Ideally, 

these newly discovered factors could be regarded as sufficient to justify 

revisions in reliability estimates independently of El and E2. (Referring to 

these factors as F, we would have Pr(R1(E1E2F) - Pr(R1(F).) This justifies 

the reassessment of reliabilities in the light of the evidence in the Shafer- 



Dempster system, and is the method used in the inference framework to be 

described in Section 3. 

What is "conflict of evidence"? So far, we have taken for granted the notion 

of conflicting evidence, and that in some cases at least special steps are 

justified in dealing with it. But it is by no means obvious what nconflictn 

is, or why steps outside the normal calculus of uncertainty should be required 

to handle it. Conflict of evidence does not appear, on the surface, to be the 

same as incoherence. The formal constraints of Bayesian theory dictate, as we 

saw above, that multiple probabilistic analyses should agree with one another 

and with direct judgment. Similar coherence constraints can be derived for 

Shafer's theory from the requirement that uncertainty on S be measured by a 

probability. But it is implicit that these analyses are, or should be, based 

on the same evidence. There appears to be no corresponding guarantee or 

prescription that arguments based on different evidence should arrive at the 

same or similar conclusions. Dempster's rule is designed explicitly to com- 

bine arguments based on independent evidence; hence, there are no direct con- 

straints on the extent to which those arguments must agree (except that there 

be at least one pair of meanings from the two arguments whose intersection is 

non-empty). 

Nevertheless, we propose that the resolution of conflict in a belief function 

analysis be construed as a desire for coherence. The missing element, which 

is responsible for the incoherence, is a judgment, often implicit, regarding 

the overall structure which the final belief representation is expected to 

have. Such judgments are based on one's knowledge about reasoning in a par- 

ticular problem domain. "Conflicting evidencen is evidence whose combination 

produces a structure that violates such a prior expectation. Thus, the 

definition of "conflict" will vary from one problem domain to another. The 

locus of conflict is not, strictly speaking, between the two sources of 

evidence, but between both of them, on one side, and a structural expectation 

regarding the outcome of the argument, on the other. When a conflict of this 

sort occurs, in an iterative, constructive context, the decision maker has a 

choice of either revising the expectation or else making one or more of the 

three kinds of changes we discussed above (revising discount rates, frames, or 

steps in an argument). 



If belief functions are probabilistic with discounting (i.e., assign support 

only to single hypotheses and to the universal set), then it is often 

plausible to require that hypotheses which receive very little support from 

either of two arguments not receive predominant support in the combined 

analysis. This was the basis of the adjustment of discount rates in the above 

example (and also seems to underlie the use of discounting in Shafer, 1982). 

Note that an analogous requirement is recommended for Bayesian analysis by 

DeGroot (1982). 

Other possible structural expectations regarding the form of a belief function 

model include that it be consonant or hierarchical. In these cases, support 

is assigned only to nested subsets of hypotheses or to subsets that form a 

tree, respectively. Neither of these properties is necessarily preserved 

through combination by Dempster's rule. Yet, as we noted above, such struc- 

tural constraints may (a) be quite plausible for particular problem domains 

(cf., Gordon and Shortliffe, 1984, on medical diagnosis), and (b) be required 

to improve the computational tractability of a Dempster-Shafer model. Thus, 

once again, a higher-order process of qualitative reasoning may be necessary 

to explore revisions in beliefs and assumptions, in order to handle nconflict" 

and to ensure the applicability and plausibility of a Dempster-Shafer calculus 

(see Section 3 below). 

An important by-product of requiring consonance should be noted. One poten- 

tial criticism of Shafer's theory is that it lacks a concept of the acceptance 

of a hypothesis once it achieves a sufficient degree of evidential support 

(e.g., Levi, 1983; L.J. Cohen, 1977). A precondition of acceptance--and what 

makes it a useful concept in some contexts--is that it should yield a logi- 

cally consistent and complete story. Neither is true if a threshold or cutoff 

for acceptance is defined on Bel(') in Shafer's system. Both a hypothesis and 

its complement could have positive support, and thus conceivably both could be 

accepted, yielding a contradiction. Moreover, two propositions, p and q, 

might be accepted but their conjunction, p&q, rejected. Both of these 

problems disappear in a consonant belief function: Since a hypothesis and its 

complement are not nested, they cannot both receive support; and it can be 

shown that Bel(p&q) = MIN(Bel(p),Bel(q)) and thus that a conjunction is at 

least as credible as either of its conjuncts. 



In all these cases, there is a tension between the desirability or 

plausibility of depicting the state of evidence "as it is," conflicts and all, 

and attempting to produce a resolution or reconciliation within the framework 

of some plausible or desirable global requirement. We claim that this tension 

is at the heart of any truly intelligent and flexible reasoning with probabil- 

istic systems. 

Summary. Shafer's theory provides a natural representation of quality of 

evidence and relaxes the assessment requirement to the extent that the 

evidence is incomplete. Like Bayesian theory, however, belief function models 

impose inordinate input and computational demands unless specialized models 

are adopted. The validity of Shaferian theory has not been clearly 

established, although it may be illuminated by a partial Bayesian derivation. 

A major difference is that Shafer's theory does not permit reassessment of the 

quality of an information source in terms of what that source says; the 

credibility of one witness cannot be increased by corroboration of a second 

witness or decreased by contradiction. In belief function theory, the outcome 

of combining the information from two conflicting data.sources can vary 

dramatically, depending on our assessment of their credibility. Yet we cannot 

use the two sources to crosscheck one another. We argue that this gap in 

Shafer's theory requires that it be supplemented by a process of qualitative 

reasoning that reexamines sources of evidence as an analysis proceeds, and 

recalibrates them in the light of corroboration or conflict. The same process 

might supplement Shafer's theory in other ways: by reframing evidence and 

hypotheses to establish independence of evidential arguments, and by revising 

inferential steps which are internal to such arguments. 

2.2.3 Fuzzv set theory. Nature of the theory. Since L.A. Zadeh advanced 

fuzzy set theory in 1965, an enormous amount of interest, and a very large 

literature, has been generated. Most of this interest has been theoretical, 

concerned with the mathematical implications of the theory, but there have 

been a number of attempts to apply the theory to practical problems. This is 

in line with Zadeh's original reason for introducing the concept. He argued 

that much systems analysis was inadequate because its requirements were too 

precise. He felt that our intuitive understanding of concepts and, more 

interestingly, our reasoning about those concepts, were typically imprecise, 

yet analysis (especially with computers) required precisification. To resolve 



this paradox, he introduced the now well-known concept of the fuzzy set--a set 

with imprecise boundaries. The essential element is the membership function 

yA(x) which represents the degree to which an element x belongs to some set A. 

If pA(x) = 1 then x indisputably belongs to A, while if lJA(x) - 0, x does not 
belong to A. An intermediate value, such as lJA(x) - 0.6, indicates that x 
belongs to the set to some degree. Fuzzy sets are thus a precise tool for 

representing and manipulating imprecise notions. 

Application of fuzzy set theory involves: first, the representation of im- 

precise concept by fuzzy sets; second, the use of a calculus to construct 

other fuzzy sets representing the output variables in an analysis; and third, 

reinterpretation of the results in imprecise language (see L.A. Zadeh, 1975). 

The first and last steps are crucial if the flavor of the fuzzy theory is to 

be fully captured. The core idea is to construct a calculus for the formal 

(i.e., precise manipulation of imprecise concepts, which takes in imprecise 

inputs and puts out imprecise outputs. 

Applications of fuzzy set theory to inference. The theory of fuzzy sets can 

be applied in many ways, in the sense that wherever a mathematical relation- 

ship exists, it canbe fuzzified. Thus, there are many possibilities for 

using the fuzzy calculus in conjunction with other inference theories. 

Alternatively, it can be applied directly to ordinary imprecise reasoning (by 

experts or non-experts) in natural language. We will introduce some of the 

formation of fuzzy set theory by examples of these two types. 

Fuzzy Logic. In fuzzy set theory, the statement, 

"The installation is large," 

could be represented as a fuzzy membership I-rL(i), which measures the degree of 

membership of the installation i in the set of "largen installations (where 0 

represents non-membership and 1 denotes complete membership). The degree to 

which an installation is both large and modern is the minimum of the two mem- 

bership functions : 



Implication in fuzzy set theory is defined as a relation. Thus, "if U is F, 

then V is G , "  where F and G are fuzzy sets on the variables u and v underlying 

U and V, is described by the relation 

using an obvious notation. This may be interpreted as the extent to which a 

particular value of U implies a particular value of V. 

The next step is to combine the rule with a statement about the fact described 

in its antecedent. In fuzzy implication, not only may be the concepts in- 

volved be fuzzy, but the match between a fact and the antecedent of a rule may 

be a matter of degree as well. Thus, we may have a rule stating "If U is F 

then V is G," but an input stating that "U is F*". where F and Fk are not the 

same. Zadeh defines this as 

where Y is the fuzzy set that results from combining F* and V/U. 

Moving back to our example, suppose we have a rule, 

"If an installation is modern, then the danger is high." 

We could express this rule as 

the extent to which modernity of an installation implies high danger of the 

installation. Now, suppose we have another fuzzy membership function R(i) 

representing, perhaps, the input, "the installation was built recently." The 

result is 



This output can be interpreted as a quantitative measure that the danger is 

high, given the fuzzy evidence regarding modernity and the fuzzy implication 

rule. The output may now be translated into an imprecise natural range repre- 

sentation (e.g., "danger is quite possibly high"). 

Fuzzy probabilities. Uncertainty about facts (i.e., chance) was not mentioned 

above; we just talked about imprecision. Zadeh stresses that the two concepts 

are distinct, and that fuzzy set theory should only be used to describe 

imprecision. If we are imprecise our uncertainties, however, then a role ex- 

ists for describing that imprecision with fuzzy sets. Watson et al. (1979) 

and Zadeh (1981) discuss this idea in the context of decision analysis, but it 

can clearly be applied to any use of Bayesian probability theory, or belief 

function theory. 

The basic tool for fuzzifying a calculus is Zadeh's extension principle, which 

enables us to compute the fuzzy set membership function for a variable when it 

is a function of variables whose fuzzy set membership functions are known. 

Let Y = F(Xl,X2,. . . ,%I. Then Py(y) - max[min(P (xl), uq (x2). . . . , Vx3 (3)) 
where y(~) is the extent to which a value y belongs to the set of possible 

numbers for the output variable. 

Suppose a threat classification procedure leads to a probability p that a 

threat should be classified as an SA-4. Imagine we have a loss function which 

gives unit loss if misclassification occurs, and zero loss if not. Then the 

expected loss from classifying the object as an SA-4 is 

while the expected loss from classifying the object as 'not an SA-4' is 

Clearly, we minimize expected loss by categorizing it as an SA-4 if p>1/2. 

Now suppose that we are imprecise about p to the extent that we can only 

describe a fuzzy set P(p) about possible values of p. Fuzzy sets for the ex- 

pected loss in the two cases (actually P(1-p) and P(p)) can be produced using 

Zadeh's extension principle. But what conclusions can we draw? Freeling 



(1980) discusses this in some detail, suggesting several alternative 

approaches. As we might expect, when results are fuzzy, the analysis may not 

indicate any particular decision regarding classification. 

As with the Bayesian analysis, there are some non-trivial problems in attempt- 

ing to apply fuzzy set theory to inference in expert systems. 

Feasibility. We criticized both Bayesian theory and belief function theory on 

the grounds that the analysis involved in practical problems can be quite 

complex. This will also be true of fuzzy set theory. The fact that functions 

of variables have to be handled in computations makes the analysis difficult 

to handle numerically. Nonetheless, there are indications that the max-min 

operations are numerically easier than the sum-product operations of the other 

theories. It would be wrong, however, to assert that the use of fuzzy set 

theory removes all of the difficulties caused by complexity in the other two 

theories examined here. 

Validity. For a theory which has had an enormous literature, there is still a 

considerable discussion amongst scholars on the justification and interpreta- 

tion of the theory. 

Semantics: Where do the numbers come from? This question is raised by most 

people when they first study fuzzy set theory. There are no standard proce- 

dures to be applied in every case; anything plausible would seem to do. In 

particular, there are neither behavioral specifications nor canonical examples 

of the kind Shafer claims to be important. Zadeh would argue that a theory of 

imprecision should not need precise inputs, so that we should not bother too 

much over the exact nature of the input membership functions. If that is the 

case, then answers should not be very sensitive to input membership functions. 

In many applications, this is not the case, and indeed, sometimes answers are 

sensitive to just one point on a membership function. 

What is the meaning of the output? Paralleling the uncertainty relationship 

between human perceptions of imprecision and the calculus of fuzzy sets is the 

reverse relationship: once we have computed an output fuzzy set, what do we 

do with it? We briefly discussed the possibility of linguistic interpretation 

above. This does not appear to have been a satisfactorily implemented 



approach, although in part because people differ in the conclusions they draw 

from the same natural language statement. 

In the light of these difficulties, it is not surprising that efforts should 

be made to assimilate fuzzy sets to some other framework of uncertainty, such 

as the Bayesian or Shaferian. It is difficult to do this in a natural way, 

however, due to the difference between imprecision and uncertainty about 

facts. For example, suppose Analyst A refers to an object x as "long", after 

having measured x exactly. There is no doubt as to x's actual length and al- 

though A may regard x as long only to a certain degree, he is not uncertain 

whether or not x is long. What fact then could A be uncertain of? We add 

three caveats: (i) if A tells a second Analyst B that x is long, then B may. 

be uncertain regarding x's actual length; (ii) if A had only glanced at x, 

rather than measuring it, he might be uncertain (as well as imprecise) about 

x's actual length; (iii) we may in fact be uncertain as to whether a random 

English speaker would call the object "long". Nevertheless, the most natural 

approach is to treat this kind of uncertainty as the degree to which x (or an 

object of x's length) is long, rather than the chance that x is long. Put 

another way, these degrees are part of the meaning (denotation) of "long", and 

not (necessarily) a result of uncertainty about what "long" means or about the 

actual length of an object. 

Nonetheless, it may be worthwhile exploring ways to represent imprecision in 

terms of other frameworks. For example, a consonant Shaferian support func- 

tion obeys a calculus that closely approximates Zadeh's possibility theory. 

Consonant support functions seem appropriate for representing imprecision in 

the implications of evidence (it points to a set of nested regions where the 

truth could lie). And they have the advantage of a somewhat more secure nor- 

mative foundation. Thus, the possibility of translating between natural lan- 

guage expressions and support functions might be worth exploring, despite some 

cost in naturalness. 

Inference: What are the a~vro~riate connectives? In terms of either 

axiomatic justification or face validity, the procedures Zadeh recommends for 

combining his membership functions are not unique. For example, Zadeh argues 

that the degree to which an element belongs to a set A1 a d  another set A2 

should be computed by 
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This is clearly consistent with the requirement that if both sets are crisp 

(i.e., only takes the values 0 or I), set membership should obey the usual 

rules (i.e., x A1 A2 if and only if x A1 and x A2). Note however, that this 

is not the only connective rule with this property. For example, the family 

of connectives 

all have this property, where 1-a is a power to which the membership function 

is raised. Zadeh choosesa- 1; the choice ofa- 0 gives the Bayesian rule for 

the probability of a conjunction (namely VAl(x)V (x)). There are many other 42 
possible definitions (see Dubois and Prade, 1984). 

Similarly, disjunction, negation and implication all have alternative 

representations, and the choice of the forms usually employed is arguable. So 

far as we are aware, very little research has been carried out on the implica- 

tions of using different connectives on the results of a fuzzy analysis. 

There is, therefore, some arbitrariness in the connectives chosen by Zadeh--an 

arbitrariness which pervades the theory. 

Plausibility of instances: The main strength of Zadeh's theory is in its 

ability to produce instances of reasoning that are acceptable on a case by 

case basis. In this regard, it has a richness and scope that no other theory 

even attempts to capture. In particular, it is the only theory that attempts 

to formalize the combination of considerations based on similarity (e.g., the 

closeness of to F in the above example) with more traditional considera- 

tions in inference (e.g., traditional logic or probability). In this largely 

uncharted domain, the (present) absence of deep normative foundations may be 

no disgrace. 

Nonetheless, there may be cases where fuzzy logic gives implausible (or non- 

useful) answers. Fuzziness is concerned with what is possible, rather than 



what is probable. Zadeh sees a possibility distribution as being an upper 

bound on a probability distribution. Articulating the possible may be 

important, but if many options are possible, it does not help in our search 

for what is probable. In practice, this point is expressed by the tendency 

for fuzzy sets to produce rather bland answers, giving high values of the mem- 

bership function for large sets of variables. One can see some applications 

when this is not an obstacle to understanding, if some important options are 

seen to have very low or zero possibility. In general, it does present a 

difficulty. 

Summary. Fuzzy logic is a highly flexible and versatile tool for handling 

imprecision. It may be applied directly to reasoning with verbal expressions 

or, at a higher level, to reasoning with a numerical calculus like probability 

theory. Unfortunately, the meaning of fuzzy measures is not always clear; and 

the rules for manipulating them seem to lack any deeper justification than the 

plausibility of the answer in a specific application. 

2.3 Oualitative Theories 

2.3.1 Classical logic. Only a brief mention will be given here of classical 

logic. Its relevance is as the traditional paradigm of analytical reasoning, 

dating back to the time of Aristotle and achieving maturity in twentieth cen- 

tury mathematical logic associated with such names as Russell, Godel, Church, 

and Tarski. As such, it provides a point of comparison for other theories. 

Classical logic is built upon a firm axiomatic foundation of principles for 

reasoning from a set of premises to a conclusion. Straightforward procedures 

exist for checking the validity of an argument. A number of features of clas- 

sical logic, however, make it clearly inadequate as the sole basis for an ex- 

pert reasoning system, or as an analytical model of real-life human reasoning. 

Classical logic moves from certain premises to certain 
conclusions. No provision is made for reasoning in uncertain 
domains. 

Due to its abstract nature, there is difficulty mapping messy 
real-world problems into the crisp inputs required for logical 
analysis. 

Logical implication is very different from causal implication. 
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Classical logic is not equipped to deal with causal relationships 
among variables. 

Classical logic is monotonic, i.e. the number of provable state- 
ments increases monotonically with the number of premises. In 
contrast, human reasoners often adopt provisional assumptions, 
deriving conclusions which may later be retracted when new infor- 
mation invalidates the assumptions. 

In Section 2.2 we have seen examples of inference frameworks designed to 

address some of these shortcomings. Jeffreys (1939) developed his axiomatic 

function for Bayesian inference as an extension of classical logic to truth 

values intermediate between certainly-true and certainly-false. The various 

axiom systems for Bayesian inference are clearly modeled after those for clas- 

sical logic. 

Zadeh's fuzzy set theory, as we have seen, was developed to counter the second 

problem, which is shared by Bayesian and Shaferian theories. 

The third problem was also noted in our discussion of Bayesian theory. 

Shafer's theory is better equipped to deal with causal links than is logic or 

Bayesian theory. Specifically, the link between evidence and conclusion in an 

argument on which a belief function is based may be a causal model according 

to which the evidence causes the conclusion. 

The next section describes an attempt to deal with the last problem by for- 

mulating a reasoning system that reason's from "default assumptionsn to con- 

clusions which may be retracted if the assumptions on which they are based 

turn out to be false. 

2.3.2 Non-monotonic reasoning. Nature of the Theory. Non-monotonic logic 

has its roots in the non-numeric tradition of artificial intelligence. The 

first application of the ideas of non-monotonic reasoning was by Stallman and 

Sussman (1977), and since that time the theory has generated intense interest 

in the artificial intelligence and expert systems communities (e.g., Doyle, 

1979; McDermott and Doyle, 1980; McDermott, 1982; Reiter, 1980; Moore, 1985). 

Non-monotonic logic was developed to counter the failure of traditional ap- 

proaches to capture the non-monotonicity of human reasoning. Specifically, 
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traditional formal axiomatic logics are non-monotonic, in that the number of 

provable statements in the system increases monotonically in time as new 

axioms or premises are added to the system. In contrast, in a non-monotonic 

system a theorem may be retracted when new information (axioms) are 

introduced. 

Human reasoning is commonly non-monotonic. In the face of incomplete 

evidence, people adopt "default assumptions," acting as if they are true until 

evidence arises to the contrary. For example, we might adopt a provisional 

assumption that there is no ECM in the area, which implies that our localiza- 

tion of threats is reasonably accurate. If we later discover that there is 

evidence of ECM, we drop the initial assumption and out confidence in the 

threat localizations is degraded. Human reasoners are skilled at incorporat- 

ing conflicting data into existing arguments so as to achieve consistency with 

minimal disruption of the established system. Non-monotonic reasoning systems 

attempt to model this process of revising systems of belief to accommodate 

conflicting information. 

We may contrast non-monotonic reasoning with systems based in the probability 

tradition, which employ numerical measures of uncertainty. In the above 

example, a Bayesian or Shaferian system would assign a numerical degree of 

support to the hypothesis that ECM is present. When further information is 

received, degrees of support are updated to incorporate the new information. 

These systems are monotonic in the sense that once a conclusion is declared 

certain, it cannot be retracted. Uncertainty is expressed by assigning de- 

grees of support of less than unity to each of the uncertain hypotheses. 

Bayesian and Shaferian theory lack a mechanism for accepting an uncertain 

hypothesis once it becomes "certain enough." Conflicting evidence is regarded 

as stochastic (that is due to noise in the data) rather than as evidence of an 

incorrect model; this leads in some examples to counterintuitive results 

(e.g., the example of Figure 2-4). It has been argued that non-monotonic 

reasoning captures more fully the features of human reasoning, because of its 

capacity to adopt uncertain hypotheses as provisional assumptions, acting as 

if they were certain and deriving conclusions from them, while retaining the 

ability to drop them if they later turn out to be implausible. Nevertheless, 

non-monotonic systems suffer from the inability to distinguish degrees of 

certainty. The ad hoc nature of their mechanisms for belief revision (see 
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discussion below) is in large part attributable to this inability. There have 

been suggestions (Ginsberg, 1984; Cohen et. al., 1985) of means of combining 

degrees of belief into non-monotonic systems, but thus far none has been 

implemented in an expert system. 

Structure of a Non-Monotonic System: Dependency Directed Backtracking. An 

important feature of a non-monotonic system is its mechanism for revising 

beliefs in the presence of new evidence. At any point in time, a non- 

monotonic system has a list of currently believed statements, together with a 

record of how these beliefs were derived. As long as new information is con- 

sistent with current beliefs, the system incorporates the new information by 

combining it with the currently believed statements, using its inference rules 

to derive new beliefs. At some time, however, new information may lead to an 

inference that contradicts a currently held belief. When this happens, the 

system must change some of its beliefs so as to achieve consistency. Because 

it retains a record of the proofs of each of the contradictory statements, the 

system need only re-examine those beliefs actually contributing to the 

contradiction. Thus, the system traces back through the proofs to find those 

beliefs upon which the contradictory inferences depend, and makes the neces- 

sary revisions to achieve consistency. This process has been labeled 

dependency-directed backtracking. 

Dependencies in a non-monotonic system are represented by justifications of 

statements in terms of other statements. The primary form of justification is 

a data structure called a support list. A support list justification for a 

statement has the form 

Statement # Statement (SL <inlist> <outlist>). 

A statement is believed if it has a valid justification; a support list jus- 

tification is valid if every statement in the inlist is believed and every 

statement in the outlist is not believed. We may distinguish three types of 

justification: premises, monotonic justifications, and non-monotonic 

justifications. 

A premise is a statement with empty inlist and outlist. For example: 
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N- 1 Agent testifies invasion is planned (SL 0 0 ) .  

This statement is automatically regarded as IN (i.e.,.. believed) and cannot 

be retracted. Premises might be observational data or unquestioned general 

principles. As new observations accumulate, new premises may be added to the 

sys tern. 

A monotonic justification has a non-empty inlist and an empty outlist. For 

example : 

Invasion is planned (SL (Agent so testifies, agent is 

trustworthy) 0). 

This justification says that the statement is IN if all items in the inlist 

are IN. 

Non-monotonic justifications, or assumptions, have non-empty outlists. For 

example : 

N-3 No invasion is planned (SL () (Invasion is planned)) 

This statement says that N-3 is IN unless there is evidence to the contrary. 

Now let us see how a non-monotonic system might handle our example. We start 

by adding an additional assumption 

N-4 Agent is trustworthy (SL () (Agent is untrustworthy). 

Let us suppose we begin with nodes N-2, N-3 and N-4 as the only items of in- 

formation in the system. N-3 and N-4 are IN (our having no evidence to the 

contrary) and N-2 is OUT. This models the situation before we received the 

agent's report. Once we receive the agent's report, we add the premise N-1. 

This causes N-2 to move IN. 

We reasoned above that N-2 and N-3 were contradictory, and responded by drop- 

ping the assumption N-3. To mimic this reasoning, the system needs to know 



that these nodes are incompatible. Thus, the system needs to have another 

node 

N- 5 CONTRADICTION (SL (N-2, N-3) 0 ) .  

When N-2 moves IN, this causes the CONTRADICTION node N-5 to move in also. 

The presence of a CONTRADICTION mode among the currently belief statements 

triggers the process of dependency-directed backtracking. When a contradic- 

tion is encountered, the system searches for the set S of assumptions respon- 

sible for the contradiction. The set S will contain any assumptions in the 

support lists any nodes involved in deriving the argument leading to the 

contradiction. In this case, S will contain N-3 and N-4. Clearly, if N-3 is 

taken OUT, N-5 will move OUT and the contradiction will be resolved. If N-4 

is OUT, then N-2 moves OUT and again the contradiction is removed. 

The system now sets up a new node of the form 

Statement # NOGOOD S (CP(CONTRADICTI0N) (S) ()  ) 

where CP is a conditional-proof justification. This CP-justification is valid 

if whenever S is valid, the CONTRADICTION is believed. In other words, the 

validity of the justification depends on the relation between the premise (S) 

to the conclusion (CONTRADICTION), irrespective of whether the premise is cur- 

rently believed. In our example, the system would define 
a 

N- 6 NOGOOD (N-3, N-4) (CP(N-5) (N-3, N-4) 0 ) .  

This CP-justification is valid because N-5 is IN whenever N-3 and N-4 are both 

IN. This node says that N-3 and N-4 are, taken together, "no good." 

The system now has to decide which of the assumptions in S is to be dropped. 

A "culprit" C is selected from among those nodes in S, and the system decides 

to deny that assumption. Recall that to deny an assumption, the system must 

believe some member of the outlist of the assumption. The system does this by 

setting up a support list justification for some member 0 of the outlist of 

the culprit. The inlist of this justification contains all the assumptions in 

S except C, together with the NOGOOD node. The outlist contains all the nodes 



in the outlist of C except 0 .  Thus, the justification says that if you want 

to believe the other assumptions in S (other than C) and if you do not believe 

any other nodes in the outlist of C, then you should believe 0 .  The result of 

this justification is that 0 is believed (provisionally), sending C OUT and 

resolving the contradiction. Of course, 0 itself may later have to be 

retracted as a result of another contradiction, which would lead either to 

belief in some other member of the outlist of C or to the retraction of some 

assumption other than C. 

Let us return to our example, and suppose that N-3 is selected as the culprit. 

The outlist of N-3 has only one member, N-2. A new justification is then set 

up for N-2, which now appears as 

N-2' Invasion is planned (SL(Agent so testifies, agent is 

trustworthy) ( ) ) . 
(SL(N-6)O). 

Note that if N-3 had other nodes in its outlist, the new justification would 

have a non-empty outlist, and would cease to be valid if one of the nodes in 

its outlist came IN. 

It appears that N-2' can now be justified either by the agent's testimony or 

as an assumption required to resolve the contradiction represented by N-6. 

But the second justification is circular, because it was N-2 that gave rise to 

the contradiction in the first place. Doyle's Truth Maintenance System guards 

against such circularity by designating some justifications as nwell-foundedn 

and others as not. 

Feasibility. Dependency directed backtracking is a species of discrete 

relaxation (like Walz filtering, as described in Cohen and Feigenbaum, 1982). 

It seeks a consistent allocation of truth values across a set of statements, 

by utilizing local consistency constraints between pairs of statements, rather 

than by exhaustive search through the space of all possibilities, Thus, a 

high level of computational efficiency can be achieved. 

To make this efficiency possible, however, in non-monotonic systems, the 

traces of proofs are retained, even though the premises utilized by the proof, 



and the statement that was proved, may (temporarily) be judged invalid or OUT. 

Therefore, if the premises become valid or IN at some later time, the work of 

rediscovering the proof need not be repeated. The justifications consume 

space in memory, and the tradeoff is therefore made between memory storage and 

the processing overhead of regenerating proofs on the fly. 

Face validity. Implementations of non-monotonic reasoning revise beliefs so 

as to arrive at a consistent overall system of beliefs in the face of a 

contradiction. But they provide only a very limited capability for deciding 

among alternative possible revisions. The selection of an assumption as the 

"culprit," and the selection of a member of its outlist to be assumed as true, 

are both highly arbitrary. Some control information is implicit in the order- 

ing of nodes in the =list of statement 5; i.e., if 5 is to be rejected, the 

system will then assume the truth of members of numbers in'the &list in the 

order shown. But (a) this is insufficient to remove all ambiguities, and (b) 

it makes control information implicit rather than explicit, hence, difficult 

to evaluate or modify. 

Plausibility of instances: Conflicting evidence. An often voiced criticism 

of non-monotonic reasoning is that uncertainty calculi (e.g., Bayesian, 

Shaferian, or fuzzy) can do the same job better. 

Although we are convinced of the value of numerical representations of 

uncertainty, we will argue that there is an important role of non-monotonic 

reasoning (1) in drawing implications for the validity of one argument or line 

of reasoning from another, even where they are independent, and (2) in reason- 

ing about the application of the uncertainty calculus itself. 

The basic idea of (1) is the following: Suppose we have two independent lines 

of reasoning, A and B, with regard to the same sets of hypotheses. Each line 

of reasoning depends on certain data and certain assumptions, as. illustrated 

in Figure 2-6. In Argument A, the impact of Data 1 and Data 2 depends on the 

acceptance of Assumption 1; for Argument B, the impact of Data 3 and Data 4 

depends on Assumption 2. 

What happens when A and B support conflicting hypotheses? In a non-monotonic 

system, the set of assumptions that contributed to the contradiction are iden- 
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tified and declared inconsistent (as a set). Then a selected member of this 

set is rejected, by producing a justification (itself an assumption) for a 

member of its &list. As a result, at least one of the two arguments fails 

(or has a different conclusion), and consistency is restored. 

The key point here is that conflict between A and B causes the system to reach 

inside each of the arguments. Conflict resolution is a process of reasoning 

about knowledge: what are the weakest links in each line of reasoning? where 

would revision accomplish the most? 

Consider, on the other hand, how an uncertainty calculus such as Shafer's 

would handle this problem. We examined the issue of conflict resolution, in 

the context of belief function theory, in some detail in Section 2.2.2. There 

we found that, depending on the degree of conflict, and on the existence and 

degree of discounting for the two arguments, we could have: (a) an indeter- 

minate result (if there is no non-empty intersection between possible meanings 

of the two arguments), (b) exclusive support for hypotheses in the intersec- 

tion of meanings (if there is no discounting), or (c) strong support for each 

of the two conflicting conclusions). None of these alternatives examines the 

sources of the conflict and seeks insights regarding its causes. Adjustments 

of discount rates in the light of conflict are likely, moreover, to be invalid 

in the absence of some exploration of reasons for the adjustment. 

Nonetheless, non-monotonic systems as presently constituted are inadequate in 

a number of ways. Problems are chiefly attributable to their exactness, on 

two levels. For example, non-monotonic systems provide a way of reasoning 

with incomplete information, i.e., by adopting assumptions, tracing their 

consequences, and revising them if they lead to an inconsistency. But they 

provide no measure of the degree of incompleteness in the support for a 

belief, and no concept of degree of conflict. As we have already noted, a 

measure of this sort seems essential in selecting among alternative possible 

revisions. 

On a second level, the statements whose truth or falsity is adjudicated are 

themselves exact. However, there is no reason why similar principles of 

qualitative reasoning might not be applied to probabilistic or imprecise con- 

straints and data. The need for such a 'meta-reasoning" capability is the 
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chief conclusion of our comments in earlier discussions of Bayesian and 

Shaferian calculi. In our view, non-monotonic logic may have its most con- 

vincing application at a higher level, in controlling the application of an 

uncertainty calculus itself. Assumptions of more than one sort--about the 

quality of uncertainty assessments, about the independence of evidential 

arguments, and about the validity of steps in an argument--are inescapable in 

the application of such a calculus. Most of these assumptions are not easily 

represented in the language of the calculus itself. Hence, non-monotonic 

reasoning may be the appropriate tool for keeping track of assumptions and 

revising them when they lead to anomalous results. As such, it may be the key 

to a truly "intelligent" or flexible application of those models. It is to 

this possibility that we turn in Section 3. 

Summary. Non-monotonic logic is a computationally efficient method for 

reasoning with incomplete information, i.e., for adopting assumptions and 

revising them in the face of conflicting data. Statements are associated not 

with numerical indices of uncertainty, as in the other theories we have 

examined, but with reasons. Certain statements (called assumptions) may be 

accepted in the absence of positive support, as long as certain other beliefs 

have not been disproven. Non-monotonic logic provides a natural method for 

revising beliefs within independent lines of reasoning when they lead to con- 

flicting conclusions. Unfortunately, validity is diminished by the arbitrari- 

ness of its procedures for selecting among alternative possible belief 

revisions. We argue that the most useful application of non-monotonic reason- 

ing may be as a control process for the application of an uncertainty 

calculus. 

2 . 3 . 3  Toulmin's model of logic. - The motivation of Toulmin's Uses of Argument 

(1958) is to turn away from the highly abstract character of traditional 

logic; to examine actual methods of reasoning in different substantive areas, 

such as law and medicine; and to develop a theory of logic capable of captur- 

ing the rich variety of methods that exist. In the preface he states, "the 

intentions of this book are radical." He rejects as confused the "conception 

of 'deductive' inference which many recent philosophers [and, we may add, A1 

researchers] have accepted without hesitation as impeccable." 



* 

The basic framework of an argument, according to Toulmin, is as follows 

(Toulmin, et al., ,1978): 

Backing 

.1 
Warrant 

possible 

Rebuttals 

A claim, or conclusion whose merits we are seeking to establish, is supported 

by grounds, or evidence. The basis of this support is the existence of a 

warrant that states the general connection between grounds and conclusion: 

e.g., a rule of the form, if this type of ground, then this type of 

conclusion. The backing provides an explanation of why the warrant is 

regarded as reliable, i.e., it provides evidence (theoretical or empirical) 

for the existence of a connection between ground and claim. Modal qualifiers 

weaken or strengthen the validity of the claim. Possible rebuttals deactivate 

the link between grounds and claim by asserting conditions under which the 

warrant is invalid. A way of reading this structure is: Grounds, so 

Qualified Claim, unless Rebuttal, since Warrant, on account of Backing. 

Toulmin finds serious fault with purely analytical or logical arguments. In 

such arguments (as contrasted with a substantial argument) the backing in- 

cludes the information conveyed in the conclusion. As a result, of course, 

the backing can be no more certain than the conclusion itself. In ordinary 

arguments, by contrast, "we seek to establish conclusions about which we are 

not entirely confident by relating them back to other information about which 

we have greater assurance." Moreover, the certainty of the conclusion (e.g., 

a prediction of a future event) is seldom logically entailed by the grounds 

and backing (e.g., past observations of situations like the present one); it 

is merely made more plausible (and of course, rebuttals may always turn up to 



reduce its plausibility). Toulmin concludes, "it begins to be a little doubt- 

ful whether any genuine, practical argument could ever be properly analytic." 

In particular, Toulmin points to weaknesses in the use of the logical term 

'universal premise.' His illustration (p. 115) highlights the weakness. 

Jack is club-footed. 

All club-footed men have difficulty in walking. 

So, Jack has difficulty in walking. 

In a logical pattern of analysis, the general statement 'All ...' is construed 
as an abstract inference-warrant for deriving the conclusion from the 

evidence. In a real argument, we would never supply such a statement as back- 

ing for a conclusion. Our actual backing might be that all club-footed men 

observed by us have had difficulty walking (an empirical basis), or that the 

nature of club foot suggests difficulty in walking (a more theoretical 

backing). Toulmin concludes (p. 117), "the form 'All A's are B's' occurs in 

practical argument much less than one would suppose from logic textbooks." 

According to Toulmin (p. 143). "the traditional pattern of analysis has two 

serious defects. It is always liable to lead us to pay too little attention 

to the differences between the different modes of criticism to which arguments 

are subject". In addition, the traditional pattern has the effect of 

"obscuring the differences between different fields of arguments, and the 

sorts of warrant and backing appropriate to these fields." 

On probability, Toulmin rejects the subjectivist's probability as the degree 

of belief on the basis that this is incompatible with the requirement that es- 

timates of probability be reliable. He also rejects the objectivist's defini- 

tion of probability in terms of frequencies, on the basis that such a defini- 

tion confuses the meaning of probability (i.e., as a qualification of a 

conclusion) with the reasons for regarding the event as probable (i.e., the 

observed frequencies). In fact, he contends that, "the attempt to find some 

'thing', in terms of which we can analyze the solitary word 'probability' and 

which all probability-statements whatever can be thought of as really being 

about, turns out to be a mistake" (p. 70). He defines probability as a modal 

qualifier asserting, "whether backed by mathematical calculations or no, the 



characteristic function of our particular, practical probability-statements is 

to present guarded or qualified assertions and conclusionsn (p. 93). 

Toulmin's framework bears some important resemblances to non-monotonic logic. 

Both depart from traditional logic by providing for a process in which conclu- 

sions are accepted unless other propositions (members of the &list; 

rebuttals) turn out to be true. There are two important differences: (1) 

Toulmin proposes a highly differentiated knowledge structure, in which 

grounds, warrant, backing, conclusion, and rebuttals are distinguished, while 

non-monotonic logic proposes an essentially homogeneous, undifferentiated 

knowledge structure; (2) Toulmin provides for graded or qualified acceptance 

of conclusions. 

In Section 3, we shall use Toulmin's basic framework as a starting point for a 

model of argumentation from evidence to conclusion on which a Shaferian belief 

function is based. We shall see how, when conflict occurs, a process of non- 

monotonic reasoning can "reach insiden the arguments, exploring potential 

rebuttals, and leading to revision (i.e., discounting) of the component belief 

functions and reduction of the conflict. 

2.3.4 Theory of endorsements. Paul Cohen's (1985) theory of endorsements is 

another descendant of the AI-based logic tradition. Although non-numeric in 

character, there is an interesting commonality in motivation with Shafer's 

theory. Both methods focus on the validity of arguments that purport to es- 

tablish a conclusion based on evidence. For Shafer, however, one's belief 

about such an argument can be adequately summarized in a numerical measure, 

the belief function, i.e., the likelihood that the evidence proves the 

hypothesis. To Cohen, by contrast, it seems.unnatura1 to assess the strength 

of an argument without actually examining the argument in detail. They theory 

of endorsements provides a consistent format for representing such arguments. 

In Paul Cohen's theory of endorsements, evidence is represented not by numeri- 

cal measures of degree of belief, but by symbolic endorsements. A given 

proposition is associated with a "ledger" of confirming and disconfirming 

evidence. Each item of evidence, in turn, is associated with a set of posi- 

tive and negative "endorsements," which state grounds for believing or dis- 

believing a link between that evidence and the hypothesis. Finally, the 



theory contains rules for ranking different types of endorsements, for deter- 

mining when they qualify a hypothesis for acceptance, and for resolving 

conflicts. 

Cohen's theory has been implemented in a prototype system called SOLOMON 

(Cohen, 1985). The user of Cohen's system supplies primary data and inference 

rules with endorsements (e.g., a rule may be endorsed MAYBE-TOO-GENERAL). En- 

dorsements of a rule and the propositions to which it is applied propagate to 

the conclusion of the rule (and, as noted above, can be thought of as endorse- 

ments for the linkage between the evidence and the conclusion). The system 

must be supplied with criteria for when a proposition is adequately (for a 

particular purpose) endorsed; these criteria depend on the goal as well as on 

the endorsements for the proposition. 

It is worth noting that Cohen's concept of an endorsement encompasses a 

variety of distinguishable elements of Toulmin's framework: i.e., warrant, 

backing, and rebuttals may all serve as (positive or negative) endorsements 

affecting the link between ground (evidence) and conclusion. 

Cohen's approach has a unique simplicity and transparency, and may capture a 

significant aspect of actual reasoning (the dependence of belief on qualita- 

tive facts about the available evidence). Nevertheless, as with the other 

theories reviewed here, the utility of Cohen's theory depends on several un- 

resolved issues. First, the ranking of endorsements is entirely qualitative. 

Cohen expresses concern that for some proposes it might be desirable to 

specify numerical measures of the strength of endorsements, but seems to 

regard this as incompatible with the symbolic reasoning tradition of AI. 

Numerical measures of strength of endorsements, coupled with a mechanism for 

combining them, would provide a resolution of the second problem: the ad hoc 

nature of the mechanism for ranking endorsements. Cohen assumes that the sys- 

tem is supplied with rankings for individual endorsements, but there exists 

only an ad hoc mechanism for ranking groups of endorsements. Thus, the deci- 

sion of whether one proposition is better endorsed than another is to some 

degree arbitrary, and the rules can be insufficiently powerful to derive a 

conclusion. Third, endorsements are tokens (to the system). The rich as- 

sociations a human would bring to an endorsement of, e.g., MAYBE-TOO-GENERAL, 

are opaque to Cohen's system. (It is interesting that Cohen's system was 



developed in response to a perception of the opacity of numerical probability 

judgments, but his system suffers to some extent from the same problem.) 

Finally, Cohen's theory, like the numerically based theories reviewed in Sec- 

tion 2.2, would benefit from a "meta-reasoningn capacity for re-evaluating en- 

dorsements as an argument proceeds. 

2.4 Probabilitv/Loqic Svntheses 

2.41 1. Lagomasino and Sage (1985) present 

a framework for imprecise inference that purports to combine Toulmin's logic 

of reasoning and the calculus of probability. In fact, we would argue that 

their use of Toulmin is quite incidental to their basic approach. A better 

characterization is that Lagomasino and Sage attempt to probabilify tradi- 

tional logical relationships. 

Lagomasino and Sage claim to use Toulmin's model of argumentation to frame the 

relations among events, and to structure an inference model. In particular, 

the relationship between two events, grounds D and claim C, are represented 

as : 

[Their use of the term rebuttal to include the negation of grounds or claim 

appears at odds with Toulmin's (1958) definition of rebuttal as "indicating 

circumstances in which the general authority of the warrant would have to be 

set aside" (p. 101).] 

Probabilities serve as modal qualifiers and the calculus of probability is 

used to combine or aggregate assessments. Within this structure, both uncer- 

tainty and imprecision about uncertainty are represented. Uncertainty about 

the validity of a proposition or strength of a claim is presented as a 

probability. Imprecision about uncertainty is represented as ranges on 
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probabilities. [Toulmin (1958) uses probability only as a modal qualifier on 

claims. ] 

Lagomasino and Sage derive a set of consistent relationship equations (CRE) 

based on logically consistent relationships among claims, grounds, and war- 

rants (collectively called premises) and possible rebuttals and the rules of 

probability. [Again, the approach diverges in spirit from Toulmin (1958), who 

dismisses as trivial the notion of formal validity by noting, "provided that 

the correct warrant is employed, any argument can be expressed in the form 

'Data [Grounds in his later terminology]; Warrant; so Conclusion' and so be- 

comes formally valid" (p. 119).] The following set of linear, independent 

equations and inequalities is the set of CREs for the above: 

This framework is used to derive probability statements concerning any premise 

or rebuttal by solving two linear programs. The CREs are the set of 

constraints, and the objective functions are determined by the premise or 

rebuttal of interest, namely min P(') and max P('). 

As they stand, the basic sets of CREs do not say anything interesting. That 

is, each P(') has a range of 0 to 1. These ranges are narrowed only by the 

addition of information. 

Information is represented in this system as additional constraints. The fol- 

lowing are examples of constraints that might be provided by information: 

In some cases information might contain a term that does not appear in the 

canonical representation of CREs. The second example above, which contains 

the term P(~+D), is such a case. Such relationships can be converted to 



canonical form using equivalence relationships. In the example, the equiv- 

alence z - 3 ~  s 5% is invoked so that ~ ( 2 3 ~ )  - ~(53~). A similar procedure 

can be used to transform information that is provided in other ways. An im- 

portant case is conditional probability statements. For example, the state- 

ment P(D(C) > . 6  can be transformed to canonical form as follows: 

The model can be expanded to represent a whole network of events. 

Pictorially, Lagomasino and Sage show such a network as, 

but from the generality of their framework and discussion, the method does not 

appear restricted to a spanning tree. The link between any pair of nodes in 

the network may consist of a subset of basic premises and possible rebuttals. 

As stated, links appear to be quite general (presumably some node's claim 

could become another node's rebuttal), and thus the approach appears to lack 

the intrinsic structures of Toulmin's logic. Each relationship is modeled as 

a set of CREs, and the set of all CREs and additional information constraints 

are constraints in the linear program. This system of relationships may be 

solved to determine the range of probability of any factor of interest. If 

the linear program has no feasible solution, then those relationships 

specified are logically inconsistent. (This suggests an extension of the 

method using goal programming techniques, but a logical basis for such an ex- 

tension is not apparent.) 

Lagomasino and Sage do not explain how the informational relationships should 

be assessed or estimated, or exactly how new information changes a set of 



constraints. Moreover, information that loosens as well as tightens bounds 

(i.e., non-monotonic reasoning about probabilities) is presumably possible, 

but Lagomasino and Sage are silent on how this could occur in their framework. 

Nor is the process of specifying nodes in the network ever defined precisely. 

Lagomasino and Sage state that structuring a model involves "the specification 

of alternative hypotheses. at each node" and that "the set of hypotheses under 

consideration at each node should be mutually exclusive and exhaustive." 

However, hypotheses are also limited to propositions that obey the consistency 

relational equations. It is unclear how this constraint on assessment can be 

enforced. 

According to Lagomasino and Sage, the method allows for information to be en- 

coded about both causal (e.g., P(D%)) and diagnostic (e.g., P(D1C)) 

reasoning. This claim highly dubious and represents, we think, the most 

serious weakness in this approach. P(D+C) cannot plausibly by construed as 

the probability (or strength) of a causal link between D and C as long as 

"D-3CW is interpreted within traditional logic (as the authors clearly 

intend). Within traditional logic 'ID-XI1 is true unless D and C are both true 

(this is the interpretation used by Lagomasino and Sage in the derivation 

described above regarding P(D1C) and P(D+)). But this is far weaker than a 

causal connection: "If the moon is made of green cheese, then the threat is 

an SA-4" would be true in traditional logic, since the antecedent is false; 

yet clearly there is no causal connection. A warrant construed in this way is 

quite trivial: when the antecedent is true, the warrant merely states that 

the conclusion is true. It gives no indication of any physically real connec- 

tion between the two. 

An alternative interpretation of "D->C" is as an implicit universal 

generalization, i.e., all instances of D are also instances of C. This runs 

into the objections broached by Toulmin. In particular, a single coun- 

terexample (i.e., a case of D and not-C) is sufficient to establish the fal- 

sity of such a generalization; i.e., P(D3C) would be zero. Yet we often as- 

sert the existence of causal relations (e.g., "the baseballls hitting the win- 

dow caused it to break") even when the relationship is subject to exceptions 

(some baseballs would not have broken some windows). 

Marvin Cohen
Inserted Text
not 



In the light of these problems, two broad courses of action are available: 

(1) we can interpret "9" outside of classical logic, e .g . ,  in terms of modal 

logics for causality. In this approach, D-7C is true (i.e., D causes C), for 

example, only if C is true in all the physically possible worlds where D is 

true. Perhaps the degree to which D causes C is the percentage of D worlds 

where C is also true. This option involves enormous difficulties computa- 

tionally (i.e., in specifying CRE's within a modal framework) and semantically 

(i.e., in defining the notion of a "possiblen world precisely enough so they 

can be counted). (2) A simpler option is to take a causal (or other 

theoretical) link as a basic unanalyzed notion, and to assess the probability 

of its existence. This is essentially Shafer's approach in his notion of 

evidential support. Thus, mE(H) can be interpreted (with qualifications dis- 

cussed in Section 2.2.2 above) as the chance that the evidence E proves or es- 

tablishes the hypothesis H. In cases of causal reasoning, this is the chance 

that E causes H or that H causes E. (For example, the reliability of a wit- 

ness who claims that artillery is present is simply the probability that his 

testimony was in an appropriate causal relation to the presence of artillery.) 

In the framework to be described below, we in essence adopt course (2). 

However, we supplement Shafer's simple representation by an explicit analysis 

of the basis of the alleged evidential link in each argument: i.e., its back- 

ing and its possible rebuttals. 

2.4.2 Nilsson's ~robabilistic logic. Nilsson (1984) presents an approach 

that, on the surface, appears very similar to that of Lagomasino and Sage. 

Nilsson proposes a method for characterizing the truth-values of first-order 

sentences as probabilities. The method is applicable to "any logical system 

for which the consistency of a finite set of sentences can be established." 

This method is presented as a generalization of classical first-order logic 

that is "appropriate for representing and reasoning with uncertain knowledge." 

Nilsson starts by specifying a logical sentence whose truth values are of 

interest. These could be any conjunction of sentences of first-order logic. 

For example, a sentence could be: 



The truth-value of any one of the three components of this sentence is bounded 

by logical consistency relationships. For example, all three components could 

be true; this is logically consistent. However, the three components could 

not all be false; this is inconsistent. Note that this bounding is on the 

combination of truth-value for all components of the sentence, not for any in- 

dividual component. Indeed, in the example any component could be true or 

false (value of 0 or 1); it is only combinations that are prohibited. 

Each permissible combination of truth-values represents a "possible world," 

that is, a possible combination of true and false components. If the truth or 

falsity of each component is represented by the number 1 or 0 respectively, 

then a possible world can be represented as a three-dimensional vector of 

zeros and ones for a permissible state. In the example above, the following 

five vectors represent all possible worlds: 

If each component of the sentence is thought of as a dimension in three-space, 

then possible worlds are represented as five points in that space. 

Nilsson next generalizes the interpretation of the vector by allowing prob- 

abilistic "smearing" over worlds. This is done by allowing probability dis- 

tributions over different worlds and by constraining these probabilities to be 

logically "permissible." The implication of the definition of probabil- 

istically permissible is to constrain probabilities to be within the convex 

region bounded by the set of possible worlds as defined above. This leads to 

the following, rather tortured, interpretation of a probability of a component 

of a sentence: 

the probability of a component is the sum of probabilities of all pos- 

sible worlds in which it is true. 

Since consistency is a criterion that rarely determines probability uniquely, 



Nilsson investigates additional techniques. He both solves for "maximum 

entropy" probabilities and those produced by geometric projection. Neither 

method is provided with a basis or defended. This step might take place after 

the permissible region is reduced by additional constraints on the probability 

values of sentences. No mention is made of the source of these additional 

constraints. So, the output of Nilsson's model is either a description of a 

region of permissible probabilities or a probability that is determined by an 

ad hoc method, although one could presumably assess probabilities of "possible 

worldsn to derive the desired probabilities (ignoring the assessment problem). 

The principal difficulty of Nilsson's approach, from the present viewpoint, is 

that (like Lagomasino and Sage) it fails to capture true causal, or other 

evidential, relationships. As noted above, these are not well represented in 

the first-order predicate calculus, and it is not clear how effectively 

Nilsson's method could be extended to handle consistency constraints among 

sentences in a modal logic. In any case, it is clear that the assessment task 

would be enormously complicated (e.g., by the introduction of possible worlds 

containing sets of possible worlds). 



3.0 AN ADAPTIVE PROBABILISTIC INFERENCE FRAMEWORK 

This section describes an innovative inference framework, for use in expert 

systems. The framework was developed to address some of the shortcomings of 

current approaches to reasoning in uncertain domains. 

Human experts typically use an iterative process of reassessment and revision 

when they reason in complex domains characterized by uncertainty. One or more 

models are tentatively adopted (usually requiring assumptions that are, at 

best, only approximately satisfied) and conclusions are derived. The 

plausibility of the results is assessed, by testing model results against in- 

tuition or against the results of other models. Sometimes, in addition, the 

model makes predictions which can be tested against actual observations. When 

results of an analysis meet such tests of plausibility, confidence in model 

assumptions is enhanced; otherwise, the human analyst searches for ways to 

relax or change model assumptions to achieve more acceptable results. 

Current approaches to expert systems' reasoning under uncertainty, however, 

fail to capture this iterative revision process. Usually, some form of prob- 

abilistic model (e.g., Bayes, Shafer, or certainty theory) is encapsulated 

within the modular rules used by the system in reasoning. No provision is 

made for altering the probabilistic model to account for the extent to which 

results confirm or disconfirm model expectations. In many of these systems, 

moreover, there is no explicit representation of the completeness or 

reliability of a probabilistic argument--of the extent to which the analysis 

is "shiftable" with new evidence. 

Another problematic feature of current expert systems is the confounding of 

knowledge about uncertainty with utility, or knowledge about preferences. For 

example, the MYCIN system handles a disease it considers serious (a utility 

consideration) by increasing its certainty factor (acting "as if" it is more 

probable than warranted by the evidence). Another common tactic is to embed 

utility considerations in the ordering of rule application. Such confounding 

makes it very difficult to maintain a knowledge base in the face of 

independently shifting preferences and beliefs and to communicate system 

reasoning to users. 



Our inference framework is designed to capture important features of the 

iterative revision process characteristic of human reasoning. The framework 

takes explicit account of the "shiftability" of model assumptions, searching 

for potential revisions among those arguments identified as least reliable. 

Uncertainty is kept separate from preferences, allowing for greater normative 

justification of system results, for more informative user/system interaction, 

and for rapid adaptation to changes in system goals (this last feature being 

especially important in time-stressed military environments). 

Figure 3-1 illustrates the representation of a single evidential argument 

within our reasoning framework. The representation is based on Toulmin's 

(Section 2.3.3) proposed model of an argument. The evidence corresponds to 

Toulmin's grounds. The claim (the conclusion in Figure 3-1) is linked to the 

grounds through the warrant (the rule), with backing provided by a causal or 

other theoretical model. In our framework, however, the conclusion is not a 

definite hypothesis, but rather a belief function which represents the 

system's state of uncertainty about the range of possible hypotheses. Thus, 

the rule links evidence to a belief function over possible hypotheses. This 

fits with Toulmin's conception of the role of probability as modal qualifier 

of a claim--the belief function represents a qualified (by a belief function) 

claim, linked to the evidence through a rule for computing the belief 

function, with the rule in turn backed by a causal or other theoretical model. 

Finally, Toulmin's framework allows for representing the reliability of the 

evidence, through what he calls possible rebuttals. In Figure 3-1, the pos- 

sible rebuttals act to discount the belief function. In Section 2.2.2, in our 

discussion of belief functions, we saw that discounting of belief functions 

was a means of incorporating the judgment that there was some chance that the 

evidence and the hypothesis were not linked, i.e., that the evidential link 

was invalid due to some deactivating factor. 

As shown in Figure 3-1, this inference framework has the advantages of 

Shafer's belief function theory: in providing a measure of the reliability of 

evidential arguments, in permitting modular analyses of separate lines of 

argument, and in the possible use of Bayesian (as well as other) types of 

models as special cases. 
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A crucial additional feature of our system, however, is that belief functions 

are not represented as "black boxes;" the system is provided with a frame 

(Figure 3-1) representing the basis for computing the belief function, 

together with knowledge of the factors which could discredit the link between 

the evidence and conclusion. Thus, the system has access not only to numeri- 

cal measures of uncertainty, but to the structure of the arguments on which 

these measures are based. This feature provides the potential for "reaching 

inside" an argument and altering the resultant belief function, the alteration 

being based on the firmness of the components of the argument. 

Figure 3-2 illustrates the combination of two arguments. The belief function 

representation provides for a straightforward means of combination: the ap- 

plication of Dempster's Rule. When the two arguments are in basic agreement, 

confirming each other, the inference procedure ends with the application of 

Dempster's Rule. However, it is possible that the arguments are in conflict, 

that they assign significant belief to mutually exclusive conclusions. Such a 

situation was discussed in Section 2.2.2, and illustrated in Figure 2-3. When 

such conflict occurs, the system (as would a human expert) takes it as 

evidence that one or more of the component arguments may be flawed; and it 

sets out to determine where the flaw is. As shown in Figure 3-2, the process 

of conflict resolution in this system can involve the application of different 

strategies across several different stages. 

(1) The first step of conflict resolution is to search for information that 

may discredit one of the component arguments. Thus, the system tries to ob- 

tain information about the factors influencing the discount rate; this search 

is prioritized by balancing the cost of information search against the poten- 

tial benefit of the information in conflict reduction. The result of the in- 

formation search may be to increase belief in the presence of a factor dis- 

crediting one of the arguments; if this results in lowering the conflict to an 

acceptable level, the conflict resolution process is concluded. 

(2) As a second step, however, the system may seek additional independent 

evidence related to the conclusion. This typically will result in an increase 

in conflict, but it may provide insight into which component argument is 

flawed (by supporting only one of the original conflicting arguments). Then, 
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by looping back to step (I), the system utilizes this additional information 
to reprioritize its search for the presence of discount factors. 

(3) Thirdly, the system may explore modifications in the theoretical basis 

for one of the conflicting arguments. For example, the system may decide to 

modify the causal model underlying one of the inference rules, or it may 

decide that the arguments are not based on independent evidence, invalidating 

the applicability of Dempster's Rule. Clearly, such modifications are at a 

higher level than those discussed before, and require a system with a high- 

level adaptive capacity for altering the structure of its own reasoning 

processes in the face of unanticipated observations. 

(4) Finally, if significant conflict remains, the system discounts all com- 

ponent arguments by an amount reflecting their contribution to the conflict, 

This reflects the conclusion that some element in at least one of these argu- 

ments is flawed, but that insufficient data are available (at an acceptable 

cost) to identify the flaw precisely. 

In the demonstration system (Section 4 below), steps (1) and (4) above have 

been implemented. 

The process of discounting belief functions when conflicting evidence is en- 

countered is non-monotonic in character, and possesses important parallels to 

Doyle's (1979) non-monotonic logic, discussed above in Section 2.3.2. In a 

strict Shaferian system, the input belief functions remain fixed throughout 

the analysis, and combination of these functions by Dempster's Rule after the 

addition of new evidence always reduces the amount of mass allocated to the 

universal set. Yet Shafer himself responded to the example of Figure 2-4, 

where the existence of conflict resulted in a counter-intuitive result, by 

proposing a non-monotonic revision (discounting) of the input belief 

functions. Our framework provides a mechanism for implementing this non- 

monotonic process within an expert system. Belief functions are represented 

as based on assumptions (for example, until evidence to the contrary is 

obtained, the system acts as if a particular discount factor is absent). When 

conflict among belief functions is observed (conflict being analogous to 

Doyle's system encountering a contradiction among sentences), the system 

searches for a "culprit assumptionn (e.g., the absence of the above-mentioned 



discount factor) and looks for evidence to discredit the assumption through a 

test which might establish the presence of the factor. The result is a 

modification of the assumptions leading to one of the belief functions, and 

hence a discounting of that belief function and a reduction of conflict. It 

is worthy of note that in our system (unlike Doyle's) the prioritization of 

the search for nculpritn assumptions is made explicit, and is based on a 

benefit-cost tradeoff. Moreover, if a revision in assumptions cannot be jus- 

tified (by the outcome of some test), the revision does not take place, and 

the system uses the device of across-the-board discounting (step (4)) to rep- 

resent the overall loss in confidence in its system of beliefs. 



4.0 APPLICATION TO A PROTOTYPE ADAPTIVE ROUTE REPLANNING (ARR) SYSTEM 

4.1 Implementation 

Our inference framework has been implemented in a small-scale prototype system 

designed to support pilots on deep interdiction or offensive counterair 

missions. The focus of the demonstration software is in-flight route replan- 

ning in the face of strategic pop-up threats, i.e., threats which are dis- 

covered at sufficient ranges to permit time for rerouting the aircraft (in 

contrast, for example, to the immediate evasive action required against an 

airborne missile). Further, the main focus among strategic threats is 

surface-to-air missile sites or artillery. 

The Adaptive Route Replanner (ARR) is assumed to begin its mission with prior 

information (represented by a belief function) about the location of a par- 

ticular surface-based anti-air threat. During flight, the system is notified 

of a second threat localization (from a SAR signal), which may be more or less 

distant from the likely location of the first threat. This second piece of 

information is likewise represented by a belief function for the location of 

the threat. As part of its inference task, the system must assign degrees of 

belief among three possibilities: (1) the two belief functions represent the 

same threat, in the same location; (2) the original threat has moved to a new 

location; and (3) the second signal comes from an entirely new threat, pre- 

viously undetected. 

To perform this task, the ARR utilizes its knowledge about the original threat 

location and the location of the new signal, as well as general information 

such as how far threats can move, how thorough the prior area intelligence was 

(and therefore, how likely to have missed a threat), and how far from the 

original threat a second threat is likely to be. (Other kinds of information, 

e.g., characteristics of the SAR signal that might help to identify the type 

of threat and establish whether it is the same or different as the original 

threat, would be included in a full-scale operational system. Due to the con- 

straints of a limited Phase I effort, it was decided to incorporate only a 



small subset of potentially available information sufficient to illustrate the 

inference mechanisms.) 

Each of the above pieces of evidence is represented as a belief function, as 

described in Section 2 . 2 . 2 .  The system operates on these belief functions in 

three passes. (I) Forward-chaining combination of belief functions using 

Dempster's Rule. The result is a belief function over the three 

possibilities--unchanged, moved, or different--as well as a belief function 

over the location of the threat(s) under each of the possibilities. The 

analysis ends here if there is no significant conflict in the resulting belief 

function; otherwise, a second pass is taken. (11) Prioritization and 

(possible) performance of tests. In the second pass, the system decides on an 

action to take (e.g., test for ECM in the area) that might discredit one of 

the belief functions and result in a lessening of conflict. If the test is 

performed, and if a non-monotonic process of discounting occurs based on the 

test result, then the combination of belief functions is recomputed. Again, 

analysis ends if results are satisfactory. (111) Across-the-board discounting 

of all arguments. Otherwise, all component arguments are discounted based on 

their contribution to the conflict, and Dempster's Rule is again recomputed. 

After arriving at a satisfactory inference with respect to threat 

classification, ARR derives the action implications of the inference. 

Specifically, it combines its beliefs with regard to whether the threat is 

unchanged, moved, or new with its knowledge of the danger contours associated 

with the threats, and, based on this information, evaluates several candidate 

routes and selects the best. (The present implementation does not generate 

routes, nor does it compute danger contours from more basic information. 

These functions have been taken as "black box" pieces of its knowledge base, 

in the initial phases of this research.) 

ARR computes the Value, or "expected utility," of a route by the 

following formula, based on Bayesian decision theory: 

Value of Route = (the probability of arriving at and damaging the 
target) x (the value of the target) - (the probability of the 
aircraft being destroyed anywhere on the route) x (the value of the 
aircraft). 



This equation highlights two important features of route planning or 

replanning: (1) two major uncertainties must be considered: the probability 

of damaging the target and the probability of own aircraft destruction 

(lethality); hence, it distinguishes between risks on the ingress and risks 

associated with the entire route; and (2) it requires a comparison between 

target value and the value of friendly aircraft. In essence, what this equa- 

tion says is that for a route to be acceptable, the chance of damaging the 

target (i.e., success on ingress) and the value of the target must be great 

enough to outweigh the chance of being destroyed. 

Tradeoffs involving these factors may be critical in route replanning when a 

pop-up threat appears during the ingress. For example, two revised route op- 

tions for avoiding a pop-up threat may be available, which differ in how they 

allocate risk between ingress and egress. Route A plays it safe on the 

ingress, detouring significantly to avoid the pop-up threat; but on egress it 

must pass quite close to another threat due to fuel constraints. Route B 

takes a more direct path to the target than Route A, placing it in jeopardy 

from the pop-up threat, but leaving it with enough fuel on egress to avoid the 

other threat. It might be that Route B is on the whole safer (i.e., has a 

lower total lethality); but Route A might be preferable, even so, because it 

affords a better chance at the target, According to this model, choice be- 

tween Route A and Route B depends on how much chance of damaging the target is 

worth how much risk to own aircraft. The present system takes such tradeoffs 

into account (through the above equation) in its evaluation of routes. 

The Bayesian approach just described ignores the fact that inferential argu- 

ments underlying the system's evaluation of candidate routes may involve vary- 

ing degrees of unreliability. As a result, the evidence may not uniquely 

determine an evaluation "scoren for each route according to the above formula. 

Nevertheless, in a successful rerouting aid the potential lethality of a route 

to own aircraft and the likely damage inflicted on the target must be sum- 

marized in some way; different routes must be compared; and recommendations 

must be made to the pilot in a timely fashion. 

ARR extends the traditional decision-theoretic approach to accommodate these 

requirements. It provides two lethality measures for each route: a lower 

lethality measure representing the lowest danger consistent with the evidence, 
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and an upper lethality measure representing the greatest danger consistent 

with the evidence. These measures are computed by appropriately reallocating 

uncommitted support, i.e., support assigned to subsets of hypotheses, to the 

elementary hypotheses in those subsets. Similarly, ARR provides both a lower 

and an upper measure of the chance of arriving at and damaging the target. By 
this means, the system computes an upper and a lower Value for each route: 

The upper Value is obtained by utilizing the lower measure for lethality and 

the upper measure for damaging the target; hence, it represents the most op- 

timistic assessment of the route that is consistent with present evidence. 

The lower value is obtained by utilizing the upper measure for lethality and 

the lower measure for damaging the target; hence, it represents the most pes- 

simistic supportable assessment. 

Determination of a route recommendation (from a set of previously generated 

routes) now proceeds in two stages: (1) If the lower Value measure of a route 

is higher than the upper Value measure for another route, the first route is 

clearly preferred (and is recommended by our system). (2) In other cases, 

however, where the Value intervals for different routes overlap, the evidence 

available to the system is insufficient for a definitive choice (assuming that 

all cost-effective information collection options have been exhausted). In 

these cases, the system utilizes one of two normatively defensible, user- 

selected "decision attitudes" to determine a route recommendation. According 

to the pessimism (or worst case) attitude, upper measures are used for the bad 

outcome (i.e., lethality) and lower measures are used for the good outcome 

(i.e., damaging the target). According to the conservatism attitude, Values 

are computed utilizing the above equation with lower measures for all outcomes 

(i.e., uncommitted support is disregarded rather than reallocated, and only 

what the evidence positively supports is considered). 

The following sections describe the inference mechanism in more detail, and 

present sample products of itsoperation. 

4.2 The Belief Functions 

ARR begins with prior area intelligence about threats in an area A (for 

simplicity, we assume A to be 2-dimensional space). This intelligence is rep- 

resented as a belief function on A. En route, the system is notified of new 



evidence of a threat in A, again expressed as a belief function on A. ARR 

must make inferences about whether the second item of evidence represents a 

new threat or the same threat, and if the same threat, whether it has moved to 

a new location. 

To make this inference, ARR first extends the two belief functions to the set 

A x A x T, where the two copies of A represent the system's knowledge about 

the two threat localizations, and T - (S,D) is the set indicating whether the 
two signals represent the same or different threats. The elements of A x A x 

T are interpreted as follows. 

(x,x,S) : Same threat, unchangedlocation x. 
(x,y,S) : Original threat at x has moved to location y. 
(x,y,D) : Different threats at locations x and y. 

Now ARR must incorporate its prior knowledge about whether threats are likely 

to move, and if so, how far; as well as its knowledge about whether there are 

likely to be gaps in area intelligence, so that some threats may have been 

missed; and its knowledge about the typical or expected spacing of separate 

threats. Each of these items of evidence can also be expressed as a belief 

function over A x A x T. 

ARR's evidence is summarized by five belief functions, described below. Table 

4-1 defines formal notation for the focal elements of each of the belief func- 

tions and the belief assigned to each. A finite number of focal elements is 

assumed for each belief function. 

Bell: Summarizes prior evidence about the location of the first threat. 
Belief is focused on circles of increasing radius centered at al. 
This evidence provides no information about the location of the 
second (or moved) threat or about whether the two threats are the 
s h e  or different. 

Be12: Summarizes evidence about the location of the second threat. 
Belief is focused on circles of increasing radius centered at a2. 
This evidence provides no information about the original threat or 
about whether the two threats are the same or different. 

Be13: Summarizes evidence about movement. This evidence provides no in- 
formation about whether the two threats are the same or different, 
but if they are the same, there is evidence about whether there 
was movement (e.g., observed transport activity) and if so, how 
much (based on time available and estimated speed capabilities). 
Thus, belief is focused on the diagonal H in AxA (threats in the 



Belief Function Focal Element 

Be1  Sx(al) x A x € S s D I  

Be14 A x A {S) 
A x A x {s,D) 

Be15 (BZ x {Dl) V (A. x A x {s)) 

Belief  Assignment 

m, (XI (IDl (XI-1) 

Def in i t ion  of symbols: 

cw = {(a ,b)  : f,(w) - < la-bl - <f*(w)} 

(where f*(w) and f*(w) a r e  lower and upper bounds f o r  t h e  d i s tance  
range of t h e  set C ) 

W 

B z = (a,b)  : g*(z) 2 1 a-bl - < g*(z) 

(where g,(z) and g*(z) a r e  lower and upper bounds f o r  t h e  d i s tance  
range of the  set B ) 

2 

Table 4-1 : Summary of Belief Functions f o r  P i l o t  Aid 

- 87 - 



same location), and on sets Cw,each of these representing a range 
of distances the threat might have moved. 

Be14: Summarizes evidence about the thoroughness of intelligence. 
Belief is focused on subsets of T (whether the threats are the 
same or different); this evidence provides no evidence about loca- 
tion or separation of the threats. 

Be15: Summarizes evidence about the separation of different threats (if 
threats are different, they are likely to be separated). Belief 
is focused on sets B,, each of these representing a range of dis- 
tances the threats might be separated. This belief function 
provides no information about whether the threats are the same or 
different, or about their separation in case they are the same. 

These five belief functions may be combined by Dempster's Rule to obtain a 

belief function Bel* over A x A x T. Table 4-2 summarizes the focal elements 

of the combined belief function and the belief assigned to each. The belief 

function Bel* is obtained by normalizing these belief assignments (dividing by 

1 minus the total belief assigned to the null set). The steps in combining 

the belief functions are summarized below. 

1, Combine Be1 and Be12 to obtain a new belief function with focal 
elements Sxtal)~~y(a2)x(~ ,D) , each with belief ml(x)m2(y). 

2. Combine Be13 and Be15 to obtain a new belief function with focal 
elements (Hx(S))U(BZx(D)) (belief sm5(z)) and (C+(S))U(B,x(D)) 
(belief m3(w)m5(z)). The first type of focal element represents the 
belief that if the threats are the same, there is no movement; 
otherwise, their separation is described by the range of distances 
represented by B,. The second type of focal element represents the 
belief that if there is movement, it is represented by Cw; if the 
threats are different, separation is described by BZ. 

3 .  Combining the results of Steps 1 and 2 gives a belief function 
with two types of focal element. The first type of focal 
element is [ (S,(al)xS (a2))ff Hx(S) I [ (Sx(al)xS (a2))nBZxtD) I 
representing belief ig a single threat unmove8, or a different 
threat. The second type of focal element is 
[ (Sx(al)xsy(a2))nc#(S) I [ (Sx(al)xS (a2))nBzx(D) I ,  representing 
belief in a moved or a different thzeat. 

4. The final step is to add in Be14, the belief in a single threat. 
The result is the same focal elements as in 3 (representing the un- 
committed belief), as well as the focal elements Sx(al)xSy(a2)flHx(S) 
and Sx(al)xS (a )qCwx(S), representing belief in a single threat Y 2 with unchanged location or with location change described by Cw. 
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Table 4-2c: Combined Belief Assignments 

Focal Element 

@ [Sx(al) x sy(a,)n cwl x 1s) 

(same ass but HCCw) 

Belief Assignment 
(Uwnchanged, Mwoved, D=differe 

M 

0 

Belief (non-normalized) 

(x)m2 (y)m3 (w) 

. Condition 

s x (a,)n sy(a2) # 0 

sx(al)n sy(a2) = 0 
s X (a,) x Sy(a,)n cw # 0 

Sx(al) x S (a Cw = 0 
Y 2 



A belief function over the three possibilities unchanged (U), moved (M), and 

different (D) can be defined by the marginal belief function of Bel*. Table 

4-3 gives this marginal belief function. 

Table 4-1 presents quite complex mathematical conditions for belief in the 

three hypotheses (unchanged, moved, different) and their various combinations. 

These conditions can be greatly illuminated by describing them verbally in 

terms of reasons for belief in the hypotheses. 

Contours: degree of overlap - The threat can be unchanged only if 
it is possible that the two signals could have come from the same 
location. Thus, belief in an unchanged threat is supported to the 
degree that the location contours of Bell and Be12 overlap. 

Distance: possibility of movement - Movement is possible only when 
the separation between the threats (described by Be1 and Be12) is 
consistent with the distance a threat might have moved (as described 
by thedistance ranges of Be13). Thus, belief in a moved threat is 
supported to the extent that the contours of Bell and Be12 are con- 
sistent with the distance ranges of Be13. 

Likelihood of movement - Be13 also has a focal element representing 
positive belief in no movement. Belief in movement is supported to 
the extent that this focal element has low belief. 

Distance: possibility for different threats - Different threats are 
possible only when the threat separation (described by Bell and 
Be12) is consistent with threat spacing information (described by 
Be15). Thus, belief in different threats is supported to the extent 
that the contours of Bell and Be12 are consistent with the distance 
ranges of Be15. 

Threat coverage - The threats can be different only if it is pos- 
sible that a threat was missed. Thus, belief in different threats 
is supported by a low belief in the thoroughness of intelligence (as 
described by Be14). 

The system has the capability for selecting which of the above reasons 

provides primary support either for or against each of the hypotheses. The 

display informs the user, then, not only of the belief in each hypothesis, but 

of the reasons supporting that belief. 



Table 4-3: Marginal Belief Function over (U,M,D) 

Focal Element Belief 

4.3 Conflict Resolution 

We see from Table 4-1 that combining belief functions with mass focused on in- 

compatible subsets results in belief assigned to the null set. We use as a 

measure of conflict the amount of belief assigned to the null set when apply- 

ing Dempster's Rule. This is the measure of conflict used by Shafer (1976) 

and by Cohen (1985). 

Viewed in another way, conflict occurs to the extent that there is evidence 

against all three hypotheses (unchanged, moved, different). For each of the 

six null-set entries in Table 4-1, we can identify the reasons for the occur- 

rence of the conflict, in terms of the taxonomy given at the end of the pre- 

vious section. Table 4-4 gives the reasons for the six types of conflict. 

For example, the first type of conflict occurs to the extent that belief is 

assigned to non-overlapping contours, to non-movement, and to distance ranges 

incompatible with location contours. 

When combination of the five belief functions results in conflict greater than 

threshold tc, the system's conflict resolution procedure is invoked. The con- 

flict resolution procedure is, in effect, a mechanism for searching within the 

arguments leading to each of the five belief functions Na M F Q L g u t e m P t  :;la- 
tify potential weaknesses in the arguments. When such weaknesses G e  

A * A\ . y, the corresponding belief functions are discounted, leading to 

reduction in conflict. As long as potential weaknesses can be identified, the 

process of conflict resolution continues until conflict is reduced to below 



CONFLICT TYPE 
(From Table 
4- 6) 

CONTOUR DISTANCE EVIDENCE EVIDENCE DISTANCE COVERAGE 
NON - PRECLUDES FOR MOVE- AGAINST PRECLUDES GOOD 
OVERLAP MOVEMENT MENT ( if MOVEMENT DIFFERENT 

same threat) 

Table 4-4: Reasons for Conflict--Six Types of Conflict 

As indicated in Figure 3-1, each belief function has associated with it a set 

of potential discount factors, or factors influencing the reliability of the 

link between the evidence and the conclusion. An example of such a discount 

factor would be the presence of ECM in the area when a SAR signal is observed; 

such presence would tend to discredit the location estimate derived from the 

SAR signal. 

Each discount factor has associated with it an initial belief function. This 

function represents the "defaultn assumption the system wishes to make about 

the presence of the factor, prior to testing for its presence. A reasonable 

initial belief function might be vacuous, assigning all belief to the univer- 

sal set, and thus representing no information about the factor's presence or 

absence. Alternatively, there might be evidence available initially, whether 

specific to this mission, or based on prior experience. The initial belief 

function allows such information to be incorporated into the analysis. 

Each discount factor also has an associated test for factor presence. The 

test may have several possible outcomes. Each test outcome o is associated 

with a belief function which summarizes the impact of observing test outcome o 

on belief in factor presence. If a test is performed with outcome o, the as- 

sociated belief function is combined via Dempster's Rule with the initial 

belief function to obtain an updated belief function for factor presence. 



Belief functions are discounted according to the amount of belief directly 

committed to factor presence. (This practice corresponds to an assumption 

that the evidential link is valid until evidence is observed to the contrary.) 

If Bk is the amount of belief directly committed to the presence of discount 

factor k, then the discount rate for the corresponding belief function is: 

I - 

where the summation is over those discount factors associated with the given 

belief function. The number wk is a measure of the impact of the presence of 

factor k on the discounting. The wk are assumed to be positive and to sum to 

1. The resulting discount rate ranges between 0 and 1, with a discount rate 

of 0 corresponding to complete discrediting of the evidential link, and a dis- 

count rate of 1 corresponding to no discounting relative to the initial belief 

function. 

The belief function Beli is discounted by multiplying the belief associated 

with each focal element by the discount rate 6'. This results in beliefs sum- 

ming to less than 1; belief is now added to the universal set to correspond to 

the belief subtracted from each of the focal elements. 

When the initial belief functions for some of the discount factors for Beli 

are non-vacuous, the system must discount belief function  e el^ before initial 
application of Dempster's Rule (described in Section 2.2.2). Thus, the ini- 

tial pass of the inference mechanism incorporates any discounting deemed ap- 

propriate prior to combination of the evidence. 

We now describe the process initiated when combination of initial belief func- 

tions (which incorporate the initial discount rates) results in conflict ex- 

ceeding the threshold tc. ARR moves to the "second pass" of its inference 

mechanism, described by the following five steps. 

1. Decide which discount factor for which belief function is the 
provisional "culprit" and which test to perform on the culprit. 
(This step is the crux of the algorithm and the selection criteria 
are discussed in detail below.) If no culprit can be found, initiate 
Pass 3. 



2.  Perform the test and revise belief in the appropriate discounting 
factor. 

3 .  Compute a revised discount rate and apply it to the culprit belief 
function, resulting in a new belief function. 

4. Recombine the belief functions according to Dempster's Rule, as 
described in Section 2.2.2. The result is a new combined belief 
function, and a new measure of conflict. 

5. If conflict is below tc, stop. Otherwise, return to Step 1. 

The test chosen is based on potential for conflict reduction, balanced against 

the cost of performing the test. 

Each test, then, must have a cost associated with it. It is in these costs 

that a crucial difference between ground-based and in-flight aids comes to the 

fore. An in-flight aid would associate a very high cost with performing any 

test for which results could not be obtained very quickly. Moreover, the 

costs might change dynamically with flight progress (some tests being feasible 

early on when the time stress is not so great, but becoming infeasible later 

in the mission). 

To decide which test to perform, our prototype system first evaluates each 

test to see which has the maximum potential for conflict reduction. To do 

this, the system computes a measure of the impact of discounting each of the 

component belief functions on conflict (a partial derivative of conflict with 

respect to the discount rate on the component belief function). It then iden- 

tifies for each test associated with each belief function the maximum poten- 

tial for discounting the associated belief function (taken over all test 

results). This maximum discount rate is multiplied by the partial derivative 

to obtain a measure of the maximum possible impact on conflict for the given 

test. This quantity is then divided by cost to obtain a measure of maximum 

conflict reduction per unit cost. The test is chosen for which this measure 

is the highest. (Note that there is no guarantee that conflict reduction will 

be as great as indicated by this measure--the measure is based on the most 

favorable result for the test, which may not be the result observed.) 

Formally, let be the initial discount rate for belief function i, and let c 

be the conflict computed under discount rate 6 (i. e . , the conflict from Pass 
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1 of the algorithm). Let ci be the partial derivative of c with respect to 

6i. Now, for a given test t, let 6*(t) be the maximum discount rate (over all 

test results) that can be obtained for that test. Now, for each discount fac- 

tor f, let t(£) be the test for factor presence, $(t(f)) the cost of the test, 

and i(f) the index of the associated-belief function. Then let 

the quantity u(f) can be thought of as the utility of testing for discount 

factor f (the negative sign occurs because conflict varies inversely with dis- 

count rate). 

The test t(f) is performed for the factor f for which u(f) is maximized. 

Even in the face of extreme conflict, discounting a contributing argument may 

not be appropriate. There must be a reasonably strong case that the most 

likely cause (or causes) of the conflict have been identified. It may be the 

case that the system cannot find a test to perform, whether because no test 

has the potential for significant conflict reduction, because all tests cost 

too much to perform, or because all possible tests have already been 

performed. We saw above that in this case, the system resorts to a third pass 

of discounting all belief functions, according to a formula by which those 

belief functions contributing most to the conflict are discounted the most. 

The mechanism for this across-the-board discounting is quite a natural exten- 

sion of the present framework for representing evidential reasoning. Each 

evidential argument is associated with a discount factor called "conflict with 

other evidence." Across-the-board discounting involves an increase in the 

belief in the presence of this factor, proportional to the contribution of a 

given argument to the conflict. The weight on this factor, for a given 

argument, reflects the firmness with which the system will retain commitment 

to that particular evidential link in the face of conflicting data. 

4.4 Sample Results 

In this section, we describe some of the results produced by applying the in- 

ference mechanisms within our prototype system to sample data. We stress that 

the following discussion is not meant as a description of the user-system 
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interface; these results would obviously not all be presented to users in this 

form (see Section 4.5 below). 

Figures 4-la through 4-le illustrate the output of Pass 1 through the system's 

inference mechanism, for each of five different inputs. Each of these figures 

describes the input belief functions, the combined threat classification 

belief function, and the amount of conflict in the evidence. 

In the first analysis (Figure 4-la), belief contours for the first and second 

threats are centered at a distance of 5 units (say, miles) apart. The loca- 

tion contours describe how certain we are of these localizations. Thus, for 

the first localization, there is belief of .18 that the threat lies within .93 

units of the center (2,2). There is belief .54 (.I8 + .18 + .18) that the 
threat lies within 1.5 units of (2,2). We see that the localization of the 

second threat is less precise than that of the first--the belief contours have 

greater radius. Belief of . 3  is committed directly to the hypothesis that the 

second threat, if the same, has not moved; belief of .10 is uncommitted about 

whether or how far it moved, and the rest of the belief is distributed across 

nested intervals of distances the threat may have moved. Belief of .7 has 

been assigned to the second localization representing the same threat as the 

first (indicating fairly high confidence in area intelligence). Finally, if 

the threat has moved, we place belief .17 on its having moved at least 6.1 

miles, and belief .68 (.I7 + .17 + .17 + .17) on its having moved at least 3.2 
miles. 

The resulting belief function places the highest weight on the hypothesis of a 

single threat that has moved. This result is consistent with our confidence 

in area intelligence, as well as a small amount of belief placed on the 

threats being the same. Conflict is not too large, at a level of .17. (We 

have tentatively adopted a conflict threshold of .25 for initiation of Pass 2; 

more experience is needed to determine what level is best in this 

application.) 

The second set of inputs (Figure 4-lb) is the same as the first, except that 

the belief assigned to an unmoved threat has been raised from . 3  to .7, with 

corresponding reductions in belief for the intervals the threat might have 

moved. The result is what we would expect: relative to the first set of 
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Jnwt Belief Functions; 

Bell: Center of Contours - (2,2) 
Radius .44 .93 1.5 2.2 3.3 5.0 
Committed Belief .18 .18 .18 .18 .18 .10 

Be12: Center of Contours - (5,6) 
Radius .88 1.9 3.9 4.3 6.6 10.0 
Committed Belief .18 .18 .18 .18 .18 .10 

Be13: Belief Assigned to Diagonal - 0.3 

Lower Distance 1.02 .88 .75 .63 0.0 
Upper Distance 1.34 1.53 1.78 2.14 00 

Committed Belief .15 .15 .15 .15 .10 

Be14: Belief Assigned to Same Threat - 0.7 
Be15: Lower Distance 6.1 4.9 4.0 3.2 2.6 2.0 

Upper Distance 03 w w 00 w co 

Committed Belief .17 .17 .17 .17 .17 .15 

Combined Belief Function: Classification of Second Threat 
(U - unchanged; M - moved; D - different) 

Conflict (Mass Assigned to Null Set) in Combined Belief Function - .17 

Figure 4- la :  Output of Pass 1 of Inference Mechanism 



Jnvut Belief Functions: 

Bell: Center of Contours - (2,2) 
Radius .44 .93 1.5 
Committed Belief .18 .18 .18 

Be12: Center of Contours - ( 5 , 6 )  

Radius .88 1.9 3.9 
Committed Belief .18 .18 .18 

Be13: Belief Assigned to Diagonal - 0.7 

Lower Distance 1.02 .88 .75 
Upper Distance 1.34 1.53 1.78 
Committed Belief .05 .05 .05 

Be14: Belief Assigned to Same Threat - 0.7 
Be15: Lower Distance 6.1 4.9 4.0 

Upper Distance co co Q*= 

Committed Belief .17 .17 .17 

(U - unchanged; M - moved; D - different) 

Figure 4-%: Output of Pass 1 of Inference Mechanism 



Jn~ut Belief Functions; 

Bell: Center of Contours - (2,2)  

Radius -44 .93 1.5 2.2 3.3 5.0 
Committed Belief .18 .18 .18 .18 .18 .lo 

Be12: Center of Contours - (3,4) 
Radius .88 1.9 3.9 4.3 6.6 10.0 
Committed Belief .I8 .18 -18 .18 .18 .10 

Be13: Belief Assigned to Diagonal - 0.7 

Lower Distance 1.02 .88 .75 .63 0.0 
Upper Distance 1.34 1.53 1.78 2.14 CQ 

Committed Belief .05 .05 .05 .05 .10 

Be14: Belief Assigned to Same Threat - 0.7 
Be15: Lower Distance 6.1 4.9 4.0 3.2 2.6 2.0 

Upper Distance co 00 w w w w 

Committed Belief .17 .17 .17 .17 .17 .15 

c t  
(U - unchanged; M - moved; D - different) 

Conflfct /Mass Assimed to Null Set) in Combined Belief Function - .04 

Figure 4 - l c :  Output of Pass 1 of Inference Mechanism 



J n m t  Belief Functions ; 

Bell: Center of Contours - (2,2) 
Radius .44 .93 1.5 2.2 
Committed Belief .18 .18 .18 .18 

Be12: Center of Contours - (8,8) 
Radius .88 1.9 3.9 4.3 
Committed Belief .18 .18 .18 .18 

Be13: Belief Assigned to Diagonal - 0.3 

Lower Distance 1.02 .88 .75 .63 
Upper Distance 1.34 1.53 1.78 2.14 
Committed Belief .15 -15 .15 .15 

Be14: Belief Assigned to Same Threat - 0.3 
Be15: Lower Distance 6.1 4.9 4.0 3.2 

Upper Distance 00 w co m 

Committed Belief .17 .17 .17 .17 

Combined Belief Function: Classification of Second Threat 
(U - unchanged; M - moved; D - different) 

Figure 4-18: Output of Pass 1 of Inference Mechanism 



Jnwt Belief Functions; 

Bell: Center of Contours - (2,2) 
Radius .44 -93 1.5 
Committed Belief .18 .18 .18 

Be12: Center of Contours - (8,8) 
Radius .88 1.9 3.9 
Committed Belief .18 -18 .18 

Be13: Belief Assigned to Diagonal - 0.3 

Lower Distance 1.02 .88 .75 
Upper Distance 1.34 1.53 1.78 
Committed Belief .15 .15 .15 

Be14: Belief Assigned to Same Threat - 0.7 
Be15: Lower Distance 6.1 4.9 4.0 

Upper Distance a co OJ 

Committed Belief .17 .17 .17 

c t  
(U - unchanged; M - moved; D - different) 

Fonf 1% ct _( Mass Assi nn ed to Null Set) in Combined Belief Function - .42 

Figure  4-le: Output of Pass 1 of Inference Mechanism 



inputs, belief assigned to an unchanged threat has increased, and belief in a 

moved threat has decreased. Conflict has increased a little, and is now near 

the threshold for initiation of Pass 2. This reflects the fact that the over- 

lap in the location contours is little enough that there is reasonable con- 

flict in attributing both to an unmoved threat. 

Now consider a third set of inputs identical to the second, except that the 

centers of the contours move closer together (Figure 4-lc). As expected, 

belief in an unchanged threat is greatly increased relative to that in a moved 

threat. Moreover, conflict has decreased to nearly zero, indicating the ex- 

tent to which the conflict in the second set of belief functions was due to 

non-overlapping contours. 

The fourth set of inputs (Figure 4-ld) is the same as the first, except that 

the centers of the location contours are now farther apart, and belief in the 

thoroughness of area intelligence has decreased to 0.3 (indicating a fairly 

high possibility that a threat may have been overlooked). The result is a 

high belief in the two localizations representing different threats. The con- 

flict level, .18, is not sufficiently high to trigger conflict reduction. 

Our final example (Figure 4-le) illustrates what happens when the threat 

localizations remain widely separated, but confidence in area intelligence is 

raised again to .7. The combined belief functions assign nearly equal weight 

to moved and different threats (the overlap in the contours being small enough 

that very little belief is assigned to an unchanged threat). But most 

importantly, conflict is greatly increased; nearly half of the belief in the 

combined functions is assigned to the null set. This set of inputs results in 

triggering of Pass 2, the conflict reduction step. 

In Pass 2, our system first chooses to test for the presence of ECM in the 

area. The result is a discounting of the belief contours of Be12 by a dis- 

count rate of .31. After discounting, Dempster's Rule is reapplied (Figure 4- 

2), and the new level of conflict is greatly reduced to 0.29. This level 

remains above the threshold of .25, so a second pass of conflict reduction is 

initiated. The system next chooses to reassess the thoroughness of area 

intelligence. It searches for information about area intelligence (whether 

from the pilot or by querying ground-based sources), and decides to discount 



Be14 by a discount rate of .19. After this final discounting, conflict is 

reduced to an acceptable .23. Figure 4-2 reports the system's inferences 

about threat classification. Most of the mass has been allocated to a com- 

bination of the hypotheses that the threat has moved or is different (total 

mass .76 in the final pass). 

Relative to Figure 4-ld, there is a higher degree of belief that the threat 

has moved. This is because the high confidence in area intelligence tends to 

discredit the hypothesis of different threats. Note that the final pass, in 

discounting Be14, has resulted in decreased confidence in area intelligence 

(.7 is discounted to (1-.19) x .7 - .57). This results in higher belief in 

different threats after the final pass than on the previous pass. 

In summary, we see that the numerical results in the examples given conform to 

intuition. Increasing initial belief in an unchanged threat increases con- 

flict to the extent that contours do not overlap, and also increases final 

belief in an unchanged threat. Moving the signals closer together increases 

final belief in an unchanged threat; moving them far apart increases belief in 

different threats. Incompatible initial beliefs (threats far apart but missed 

threat unlikely) results in conflict, which is resolved by discounting. 

4.5 Hardware 

In the interests of efficiency of coding and portability, the demonstration 

system is implemented in the C language on an IBM AT with an 80287 

coprocessor, at least 512KB of random access memory, and IBM Enhanced Graphics 

Adaptor (640 x 360 pixels with 16 simultaneous colors), and IBM Enhanced 

Graphics monitor, and a mouse input device. The mouse, though clearly inap- 

propriate as a cockpit instrument, should provide an adequate functional 

simulation for demonstration purposes of other "pointing" input modes, such as 

eye movements. A fully function cockpit hardware configuration is likely to 

differ in other respects as required by the cockpit environment. 



First Conflict Resolution Pass: 

Classification of Second Threat 

Conflict in Assigned Belief Function - .29 

Second Conflict Resolution Pass: 

Classification of Second Threat 

Conflict in Assigned Belief Function - .23 

Figure 4-2: Output of Pass 2 of Inference Mechanism 



5.0 HUMAN COMPUTER INTERFACE FOR THE ADAPTIVE ROUTE REPLANNING AID 

5.1 Basic A D D ~ o ~ C ~  

The user computer interface for an effective inflight rerouting aid must 

successfully balance a set of competing objectives: it must (a) minimize 

demands on user time and effort, while at the same time (b) communicating both 

recommendations and reasons for those recommendations in a way which maximizes 

user understanding, and (c) permitting rapid, effective user inpu t? where they 

might be critical for mission success. A 

Traditional approaches to the human-computer interface have proven largely in- 

adequate for achieving the multiple objectives outlined above. On the one 

hand, automated sensor and communication systems have amplified the volume of 

data available to users without providing significant assistance in the inter- 

pretation of that data and in its use for the decision-making process. On the 

other hand, expert systems and decision aids which have been more recently 

proposed have gone to the other extreme, by offering a single rigid approach 

to analysis and decision making. Few current systems have attempted to deal 

in a flexible manner with the diversity of decision-making situations in real- 

world combat environments and the variety of user-preferred problem-solving 

and decision-making styles. Our goal has been to sketch the design of an 

adaptive, highly flexible user interface to implement the inference mechanisms 

described in the previous sections. The goal is, ultimately, to produce an 

aid that is both personalized in the sense that it accommodates a variety of 

user-preferred knowledge representations and information-processing 

strategies, and prescriptive, in the sense that it encourages and in some 

cases prompts user actions that overcome deficiencies in the user-preferred 

approach. 

At the highest level, the cognitive interface between a user and a computer- 

based decision aid, such as ARR, can be characterized by five generic func- 

tions (see Cohen, Thompson, and Chinnis, 1985): 

Select: Users may personalize displays of information by organizing 
them around alternative meaningful user-designated objects (e.g., 
time periods, spatial regions, options, components of options, at- 



tributes of options). The user can examine any significant input, 
inference rule, intermediate conclusions, or final result concerning 
a given object . 

a Modify: The user can alter values of any database element and im- 
mediately obsewe the impact on results downstream in a chain of 
reasoning; users may undo their modifications and restore the 
original values; user inputs may be at any level of fuzziness or 
precision. 

Generate: Users may define options at any level of abstractness, 
completeness, or precision, and with respect to any time horizon; 
automatic option generation procedures work within whatever con- 
straints a user has provided. 

Analyze: In the evaluation of options, users may examine predicted 
outcomes according to any preferred scheme (e.g., static or 
temporal/dynamic; organizing information by attributes or by 
options), and may order the relative importance of different evalua- 
tive criteria to any degree of completeness/incompleteness and fuz- 
ziness or precision. 

a Alert: The system prompts a user when events occur or facts are 
learned which would play a significant role in user-preferred modes 
of reasoning and organizing information. 

Within the constraints of the present work, only a partial demonstration of 

the user interface has been implemented. The demonstration system consists of 

about 40 screens embedded within a "live" menu system. Although many of the 

screens reflect the output of the inference algorithm, others are "canned", 

and serve the purpose of illustrating the interface design in a fuller way 

than the inference mechanism implementation itself permits. The screens 

provide appropriate displays for a moderate number of menu requests, repre- 

senting a specific route replanning example. Input and output operations for 

some of the live displays are also operational. A user who stays within the 

broad boundaries of the example may, therefore, get a fairly good feeling for 

the intended operation of the aid. The resulting demonstration system serves 

several important purposes as a design tool: by demonstrating the relevant A 1  

inferencing technology in a specific subproblem; by providing a feel for the 

quality of the user-computer interface and an opportunity to validate its 

effectiveness; and by serving as an initial prototype to guide further 

development of the overall system. 

5.2 Overview of the Interface 

Interface features of the Adaptive Route Replanner are intended to minimize 
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the attention users must devote simply to operating the aid. Virtually all 

displays present information graphically, by a combination of maps and charts. 

All user inputs are by means of a single input device, which implements a 

pointing function. In the present demonstration this device is a mouse and 

associated function keys. In a final cockpit implementation however, the in- 

put device might involve touching a screen, eye movements, or any functionally 

equivalent method. 

The Adaptive Route Replanner main menu includes the following items: 

SITUATION RECOMMEND POSSIBILITIES REASONS CREDIBILITY LETHALITY ACCEPT 

SITUATION provides the pilot a basic view of the current tactical environment 

(Figure 5-1). In the present demonstration, it displays threat danger con- 

tours which integrate all available information about threat locations, threat 

IDS, threat capabilities, and terrain. (In the demonstration system the 

derivation of these contours takes place in a "black boxw and is represented 

by canned screens. Technically, such contours represent the differential 

change in the probability of destruction for an aircraft at the given location 

for a specified period of time. In a completed implementation, the user would 

have the additional capability of calling up displays which depict threat 

location uncertainty, ID uncertainty, capability, and terrain.) The situation 

display also shows the current route and the .location of the aircraft on that 

route. 

When a pop-up threat occurs, the situation display provides critical informa- 

tion (Figure 5-2). The display, however, minimizes the information processing 

burden on users by (a) alerting with regard to such a threat only when it mat- 

ters (i.e., when the increase in lethality of the current route due to the new 

threat exceeds a preset threshold); (b) using displays that emphasize changes 

from the expected situation: i.e., areas where danger has increased due to 

the pop-up threat by x percent or more are highlighted in red; and (c) prompt- 

ing users only in regard to those uncertainties in the evidence that are 

critical for the decision-making task (see below). 

After the occurrence of a pop-up threat has been indicated by the aid, the 

user has several alternative courses of action available. (1) He may select 



Figure 5-1 



PIIT&: Radw signal at bearing = 183O, 1/C at 38' long., 42' lat. 
Source: SLR Reason: Nev T h a t  

Figure 5-2 



RECOMMEND, and the aid will automatically suggest a route which accommodates 

the new information about the pop-up threat (Figure 5-3); (2) he may par- 

ticipate in the route generation process by providing inputs which constrain 

the routes generated and recommended by the aid (this capability has not been 

demonstrated in the present system); (3) he may explore in greater detail the 

lines of reasoning underlying the SITUATION display and the route 

recommendation. 

Option (3) is implemented by the REASONS and the CREDIBILITY displays. 

REASONS as shown in Figure 5-4 displays the main alternative hypotheses for 

interpreting the current data about the pop-up threat. In particular, in this 

example a SAR signal has been received by the aircraft and may represent (a) a 

new signal from a previously identified stationary threat, (b) a new signal 

from a previously identified threat which has moved, or (c) a signal from a 

previously unknown threat. The REASONS display shows the relative strength of 

each of these hypotheses given the available evidence, resulting from applica- 

tion of ARR1s inference mechanism. 

Perhaps more importantly, beneath each bar in this histogram is a "ledger" (P. 

Cohen) of reasons for or against that particular hypothesis. Thus, for 

example, support for the hypothesis that the SAR signal represents a 

stationary, previously identified threat might come from: the high overlap in 

location contours represented by the new signal and by the previous 

localization, intelligence assessments which indicate a low mobility for the 

threat type involved, or a high assessment of the thoroughness of prior area 

intelligence. Similarly, possible reasons in support of the hypothesis that 

the signal represents a moved threat include: relatively low overlap in the 

location contours for the two localizations, high confidence in the thorough- 

ness of prior area intelligence, and an intelligence assessment that the 

relevant threat type does possess the requisite mobility. Finally, reasons 

that might support the possibility that a new threat has emerged in the area 

include: low confidence in the exhaustiveness of prior area intelligence and 

a distance between the two signals which conforms with our understanding of 

enemy siting practice. The REASONS display automatically indicates which of 

these possible reasons have in fact influenced the evaluation of the new 

signal . 



Rad* signal at baring = 183O, L/C at 38' long., 42' late 
Some: S I R  Reason: Heu That  

Figure 5-3 
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If he wis es, the user may explore in even greater depth the line of reasoning 

which le d to the current situation assessment. He may do this by selecting ? 
the CREDIBILITY screen (Figure 5-5). CREDIBILITY displays a histogram which 

represents the degree of credibility or confidence in the sources of evidence 

underlying the REASONS screen. Thus in the present example evidence is avail- 

able from a prior localization based on HUMINT, a new signal from SAR, and 

three different types of specific intelligence (concerning threat siting, 

mobility, and thoroughness of intelligence coverage). 

In addition to indicating a degree of credibility for each of these sources, 

however, the CREDIBILITY screen shows the qualitative basis for such 

credibility judgments in a highly natural way, in the form of positive and 

negative "endorsements" (P.Cohen). Under each bar of the histogram is a set 

of credibility factors which influence, either positively or negatively, our 

confidence in the relevant source. 

The Adaptive Route Planner allows the user to modify inputs or intermediate 

values at any level of analysis. Thus, the user may modify the degree of 

belief in the hypotheses represented in Figure 5-4, the degree of credibility 

assigned to different sources in Figure 5-5, or the status of credibility fac- 

tors shown in the lower part of Figure 5-5. (Only the latter two have been 

implemented in the present demonstration.) In each case, the results of the 

adjustment are reflected in automatic inferences farther downstream in the 

reasoning. 

For example, the pilot may feel greater (or lesser) confidence in the 

reliability of SAR evidence than does the automatic inference process. If so, 

he may adjust the credibility assessment simply by pointing to the desired 

height on the histogram. Alternatively, the user may have information regard- 

ing a specific credibility factor. In that case, he may adjust the status of 

the credibility factor (which in turn will have an automatic effect on the 

heights of the histogram). For example, if the aid indicates a high ground 

reflectance (based, for example, on DMA maps), but the pilot's direct observa- 

tion indicates low reflectance, he may alter this factor by pointing to 

reflectance, cycling through a set of values (including low, moderate, high, 

and unknown), and selecting. Similarly he may adjust ECM (unlikely, possible, 

probable, and unknown), weather, and so on. As these credibility factor 



a 

t ECM - TERRAIN NOT tCAUBRBTION +DCCTRIN 
UNLIELY RERESD(IIT1lJE OH RELEUANT 

0 WEllTHER 
\ff+w.Qs"r MOWIBTE 

+GROUND 
REFLECTIUE LOW 

Figure 5-5 



assessments are changed, the degree of support for relevant hypotheses in 

Figure 5 - 4  is adjusted automatically. 

Up to this point, we have discussed the pilot's ability to explore (and to 

participate in) an inference task i.e., determining the nature and extent of 

the pop-up threat. But the pilot may also be concerned to evaluate the effec- 

tiveness of a recommended route revision. For this purpose, he may select the 

LETHALITY screen (Figure 5 - 6 ) .  This screen provides a representation of 

lethality, i.e., probability of own aircraft loss, as a function of time on a 

particular route. The two curves in Figure 5 - 6  represent the current route 

and the recommended route revision, respectively. Each curve is cumulative, 

showing how the risk on a route increases with time on that route. The final 

level on the ordinate for each route represents total chance of own aircraft 

destruction on that route. The slope on any given portion of a curve indi- 

cates the local danger in that portion of the route: steeper portions of the 

curve representing more dangerous areas and shallow portions of the curve rep- 

resenting less dangerous areas. I and T represent the initial point and the 

target, respectively, on each route. Generic symbols representing SAMs, 

radar, and artillery sites on these curves are keyed to corresponding symbols 

in the situation display. 

At any time the user can indicate his acceptance of a route (either a recom- 

mended route or one generated by his own inputs) by selecting ACCEPT. When he 

does so, the accepted route becomes the new "current routen in all future 

displays. 

It is inevitable that in many warfare situations, the available evidence will 

be incomplete or conflicting, or both. As discussed above, the present in- 

ference mechanism design is tailored to deal with those contingencies in a 

highly adaptive fashion. The interface design likewise in intended to 

facilitate user understanding and effective response to such contingencies. 

Figure 5 - 7  shows a SITUATION display in which significant inconsistency among 

sources of evidence has been indicated. The nature of the inconsistency is 

briefly summarized: the SAR signal may represent the presence of a new threat 

or it may originate from a previously identified stationary threat. 

The inconsistency prompt occurs only when the system's automated processes of 
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inference, conflict resolution, and sensor redeployment have failed thus far 

to resolve the conflict. In effect, it represents a test for the presence of 

a discount factor which treats the user as a potential source of information. 

This prompt alerts the user that he may possess information which matters in 

the resolution of the conflict. Such prompts do not occur trivially. Their 

occurrence is determined (as we have seen above) by a comparison of the 

utility of the test (i.e., the information that may be possessed by the user) 

with the cost of requesting that information. The estimate of cost should, in 

principle, be highly sensitive to the current prevailing workload and time 

stress on the pilot. It should reflect the cost of diverting the pilot from 

other tasks, as well as the systeni-computed time remaining until a decision 

regarding the pop-up threat must be made. In ARR, therefore, the degree of 

human interaction will vary automatically with circumstances. (Note that even 

when he has been prompted, the user may decline to respond. In that case, the 

automated conflict resolution process will resume, for example, by proceeding 

to a higher cost test or to the phase of overall discounting.) 

In the time-stressed cockpit environment, under conditions of conflicting 

evidence, the CREDIBILITY screen directs the pilot's attention to those 

assessments (a) about which he is likely to have some information, and (b) 

which are likely to have the most impact on conflict resolution. Credibility 

factors which satisfy these criteria are highlighted. 

Under conditions of inconsistent evidence, the SITUATION display serves a dual 

purpose: (1) it prompts the user regarding the conflict (if appropriate), and 

indicates the nature of the conflict (in yellow) on the spatial display; (2) 

at the same time, however, its primary purpose remains the display of an ag- 

gregated set of danger contours incorporating all relevant information. Thus, 

it does not provide a vivid or concrete picture of the implications of the 

conflict to the pilot. Similarly, the RECOMMENDED display provides a route 

revision which incorporates all currently available information. That is, 

this is the ncompromise'' route considered optimal by the aid under the condi- 

tion that no further information (which might resolve the conflict) were to be 

obtained. If he chooses however, the user may examine in a "what-if" fashion 

various ways in which the conflict might be resolved and their implications 

for route selection. Thus by selecting POSSIBILITIES, he may view alternative 

conflict resolutions. For example, screen 5-8 shows danger contours which 
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would exist if we were to assume that the correct interpretation of the new 

SAR signal involves a previously unidentified threat. Correspondingly, Figure 

5-9 shows danger contours which would exist were we to assume that the correct 

interpretation of a SAR signal involves a previously identified threat. If 

the user now selects RECOMMEND under either of these possibilities, the aid 

displays the recommended route revision which would be appropriate if the cur- 

rently selected "possibility" were to be realized (Figures 5-10 and 5-11). 

By these means, the user is able to obtain a quick appreciation of the nature 

of the conflict (i.e., how his mental picture of the tactical situation would 

change under different conflict resolutions) and the implications of the con- 

flict for his choice of a route. Such a concrete representation of alterna- 

tive possibilities is a more natural representation of uncertainty in this 

situation than the more aggregated (but equally necessary) "compromise" dis- 

plays provided by the SITUATION screen. It corresponds to the pilot's desire 

to think concretely about "what is out theren, and yet at the same time does 

not permit him to ignore the uncertainty inherent in that process. 

The implemented demonstration system focuses primarily on the resolution of 

conflict regarding the number and localization of threats. However, the in- 

ference mechanism and interface design are equally applicable to conflict of 

evidence in virtually any inferential problem. Figure 5-12 illustrates a 

SITUATION screen in which conflict regarding the ID of a threat is indicated. 

In this case, the REASONS screen (Figure 5-13) shows the relative support for 

various ID possibilities (SA-2, SA-4, etc.) and indicates the reasons which 

confirm or disconfirm each possibility; similarly, CREDIBILITY indicate fac- 

tors which influence the credibility of each source of evidence. The POS- 

SIBILITY screens (Figures 5-14 and 5-15) show the implications in terms of 

danger contours for each possible resolution of the conflict, and RECOMMEND 

shows the implications for route selection. 

A somewhat different, but equally appropriate, use of the #resent interface 

design is for in-flight retasking. Figure 5-16 illustrates a SITUATION screen 

in which the aircraft has been instructed to engage a different target, and 

the pilot has used RECOMMEND to request ARR to provide a recommended route 

revision. 
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6.0 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

Development of an adaptive self-revising inference engine for handling uncer- 

tainty can make a significant contribution to the technology of decision 

aiding in real-time tactical environments. The research described above has 

demonstrated the feasibilityof such a concept. It has produced a design for 

expert systems inferencing with very wide applicability. In virtually all 

problem solving domains where expert systems technology might be introduced, 

there is need for explicit and valid quantitative modeling of uncertainty. At 

the same time, there is need for a metastructure of qualitative reasoning in 

which the assumptions utilized in the probability model are reassessed and 

revised in the course of the argument. These are the dual requirements 

addressed by the inference framework described in Section 3 and implemented in 

the system described in Sections 4 and 5 above. 

The next logical step in this research is to go beyond the prototype system 

described in Sections 4 and 5, to the development, implementation, and testing 

of a completed system for in-flight route replanning. The resultant system 

should have immediate relevance to current Air Force efforts to introduce 

highly promising new technologies into aircraft avionics. 

Successful development of such a system would have repercussions going well 

beyond the specific application of in-flight route replanning. Together with 

the theoretical framework described above the successful implementation of a 

completed system would result in the existence of a powerful technology for 

the building of expert systems in a wide variety of domains. What is learned 

in this application could be applied in much greater generality, enabling the 

building of systems capable of accommodating uncertainty both at the level of 

probabilistic reasoning and at the level of qualitative testing and revising 

of assumptions. 

A completed in-flight route replanning system would require further refine- 

ments in the design and algorithms implemented in the prototype system 

developed during the present effort. Particular developments needed are the 

exploration of more general forms of discounting, alternative ways of 



prioritizing information search, more general sensor management and user in- 

teraction capability, as well as other refinements. In all of these 

refinements, the aim is to implement the inference mechanism in as modular a 

fashion as possible and as independently as possible from specific domain 

knowledge. Such an effort woudl result in a generically useful expert systems 

building tool, suitable for a wide variety of applications domains. 

Another crucial feature of expert systems implementation is the incorporation 

of expert knowledge into the system. Despite its importance, knowledge 

elicitation continues to be an ill-defined and eclectic art which demands 

enormous amounts of time from both computer scientists and domain specialists. 

Another promising avenue for other research, therefore, is an exploration of 

the implications of our inference framework for knowledge elicitation, both 

specific to the in-flight route replanning application, and more generally 

across application domains. 

The inference framework developed under this research may contribute in three 

different ways to progress in automating and streamlining the knowledge 

elicitation process. First, our framework, by allowing the building of 

adaptive, self-improving systems, already provides mechanisms for learning and 

altering the system's reasoning mode in changing environments. Second, by of- 

fering a highly structured framework for representing knowledge and manipulat- 

ing arguments, it provides a type of support for the knowledge elicitation 

process not afforded by other expert system frameworks. Finally, it may form 

the eventual basis of an automated knowledge elicitation tool which applies 

and reconciles multiple methods of eliciting expert knowledge. 
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