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1.0 INTRODUCTION 

1.1 The Analvst's Dilemma 

In intelligence analysis, as in most reasoning tasks, people dra~conclusions, 

offer explanations, and make predictions based on a collection of evidence; 

and inevitably, they experience varying degrees of uncertainty about their 

conclusions, explanations, or predictions. We would argue that in a given 

analytic problem, identifying sources of uncertainty, assessing the amount of 

uncertainty from each source, and combining uncertainty across sources to make 

a final judgment are the most crucial, and perhaps the most difficult, com- 

ponents of the analysis. 

In many contexts, however, there is a further difficulty: expressions of un- 

certainty are often unpopular among persons for whom the analysis is intended. 

Consumer A may expect a conclusive judgment from analyst B; Consumer A may 

react with some impatience to any attempt by Analyst B to qualify or to 

"hedge". Analyst B will be comforted only slightly by knowledge that such 

hedging is both natural and sensible behavior when available evidence does not 

justify an unqualified judgment. 

Thus arises the analyst's dilemma: In few, if any, analyses can it be claimed 

that the evidence set is complete, conclusive, and absolutely reliable. If 

the analyst fails to qualify or hedge conclusions under these conditions, he 

(or she) will quickly be told that he has overstepped the evidence. Yet if 

the analyst does hedge in some way, his reasoning may be dismissed as invalid 

simply because he has made uncertainty explicit. 

1.2 Uncertaintv: A Fact of Life in Intelligence Analysis 

On one view, a well-structured argument consists of compelling evidence that 

"speaks for itself", and concern over the manner in which uncertainty is 

assessed and expressed is unnecessary. Unfortunately, arguments of this kind 

do not appear often. In general, a hedged, qualified, or probabilistically- 

expressed conclusion is both reasonable and proper whenever: 



o the evidence set is less than complete on all relevant matters af- 
fecting the conclusion, or 

o the assembled evidence is inconclusive, i.e., it is to some degree 
consistent with the truth of more than one possible conclusion, or 

o the evidence comes from imperfect or unreliable sources, or 

o there may be possible conclusions other than those which have been 
specifically entertained. 

/ 

Sometimes it will be true that with more effort, more or better evidence could 

have been obtained. But in our view, the conditions outlined above are not 

usually flaws in an analysis. They are facts of life. Problems arise only 

when they are not acknowledged and appropriately handled. For example, it may 

seem prudent to suspend analysis until "better data" arrive, or a new and bet- 

ter sensor is developed. Unfortunately, however, there is no sensor for 

intentions. More generally, it is unlikely that you will ever have all the 

possible evidence on a given problem. You are more likely to have all the 

evidence you can handle. The real challenge is sorting out relevant evidence 

from the large amount available and extracting its implications. 

Of course, there are ways to avoid the trouble of considering and expressing 

uncertainty. One way is to refrain from drawing any conclusions at all. 

Purely descriptive or noninferential analyses are often useful (sometimes 

requested). However, some customers who lack substantive knowledge and who 

depend upon the analyst's assessment of the significance of the evidence may 

well be unhappy at the necessity of having to draw their own conclusions. 

Another way to minimize uncertainty is to limit the number of possible conclu- 

sions which are entertained; the limit, of course, is one. It is often very 

tempting to commit oneself to a certain conclusion, particularly if this con- 

clusion seems popular for one reason or another. Evidence which favors the 

conclusion is sought after; evidence against the conclusion is avoided, ex- 

plained away, or viewed as anomalous. The many hazards of these and other 

similar strategies for avoiding or suppressing uncertainty will be apparent. 



1.3 Toward a Resolution of the Dilemma 

What can the practicing analyst & about uncertainty--both to communicate it 

effectively to consumers and to enhance personal understanding of the analyti- 

cal problem? This report is an effort to address that question. We do so, in 

part, by asking some more fundamental questions: what uncert int : are 7 
there different kinds, as well as different degrees, of uncertainty? in what 

way (or ways) should it be conceptualized and measured? An implicit theme is 

that different theories of uncertainty can shape, direct, or more subtly in- 

fluence the art of performing and reporting intelligence analyses. Theory may 

inform and improve practice. 

In recent years, a variety of al'ternative approaches to inference have been 

proposed or defended: Bayesian probabilities, fuzzy probabilities, 

possibilities, belief functions, and others. They often have dramatically 

divergent implications for the assessment, aggregation, and/or reporting of 

uncertainty. They differ in the concepts they attempt to capture (e.g., 

chance, imprecision, completeness of evidence), in the degree to which ap- 

propriate normative justifications have been achieved, and in the demands they 

impose on the analyst for assessments and computations. Perhaps most 

importantly, however, they differ (or purport to differ) in compatibility with 

the decision processes of analysts and consumers: i.e., in the readiness with 

which they prompt questions and represent distinctions which are natural or 

illuminating to a particular analyst or problem domain, and in the extent to 

which they satisfy the needs of policy makers. Acceptance among practitioners 

may well hinge on this factor. So a second implicit theme of this report is 

that practice is the ultimate test of theory. 

The bulk of this report is in the form of a dialogue: a series of briefings 

and conversations among intelligence analysts who must somehow cope with un- 

certainty on a daily basis. Technical debate among competing theorists has 

been lively in recent years; here, our goal is to translate that debate--among 

logicians, statisticians, and psychologists--into the context and language of 

a "real-world" application. In this dialogue, it is the analysts who have 

mastered the essential details of one or another of the competing positions, 

and who must hash out some of the advantages and disadvantages of different 

viewpoints. 



A common thread in this discussion is the issue of the knowledge underlying 

the assessment and reporting of uncertainty. For each inference framework two 

specific questions can be asked: 

o Does it demand inputs that match, or exceed, or fall short ofthe 
knowledge of the user? 

o Does it provide some meaningful measure of the knowledge, or 
weight of evidence, underlying the outcome of an analysis? 

/' 

These two issues are, of course, related. For example, one way to ease the 

task of assessing inputs is to require intervals (e.g., "the probability is 

beween .2  and . 6 " )  rather than precise numbers. And one way to represent the 

amount of evidence behind the conclusions of an analysis is to provide 

"confidence" intervals in addition to, or in place of, precise numbers. 

Variations among different theories of inference can be understood in sig- 

nificant measure as differences in the way they address these two questions. 

1.4 Objectives 

Those who might benefit from "overhearing" this dialogue include: 

o Practicing intelligence analysts, 

o Agency researchers in the Office of Research and Development, and 
elsewhere who support analysts by identifying or developing new 
aids for inference and related tasks, and 

o Agency educators who present courses on inferential issues in 
intelligence ana1ysi.s. 

Among the anticipated benefits are the following: 

o Increased familiarity with the concepts and underlying rationales 
for several major current theories of inference: Bayesian prob- 
ability theory, Glenn Shafer's theory of belief, Lotfi Zadeh's 
fuzzy set and possibility theory, and L.J. Cohen's theory of in- 
ductive probability; 

o An understanding of how these theories can be put to work in a con 
Crete analytical problem; and 

o An introduction to some of the current issues and controversies 
among these alternative viewpoints. 



The goal is not to provide a cookbook for solving inference problems, or a 

full working knowledge of any of the rival viewpoints. Our expectation, 

rather, is that a qualitative grasp of basic concepts is a valuable first 

step, and may by itself bear fruit in more reliable and more defensible 

analyses of intelligence data. 

1.5 Outline of the Report 

Chapter 2 contains an illustrative problem in intelligence analysis to which 

we shall return periodically throughout the paper. Chapter 3 is a dialogue in 

which the systems of inference associated with Bayes, Zadeh, Shafer, and L.J. 

Cohen are discussed. Three of these theories are applied to the sample 

problem in Chapter 4. 



2.0 AN ILLUSTRATIVE PROBLEM IN INTELLIGENCE ANALYSIS 

Art, a weapon systems analyst for a U.S. government agency, has been asked for 

a quick assessment about the following situation. An interested policy-making 

"customer" requires a judgment about whether weapon developers in Malbridgia 

are now attempting to build a prototype of a tactical weapon system called 

ZAP. System ZAP, requiring several novel subsystems, could replace an exist- 

ing System YAP now deployed by Malbridgia. If System ZAP is developed 

successfully, it would give Malbridgia a decided tactical advantage wherever 

such systems might be used. This customer requires a briefing in three days. 

As Art begins work on the problem he has a fairly strong expectation that 

developers in Malbridgia are not currently building a prototype ZAP system. 
This expectation is based mainly upon a recent briefing he heard giveriby a 

nationally-recognized American scientist. This scientist discussed why it is 

not yet technologically feasible to develop certain subsystems which ZAP would 

require. In addition, the scientist remarked about the very costly nature of 

development of such subsystems, should they become technically feasible. 

Nevertheless, Art seeks, as evidence in this task, specific information about 

development efforts in Malbridgia. Of the several items of information he is 

able to obtain from his files, and from those of his colleagues, the following 

five evidence items seem to be the most relevant. 

THE EVIDENCE 

El: From open-source literature is a scientific paper published one year ago 

by a scientist in Malbridgia. One conclusion of this paper is that the tech- 

nology for developing subsystems of the sort that ZAP would require is "at 

least five years away." (Apparently, their scientists agree with ours on this 

matter.) This paper, by the way, was written in Malbridgian; the available 

copy is but a translation offered by a person whose credentials are unknown. 

E2: From a "very reliable" source in South Contraria is a report, dated 6 

months ago, that representatives from South Contraria and Malbridgia nego- 

tiated a contract for the immediate purchase by Malbridgia of a large quantity 

of Xyleum, a material vital to the development of a required subsystem for 

ZAP. 



Eg: Ten months ago a mid-level government employee in Malbridgia, supplied us 

with a copy of a document allegedly containing minutes of a meeting (held one 

year ago) of military weapon planners in that country. These minutes record a 

decision by these planners to transfer 15 technologists from their then- 

current work locations to a known weapon development site. Such transfer was 

to be completed within six months of the meeting date. The 15 technologists 

were named in an appendix to these minutes. The source was also able to iden- 

tify 10 of the 15 persons as having been instrumental in the development of 

their current YAP system. The source is rated as "usually dependable;" 

however, an update on their records reflects that he has made no contact with 

us for six months. In addition, the document, a copy of which we have, is 

rated as "probably authentic. " 

E4: A national from South Contraria named L. Melfata recently reported to us 

about a discussion she held two months ago with a Malbridgian technologist. 

Melfata asserted that this technologist had rather boastfully described recent 

advances in the development of several of the novel subsystems required by 

System ZAP. Melfata has many contacts in Malbridgia and is allowed to travel 

freely there. There is room for speculation that she may also work for 

Malbridgia. 

E5: P.F. Muldip, an influential political figure in Malbridgia, asserted one 

year ago to a member of the press from Malbridgia that he, Muldip, would 

strongly back the development of new weapon technologies, in particular, the 

development of several subsystems among which are two of those which System 

ZAP would require. Our knowledge of a recent political power struggle in 

Malbridgia causes us to wonder whether or not Muldip is still in a position to 

influence weapon system development. 

This collection of five evidence items is hardly impressive, but it is the 

best that Art can muster on quite short notice. The evidence has three 

characteristics in common with most, if not all, evidence collections upon 

which analysts must base conclusions. The evidence items are inconclusive, 

the collection of items is by no means complete, and the items of evidence 

come from sources whose credibility and competency are less than perfect. In 

short, in his briefing Art knows he will somehow have to qualify or hedge his 

judgments . 



3.0 PRELUDE: DECIDING HOW TO DECIDE 

Art calls upon certain of his colleagues for varying degrees of assistance in 

his work on this problem. Two days before the briefing, he meets with two 

fellow analysts, Sy and Phyllis. 

Sy: Well, this is not a very impressive lot of evidence. Some of it points 

one way, some of it the other. 

Phyllis: Yes, we even have two views of Malbridgia's technical capability to 

build ZAP: El and E4. 

&: There does seem to be more evidence in favor of building ZAP than 

against it. But I wonder if Malbridgia wants us to believe they are building 

ZAP? If that were true, the evidence in favor would not mean much. 

Sy: I'm not sure it means much anyway, Art. Let's assume all our sources are 

reliable: forget about the possibility of deception, and also forget about 

the conflicting evidence El. E2, E3, E4, and E5 still don't prove that 

Malbridgia is building ZAP. 

Art: How's that? 

Sy  : Well, it' s entirely possible that Malbridgia has the technical capability 

to build ZAP (E4), that there is some political support for doing it (E5), and 

that various resources have been mobilized (E2, E3) , but that they aren' t in 

fact building ZAP. The technicians and material could be there for a dif- 

ferent purpose, after all, and that politician Muldip could have been over- 

ruled by other figures in power. We have no idea what other hypotheses might 

also explain this evidence, for example, development by Malbridgia of some 

other system that is technically similar to ZAP. 

Art: When we add back in the unreliability of the sources and the conflicting 

evidence El, we don' t have much, do we? 

Sy:  I don't see how we can draw any conclusions at all from this data. Why 

don't we just report our evidence and let the customer draw her own 

conclusions? 



Art: I don't think the customer would like that very much. We're supposed to - 
be the experts here, after all. Our job is more than just compiling a lot of 

raw data; it includes assessing their significance. 

S y :  Hmmm. I don't know if all analysts would agree with that. But if you 

see it that way, and the best evidence you can muster falls short of 

certainty, how can you avoid simply guessing at what it all means? 

3.1 The Inference Theorv A~proach and Some Initial Doubts 

Phvllis: Let's not give up too soon. There is another possibility, a com- 
promise between guessing at conclusions and sticking to known facts, but I'm 

not yet sure how practical it is. 

&: Well, don't keep it a secret! 

Phvllis: I've been hearing about various theories, or formal frameworks, for 

reasoning about uncertainty. Perhaps there is a scientifically respectable 

way of tracing the implications 'of your data, Art. One thing these formal 

theories have in common is a strategy called "divide and conquer." If the 

problem is too complicated or confusing to deal with as a whole, you break it 

down into simpler elements, make some assessments regarding those elements, 

and then use a calculus provided by the theory to compute your degree of cer- 

tainty in the various possible answers. 

Art: Interesting, but it does sound rather mechanical. Put in some numbers - 
and out come the answers! In the first place, I never have felt very comfort- 

able about expressing my beliefs as numbers--that's asking for more precision 

than is really there. Secondly, does a theory of this sort capture the way L 
naturally think about the problem? Much as I appreciate the help, I do think 

I have acquired some rather unique expertise in my years as an analyst. Why 

should I trust the output of a process that doesn't reflect that experience? 

Sy: I have some doubts about this, too, but I don't object to its being 

"mechanical." In fact, it doesn't sound mechanical enough. You haven't got- 

ten very far beyond guesswork. Although you no longer have to guess at the 

conclusion itself, I gather from your description that the assessments you 



provide for elements of the problem are subjective, Moreover, what is the 

justification for using any particular "calculus" to combine these 

assessments? Surely, there's nothing comparable here to physical laws or 

mathematical proof. In short, why suppose the conclusion derived in this way 

is any better established than if you guessed? 

Phvllis: Hold it! I'm being attacked on two fronts at once. You have raised 

two kinds of objections that appear, at least on the surface, to be at cross- 

purposes. Art is concerned about descriptive issues: how close a theory of 

inference and its required inputs come to replicating your own reasoning 

processes. Sy is concerned about normative issues: the degree to which such 

a theory is justified as a recipe for how reasoning ought to be conducted. 

Art: Well, maybe they're both important. 

Phvllis: I gather that there is disagreement both about how various theories 

measure up in regard to these criteria, and about the relative importance of 

the criteria themselves . . .  Wait a minute! I see just the four specialists we 

need coming down the hall: Barbara, Zara, Shawn, and Colette. They support 

abbreviated and somewhat modified versions of four current positions on 

inference--the views of Bayes (and his contemporary followers), Lotfi Zadeh, 

Glenn Shafer, and L.J. Cohen, respectively.* Let's explain our problem to 

them. 

(Art, Sy, and Phyllis recount their conversation to Barbara, Zara, Shawn, and 

Colette. ) 

* In all these cases, the most accurate assumption is that the speakers have 
been influenced by the views of the theory for which they are named, rather 

than reflecting them exactly. 



3.2 The Bayesian Answer 

Barbara: Well, I ' m  glad I got here i n  time to c lear  up th i s  confusion. 

Thanks to an eighteenth century English clergyman named Thomas Bayes and to  

extensions of h i s  ideas by many others,  it is  possible,  Sy, to  provide a 

rigorous jus t i f i ca t ion  for  reasoning about probabil i t ies .  I ' l l  say a l i t t l e  

b i t  about tha t  i n  a moment. With a l l  due respect,  Art,  we are  much l e s s  con- 

cerned with describing how people "real ly" ,think. I f  ordinary reasoning were 

already consistent with Bayesian precepts, a normative theory could not i m -  

prove it. 

Art: But I ' ve  got to  be able to  use the normative theory, don't  I ?  

Barbara: That's r ight .  So it important tha t  people be able t o  understand 

and assess the inputs required by a theory. This is  one of the major 

strengths of the Bayesian framework as developed, fo r  example, by Ramsey 

(1926), de F ine t t i  (1937), and Savage (1954). "Probabili t ies" a re  specified 

not as abs t rac t ,  intangible quanti t ies ,  but as reasons for act ion.  So I can 

determine your degree of bel ief  (or numerical subjective probabili ty) f o r  a 

proposition simply by asking you about actions you would choose; the catch is 

tha t  the outcomes of your actions w i l l  depend on whether or not the proposi- 

t ion  turns out to  be true. Your subjective probabili ty for a proposition i s  

reflected i n  the odds a t  which you would be will ing t o  bet on it. For example 

i f  you would pay no more than 70 cents f o r  a gamble i n  which you receive 1 

dollar i f  the proposition i s  t rue ,  then your probabili ty for  the proposition 

is  .70. Some elaborations of t h i s  procedure take in to  account your a t t i tude  

toward r i sk .  

&: What do I do with these probabil i t ies  once I ' v e  assessed them? 

Barbara: Let 's  take the topic of your br ief ing:  whether Malbridgia i s  build- 

ing System ZAP. Bayesian theory gives you a variety of ways t o  break down 

that  probabili ty into probabili t ies tha t  you find eas ier  to  assess .  

a: Such as? 



Barbara: Well, the most natural way to handle this problem would be to use 

Bayes' rule. You would start by assessing your prior probability or odds for 

the hypothesis that Malbridgia is building ZAP, before considering any of the 

evidence. Then you would quantify the impact of each bit of evidence. This 

quantification involves the assessment of a "likelihood ratio," which is 

simply the probability of the evidence given that the hypothesis is true 

divided by its probability given that the hypothesis is false. Then Bayes' 

rule can be used to combine your original beliefs with your assessment of the 

impact of the evidence, to derive what your new beliefs ought to be. 

A s :  OK. Let's say I start off thinking the odds are about 5 to 1 against 

Malbridgia's building ZAP. Then I discover evidence E4--apparently a 

Malbridgian technologist has boasted about technical advances relevant to 

building ZAP. Now what? 

Barbara: The question is, how much more likely would this evidence be if 

Malbridgia building ZAP then.if it is not building Z? 

Art: I'd say it's about twice as likely if Malbridgia is actually building 

ZAP. 

Barbara: Then your posterior odds for the hypothesis, after receiving E4, is 

just the prior odds times the likelihood ratio for E4: 1/5 x 2/1 = 2/5. 

This corresponds to a probability of 2/(2+5) = 2/7 = 29%. So the new evidence 

E4 does not outweigh your prior expectation that Malbridgia is not building 

ZAP. 

Phyllis: You said there was more than one way to express the probability that 

Malbridgia is building ZAP in terms of other probabilities? 

Barbara: That's correct. For example, evidence often bears on the hypothesis 

of interest indirectly, through a series of intermediate hypotheses. That's 

certainly the case in our problem. Take E4, for example. The datum repre- 

sented by E4 is not that a Malbridgian technologist boasted about recent tech- 
nical advances, but rather L. Melfata's report to that effect. So the 

evidence bears on the hypothesis that Malbridgia is building ZAP indirectly, 

via the intermediate hypothesis that Melfata's report is true. In this case, 

instead of directly assessing the likelihood ratio for E4, you might assess 



E4's impact on the intermediate hypothesis and on its complement (that 

Melfata's report is false), and then assess the impact of the intermediate 

hypothesis and its complement on the hypothesis of interest. This process in- 

volves what is known as cascaded, or hierarchical, inference (Schum, 1980). 

Phvllis: In that case, you've got a lot more assessments to make and, I would 

guess, a more complex computation to perform. But the advantage is that 

you've broken down the direct likelihood ratio into components that you feel 

more confident about assessing? 

Barbara: That's right. This way of analyzing a problem is especially useful 

when we are concerned about the credibility of a source. It lets us focus 

separately on credibility issues and on the evidential value of what the 

source said, assuming that it were true. These are lumped together when we 

assess a direct likelihood ratio for E4. 

A s :  In fact, even if Melfata were telling the truth, perhaps we should be 

worried about the credibility or motives of the scientist she said she heard 

boasting . 

Barbara: If you want to deal with that concern separately, you can just in- 

sert another intermediate hypothesis in your analysis. You assess the impact 

of the boasting (assuming that it occurred) on your belief in the intermediate 

hypothesis that technical advances have taken place; then you assess the im- 

pact of the latter hypothesis on the claim that Malbridgia is building ZAP. 

Without going into a lot of detail, let me say that structures of any degree 

of complexity can be created within this Bayesian framework and can be made to 

capture a wide diversity of inferential subtleties (Schum, 1980, 1981). 

&: You know, even without doing the more complex analysis, I realize now 

that I overestimated the impact of E4. Taking into account these doubts about 

the credibility of Melfata and of the scientist, I'd now say E4 was about 1.5 

times as likely if Melfata is building ZAP than if it isn't building ZAP. 

That makes my posterior odds 1/5 x 1.5/1 = 3/10 and gives a probability of 

3/(3+10) = 3/13 -23% that Malbridgia is Building ZAP. 

Sy:  Then is Bayes' rule the only method for combining probabilities in an in- 

ference task? 



Barbara: By no means. It is only one of several useful formulae that can be 

derived from the probability calculus. Bayes' rule seems natural where the 

evidence is a "symptom," or a causal effect, of the hypothesis. In other 

cases we may prefer to analyze the problem in terms of intermediate uncer- 

tainties that are antecedents or preconditions of the hypothesis. For 

example, we don't know whether Muldip, the politician referred to in E5, did 

in fact support the building of ZAP. But we can assess the probability that 

he did based on our evidence, and then assess two conditional probabilities: 

that Malbridgia would build ZAP given that Muldip supported it and that 

Malbridgia would build ZAP given that Muldip did not support it. Now we can 

combine these assessments into an estimate of the probability that Malbridgia 

is building ZAP using a rule called the Law of Total Probability. 

Phvllis: Does that mean that Bayes' rule couldn't have been used? 

Barbara: Not at all. We could have constructed a quite different analysis 

here, involving Bayes' rule. Such an analysis would be just as correct from a 

formal point of view. But it would require us to assess the probability that 

Muldip supported the proposal to build ZAP given that Malbridgia is now build- 

ing ZAP (and also given that Malbridgia is not building ZAP). That seems much 

less natural to us than the probability that Malbridgia would build ZAP given 

that Muldip supported it. 

Art: That's very interesting. Even though you're trying to improve ordinary 

reasoning rather than duplicate it, the selection of an appropriate Bayesian 

structure does depend on how we ordinarily think. You try to decompose the 

problem into elements that match the way we store information, to make it 

easier for us to provide inputs for the analysis. 

Barbara: Correct. And the ability to do that is a large part of the art, as 

opposed to the mathematics, of Bayesian decision analysis. 

Sy:  But I gather that improvements in reasoning would be due to the math? 

Barbara: That's right. The Bayesian approach transfers the burden of combin- 

ing these inputs from the decision maker's head to his calculator or computer. 



Phvllis: So far, we've learned that the Bayesian theory provides a behavioral 
interpretation of its inputs (in terms of betting) and affords a rather wide 

diversity of analytical structures to capture intuitions about evidential 

relationships. I guess that leaves out one thing: Do Bayesian probabilities 

tell us anything about the actions we ought to take? 

Barbara: They certainly do. The link is simple and direct, and is in fact 

presupposed'by the betting interpretation. Suppose you have a choice among 

actions, and the outcome for each action depends on uncertain events or states 

of affairs. Bayesian theory says you should assess both your utility (or 

degree of preference) and your probability for each possible outcome of each 

1 action. You compute the expected utility of each act by summing the products 

of the utilities and probabilities. This represents a sort of "average" 

preference for each act. Then you select the act that maximizes expected 

utility. 

Sy: This is all very impressive, Barbara, but I guess I still have trouble 

understanding w& we should believe the result. 

Barbara: Then let me get to the justification. A powerful argument can be 

given that your degrees of belief, as reflected in your choices among bets, 

ought to be consistent with the probability calculus. It turns out, as de 

Finetti (1937) showed, that unless your beliefs are probabilistically coherent 

in this way, a devious adversary could arrange a set of gambles which you 

would accept, but in which you were sure to lose. A set of gambles of that 

sort is called a "Dutch book". 

Sy:  Well, I wouldn't worry too much about a Dutch book. I don't know many 

adversaries clever enough to figure all that out. 

Phyllis: Perhaps actually protecting yourself against a Dutch book isn't the 

real point, Sy. You must admit that if a theory of probability leaves you 

oven to a Dutch book, it might be symptomatic of something wrong with the 

theory. 

Barbara: I'm glad you agree, Phyllis. Now let me sum up my answers to Art 

and Sy. First, Art: Bayesian theory is an idealization of how people ac- 

tually think, not a literal description. In some cases, for example, people 



may simply not know how they would bet; their choices may be indeterminate at 

the level of precision required by the theory. This was acknowledged by 

Savage (1954, pp. 57-58) and by de Finetti (1937, p. 60). Moreover, the en- 

semble of their choices among bets may fail to be consistent with the prob- 

ability axioms. In fact, it is for these reasons that the theory is of value. 

It provides a way of computing degrees of belief for propositions which one 

finds hard to evaluate directly, in terms of propositions which are easier 

to assess. The result is that one's beliefs become more consistent with one 

another and more precise than they otherwise would be. 

To Sy, I would argue that subjectivity is inescapable in dealing with 

uncertainty. If you have a customer who needs to make timely recommendations 

regarding action or policy, you may not have the luxury of waiting for con- 

clusive evidence--the "smoking gun." Not acting is itself a decision, after 

all, and it may not be the best one. If we take seriously the fact that we 

must make decisions under some degree of uncertainty, then Bayesian theory is 

the right approach. It enables us to bring to bear assessments of uncertainty 

that are relatively precise upon assessments which cannot be confidently made, 

and it is the only guide to action that guarantees us against the expectation 

of a sure loss. 

3.3 The Problematic Relation Between Probability and Knowledge 

a: I'm a bit confused, Barbara. Let me state my understanding of your posi- 

tion, at the risk of some exaggeration. You agreed that we should select a 

probability model whose inputs match the way we store information? 

Barbara : Right. 

a: Well, that seems to imply that we have in our heads "true" (or 
psychologically definite) assessments for some probabilities and not for 

others. In the case of Bayes' rule which you described, for example, we would 

have determinate assessments for prior probabilities and likelihoods, but not 

for the "posterior probability" (the probability which reflects both prior and 

new information). So we let the model compute the latter from the former. 

Barbara: I suppose I did imply that. But it sounds a bit less plausible when 

you state it so explicitly. 



a: I think it's implausible, Barbara, because we are in fact able to provide 
assessments that fit more than one model. I can directly assess the probabil- 

ity that Malbridgia is building ZAP, by the betting paradigm, or I can derive 

it from assessments of probabilities for other propositions. And, as you just 

noted, there will be more than one way to express the probability of a 

proposition in terms of other propositions. Now I may feel more confident in 

some of these approaches than in others, but I certainly wouldn't reject any 

of them as totally meaningless. 

Barbara: I think you have a good point. 

a: Well, then, here's the problem: The Bayesian approach doesn't tell us 

what model for a particular problem is "the" right one. I suppose a perfectly 

rational being, from a Bayesian point of view, would arrive at the same answer 

by all these different routes. An ordinary mortal like myself, however, would 

be able to supply inputs for more than one model, but they might well turn out 

to be inconsistent. 

Barbara: That's certainly true. 

a: Suppose I directly assess the probability that Malbridgia is building 
System ZAP and also provide assessments that allow the probability to be com- 

puted indirectly. If the results agree, I had no need for the Bayesian com- 

putations in the first place; I get the same answer by direct judgment. But 

if they disagree, Bayesian theory gives me no way to decide among them. So it 

doesn't help then, either. 

Barbara: Well, not so fast. You're quite right that Bayesian theory doesn't 

dictate what you ought to believe. Strictly speaking, what the mathematical 

part of it does is alert you when a set of probabilities is internally 

inconsistent. 

SJ: Is that all it does? 



Barbara: Well, in that regard, it's no different from logic in general. You 

can then choose among a variety of possible revisions in your set of beliefs 

to eliminate the conflict and restore coherence. For example, in traditional 

two-valued logic, suppose you believe a hypothesis H and also believe other 

things, I, J, and K, that are shown to imply not-H. To remove the 

inconsistency, you may decide to adopt any of not-H, not-I, not-J, or not-K. 

Similarly, in probability theory, if you assign probability . 6  directly to H, 

but indirectly derive a probability of .5 (e.g., by assigning . 3  to H given C, 

.7  to H given not-C, and .5 to C), you can either revise your direct estimate 

from . 6  to .5 or else adopt any number of ways to make the indirect estimate 

of the probability of H come out to .6. 

Art: Hmmm. One thing is becoming clear: our comparison of inference theory 

to a machine that just cranks out answers was way off the mark. In fact, the 

choice of what to believe is still quite subjective, even if it is constrained 

by the maxims of probability theory. Instead of accepting the conclusion of 

an analysis, you could hold on to your "gut feeling'' for the probability of A 

and adjust the results of the analysis to agree with a. 

S y :  Well, Art may be pleased by this, but it bothers me that Bayesian theory 

provides so little guidance in deciding what to believe. Just because the 

conclusion isn't dictated by logic or probability theory, Art, doesn't mean 

it's entirely arbitrary. There might be very good reasons for favoring one 

set of assessments over another. 

Barbara: I agree, Sy. But you're forgetting what I said earlier: selecting 

an appropriate structure is part of the "art" of decision analysis, not the 

mathematics. In practice, you would use the assessments you felt most confi- 

dent with, and derive other probabilities from them. 

Phyllis: We remember, Barbara. But a Bayesian should be the last person to 

say that something can't be dealt with formally because it's subjective. If I 

understand you correctly, Barbara, you are now saying that the function of 

Bayesian decision theory is to help us police our set of beliefs for 

consistency, so as to avoid a potential Dutch book. But earlier you em- 

phasized a very different function: to enhance precision or confidence in our 

beliefs by taking the assessments we feel less confident about judging 



directly, and deriving them indirectly from more confident ones. The problem 

is, Bayesian theory has a lot to say about consistency or coherence, but vir- 

tually nothing to say regarding this pivotal concept of "precision" or 

"confidence." 

Art: But I thought that's what probability theory was all about! The more 

confident I am in a conclusion, say, that Malbridgia is building ZAP, the 

higher the probability I assign it. 

Phvllis: That's not quite right, Art. From a Bayesian point of view, the 

conclusion of your analysis is not that Malbridgia is or is not building ZAP, 

but the probability that it is. So we need to know your confidence in the 

probability. For example, suppose you assign a 50% chance that a coin will 

land heads and a 70% chance that Malbridgia would build ZAP given that Muldip 

supported it. The second probability is higher than the first; but the first 

is relatively sharp and firm, while the second is vague and labile. You can 

easily imagine receiving new information, or remembering old information, 

about Muldip's standing in Malbridgia that would cause that probability to 

shift, but you do not expect to alter your belief that the coin is fair, 

Traditional Bayesian theory treats both probabilities the same. 

Barbara: And quite rightly, Phyllis. From a normative point of view, dif- 

ferences in confidence don't matter. In order to avoid the possibility of a 

Dutch book, you must use your vague 70% probability just as you would a sharp 

70% probability. In other words, the normatively recommended decision, which 

maximizes your expected utility, will be unaffected. 

Sy:  I'm not so sure, Barbara. Let me return to my original point: Since 

there is more than one way to arrive at any probability estimate, we don't 

know what our probability for an event without some consideration of which 

assessments we trust. In fact, the recommended action could easily be dif- 

ferent depending on which competing set of probabilities we decided was more 

credible. 

Phyllis: The probldm, it seems to me, is that Bayesian theory works quite 

well as a description of an "ideal" decision maker. We can then comfortably 

assume that all relevant information is utilized in all assessments. What 

troubles me is an implicit assumption about ordinary decision makers. 



Bayesians seem to be assuming that the ordinary decision maker also utilizes 

all relevant information, (but differs by being limited to a more restricted 

set of assessments). I think this may often be wrong. One reason, at least, 

why we cognitively fallible organisms need the theory in the first place is 

that we don't automatically make use of all relevant information. Different 

formulations of the problem may trigger different chains of associations or 

direct my attention in different ways. As a result, I may be able to assess a 

probability in a variety of direct and indirect ways, but I will very likely 

draw on different portions of my store of knowledge each time. This is what 

makes some assessment strategies better and more natural than others, and is 

what makes a good analysis good. 

&: So most of the time the real problem is how to pull together all our 

knowledge into a single conclusion? 

Phvllis: Exactly. 

Art: I think what you just said has a very important implication, Phyllis. 

We may not want to rely on just one analysis, even if it is the one we have 
most confidence in. If the goal is to tap as much of our knowledge as we can, 

we should foster inconsistency, at least temporarily, by approaching each 

problem in more than one way (Brown and Lindley, 1982). 

Phvllis: I think that's right. Consistency could be achieved very quickly by 

restricting the knowledge your assessments draw on: I could just select one 

assessment model and ignore the rest. If we want to increase the total amount 

of knowledge utilized in reasoning, it clearly will not be an automatic by- 

product of achieving consistency. 

Sy:  I would guess, though, that some measure of the amount of knowledge in- 

corporated in the different approaches would be needed to combine them in a 

formally justifiable way. 

Phvllis: I would think so. In short, the Bayesians tell us that an ideally 

rational person would alreadv be a Bayesian; but the normative theory seems to 

tell us nothing about how to get there from here. 



3.4 Probabilities Upon Probabilities I: Precision 

Barbara:' You may be pleased to know that there is some formal work on this in 

the Bayesian tradition, although it is controversial. This work recognizes 

that we may be uncertain about what our true probabilities are and utilizes 

probability theory itself, at a second level, to measure this uncertainty. 

Art: I see. Suppose my analysis concludes that there is a 70% chance of - 
Malbridgia's building System ZAP. I can now turn around and ask, at a second- 

order level, what is the probability that 70% is in fact the true probability? 

I can also ask about the probability that 69% is the true probability, and so 

on. 

Barbara: That's right. Tani (1975), for example, defines our "authentic 

probability" as the one which best describes all our relevant knowledge, This 

is to be contrasted with probabilities that are actually assessed, which he 

calls "operative" probabilities. Similarly, Watson, Brown, and Lindley (1977) 

and Lindley, Tversky, and Brown (1979) regard elicited probabilities as noisy 

measurements of the true ones, which are defined as the probabilities you 

would provide after infinite time for thought and introspection. On both 

views, uncertainty about the true probability is expressed as a set of second- 

order probabilities for possible values of the true first-order probability. 

Art: Then my confidence in a first-order probability judgment is represented - 
by the range of first-order probabilities that must be considered probable, in 

a second-order sense. 

Barbara: That's right. You could even measure your confidence by using a 95% 

uncertainty interval; i.e., the range of probabilities within which you feel 

95% sure the true probability falls. 

Art: I see. So my confidence in the probability for a coin landing heads 

could be represented by a very narrow interval around - 5 ,  such as -49 - .51; 

while my confidence in the probability that Malbridgia will build ZAP given 

that Muldip supported it is a much wider interval around .7, such as .2 - .9. 



Barbara: Exactly. Now we can say a little more about the goal of a decision 

analysis. It is not merely to arrive at a consistent set of first-order 

probabilities, but to arrive at a consistent set of probabilities which is as 

close as possible to the "true" values, i.e., to maximize higher-order 

precision. 

Sy: So if I directly assess the probability that Malbridgia is building Zap 

and also derive it from an analysis, I'd expect the uncertainty interval for 

the second estimate to be smaller than for the first? 

Barbara: That's right. The analysis gives you a more accurate estimate of 

your own true probability. As one Bayesian (Lindley) has said: inside every 

real decision maker is a rational man fighting to get out. These higher-order 

probabilities, together with Bayes' rule, can also be used to combine the 

results of different analyses when they disagree (Lindley, Tversky, and Brown, 

1979). The resulting conclusion will reflect more of your information about 

your probabilities--and be more precise--than any of the individual approaches 

taken by itself. 

Phvllis: Frankly, Barbara, the idea of second-order probabilities sounds 

pretty obvious. Why did you say it was controversial? 

: I think I can see one objection, Phyllis. There is no reason to assume 

second-order probabilities are precisely assessed either, so the application 

of probabilities to probabilities seems to generate an infinite regression. I 

doubt if convergence could be demonstrated. 

Art: I'm disturbed about the assessment burden as we ascend this hierarchy. - 
It might be harder to assess my confidence in my probabilities than it was to 

assess the probabilities in the first place. 

a: I would guess, too, that the application of probability theory gets har- 
der to justifv normatively as you ascend. It's hard to see how a decision 

maker could make much sense of choices among bets about his first-order 

probabilities, or that he would worry much about a Dutch book on what his true 

probabilities are. For one thing, no one will ever really know what they are 

unless the decision maker applies an "infinite" amount of thought and 

introspection. Even then, given the possibility of a non-conve'rging regress, 



I'm not sure it makes sense to assume there are such things as "true" prob- 
abilities somehow inside his head. 

Shawn: I share your skepticism, Sy. In my view, probability assessment is 

not a process of uncovering pre-existing "real" degrees of belief. Degrees of 

belief are not "measured"; they are created (Shafer, 1981). I regard a prob- 

ability model as an argument; it's a good argument if it helps us capture and 

organize some portion of our evidence in a cogent, insightful, thorough, and 

reliable way (Shafer and Tversky, 1983). 

Barbara: Hold on a minute here. Second-order probabilities may be a very 

useful fiction despite all these difficulties, if they help us express our 

confidence in first-order judgments or, if you prefer, "arguments." 

Sy: That depends on whether the conclusions they lead to make sense, doesn't 

it, Barbara? I have some doubts here, too. Consider the following example. 

Suppose I perform two probabilistic analyses of the hypothesis that Malbridgia 

is building ZAP. I start with a prior probability of .2; the first analysis 

yields a posterior probability of .8, the second yields a posterior probabil- 

ity of .6. According to the measurement analogy (as interpreted by Lindley, 

Tversky, and Brown, 1979), reconciliation gives me an estimate of my "true" 

probability that typically lies between . 6  and .8--e.g., .7. 

Barbara: OK, what's wrong with that? 

a: Well, Barbara, it ignores the possibility that my two analyses could have 
mentally tapped independent sources of information, or evidence. In that 

case, both collections of evidence appear to favor the hypothesis that 

Malbridgia is building ZAP. Thus, the second analysis should cause us to in- 

crease our probability (e.g., from . 8  to . 9 ) ,  not decrease it (from .8 to . 7 ) !  

Phyllis: In fact, Barbara, isn't probability a function of two things: the 

hypothesis and the evidence upon which the probability is based? 

Barbara: That' s right. 



Phyllis: Well, if they are based on different evidence, the probabilities 

provided by two analyses are not: estimates of the same "truen probabilities. 

For example, the "true" probability that Malbridgia is building ZAP, given one 

bit of evidence (say E2), is not the same number as the probability that 
Malbridgia is building ZAP given some other evidence (say E3). Infinite 

thought and introspection applied to E2 will give a different answer from in- 

finite thought and introspection applied to E3. The analogy to reducing the 

noise in a set of measurements doesn't seem at all suited to the picture of 

different probability analyses capturing different pieces of our total 

knowledge. 

Sy:  This sounds like a serious problem, Barbara; after all, our original 

reason for considering more than one probability model was to increase the 

amount of knowledge utilized in our reasoning. To be specific, most of the 

time we are interested in maximizing knowledge about some real-world - 

hypothesis (e.g., whether Malbridgia is building ZAP), not knowledge about our 

"true" probabilities--even if they existed. 

&: Hmmm. Second-order probabilities appear to be a fictional device aimed 

at a fictional problem. 

3.5 Probabilities Upon Probabilities 11: Comvleteness of Evidence 

Barbara: Maybe so, Art. But I'm not quite ready to give up on this approach. 

It seems clear that we went wrong at the start, when we focused on "thought 

and introspection" rather than additional evidence. What we should look at 

instead is how different our current probability will be from the one we would 

have when we get more data. 

Art: It sounds like that's worth a try. Suppose I do a Bayesian analysis of 

the chance that Malbridgia is building ZAP, but I possess only part of the 

evidence, say El and E2. The probability that emerges from this analysis, 

say, is .23, but I know there's some other potential evidence. For example, 

an intelligence source thinks he can obtain minutes from meetings of military 



weapons planners in Malbridgia (E3). I also remember a source, L. Melfata, 

who is acquainted with Malbridgian technologists; she too might have some use- 

ful information (E4); and so on. Unfortunately, before I can check these pos- 

sibilities out, the customer wants a report. 

Barbara: Good example. You can report the -23 probability that Malbridgia is 

building ZAP, but you might also report how firm that belief is. In other 

words, how likely is it that the probability will assume various other values 

when additional relevant evidence is obtained - -  e.g., Eg, E4, and E5? We 

might express that firmness by a range,say, 23% + 15%. within which we feel 
95% sure the probability will fall after looking at the other evidence. 

Art: Wait a minute, Barbara. Aren't we talking about an awful lot of work 

here? The assessment task would involve anticipating all the evidence that 

could possibly be relevant! We certainly don't think El through E5 exhaust 

the possibilities, do we? And even if we just look at E4, for example, 

before I actually talk to L.Melfata, I have no idea what she will say. If I 

have to weigh all these possibilities in my mind before assessing the firmness 

of the probability, I'm afraid I'm sunk. 

Shawn: I have some good news and some bad news, Art. The good news is that 

it's quite easy to assess the potential impact of all the evidence. The bad 

news is that the result is trivial. The probability of any verifiable 

proposition based on all the data will be 0 or 1. In other words, it will 

turn out either that the proposition is true or that it is false. Not very 

informative, I dare say! 

Phyllis: Maybe we're not interested in the evidence, Shawn, just some 

part of it. What we really want to know is how the probability might change 

as a result of evidence we are likely to obtain. 

SJ: That reminds me of some computerized aids I've seen recently. They look 

at the cues with which the system is prepared to deal, but for which there is 

as yet no data; and they calculate where the probability of the hypothesis 

could end up as those data come in (e.g., Speigelhalter, 1985). 

Art: That sounds good, Sy, except for one little problem: in most cases such 

a system doesn't exist. And in most cases, at least, it hardly seems 



worthwhile to try to list all the cues we think we might obtain and figure out 

how we would react to them. 

Barbara: I quite agree, Art. A related approach, which is much less 

burdensome, is to assess directly what the likely probability range would be 

after different amounts of time and effort spent on information collection 

(e.g., Brown, 1985). We'd expect the range of likely values to be larger, the 

more time and effort we devote. But we don't need to specify explicitly the 

information we expect to obtain. 

&: Well, I'm still having trouble with this. We're being asked to make 

judgments about things we don't know and, I daresay, can't know. How can I 

ever be sure that I have factored into my thinking all the relevant data that 

I might encounter? 

Phvllis: I'm pretty discouraged, too. We already saw that second-order prob- 

abilities run into trouble as representations of imprecision. It now seems 

they have problems representating completeness of evidence, as well. If we 

take completeness to mean all possible evidence, the intervals are trivial (0 

to 1). If we specify completeness more narrowly, as an explicit list of fac- 

tors or in terms of the evidence we implicitly expect to discover, the inter- 

vals seem quite ad hoc, and might fluctuate significantly with factors that we 

happen to include or leave out. 

Shawn: I quite agree, Phyllis. In fact, I think there is another way to ap- 

praoch completeness of evidence that is more promising. 

Phyllis: Oh? 

Shawn: It focusses on the completeness of specific arpuments, - rather then com- 

pleteness in any broader sense. When we have a particular item of evidence, 

we consider what argument or arguments might be constructed based on that 

evidence for (or against) the truth of an hypothesis. Then it is a relatively 

simple matter to consider the completeness or reliability of this argument. 

We don't need to entertain obscure worries about other hypothetical evidence 

we might or might not obtain that would support other hypothetical arguments. 

The important question is: to what extent is this given argument a complete 



proof that the hypothesis is true? I hope we have a chance to discuss this in 

more detail later. 

3.6 What (or Who) is Rational 

Barbara: In light of all these difficulties, I think I'd prefer to drop the 

idea of second-order probabilities. I'll just retreat to my earlier position: 

selecting and combining probability models is part of the art, not the 

science, of decision analysis. Let me go further, though, and say that we 

need methodologies to help us bridge the gap between normative ideals and 

descriptive realities. I think we should distinguish, along with Keeney and 

Raiffa (1976), between a normative theory and a prescriptive theory. .The 

former describes an ideal decision maker. But the latter tells real decision 

makers how to use the normative theory effectively. 

Art: For example? 

Barbara: A prescriptive theory would contain a variety of pragmatic tools, 

e.g., methods of sensitivity analysis and methods for generating, comparing, 

and reconciling multiple analyses. Sensitivity of conclusions to small 

changes in specific inputs would lead the decision maker to analyze further 

those particular inputs. Inconsistencies among different analyses would serve 

as a prompt for the decision maker to dig more deeply into his store of 

knowledge, to explain and eliminate them. "Prescriptive theory" in this sense 

is, of course, no more than a codification of the art of constructing a deci- 

sion analysis. 

Colette: The introduction of a new kind of "prescriptive" theory, to make up 

for the shortcomings of the normative theory, sounds to me like an admission 

of defeat. If a theory almost always demands more precise inputs than people 

feel comfortable with, or suggests conclusions people frequently disagree 

with, then the theory is wrong, not ordinary judgment. I think Bayesian 

theory is guilty on both of these counts. 

Zara: Quite right, Colette. And simply abandoning the idea of higher-order 

assessments will only make matters worse, in my opinion. For example, higher 

order uncertainty can have an important impact on decision making. 



Barbara: I disagree there, Zara. It makes no difference in decision making 

whether your probabilities are vague or precise. In other words, when it 

comes time to act, all those second-order probabilities are entirely sum- 

marized by a single number: the "average" first-order probability. (The only 

exception is when you are deciding whether to collect more information.) 

Zara: Wait a minute, Barbara: that's what the theory says. But in a deci- 

sion maker's mind, the original ambiguity may be very important. 

Barbara: I think you're confusing normative and descriptive issues, Zara. 

Vagueness of probabilities may make a difference in ordinary, unaided decision 

making. What I claim is that it ought not to matter. 

Colette: Let me come to Zara's defense here. I would be very surprised if 

even the staunchest Bayesian were indifferent if he had to choose between two 

gambles with identical probabilities and utilities for their outcomes, but 

where one set of probabilities is well-supported by data (e.g., the probabil- 

ity 0.5 that a coin will land heads) and the other set represents ignorance 

(e.g., the probability 0.5 that.McEnroe will win Wimbledon). For all I know 

the probability of McEnroe's winning might be as low as . 3  or as high as .8. 

Why shouldn't that possibility influence my degree of interest in the gamble? 

If I am at all cautious, I will prefer to bet on the coin rather than on the 

tennis match. 

Phvllis: So your willingness to bet ought to depend on how much knowledge is 

incorporated into your beliefs? 

Colette: Exactly! No matter how coherent I am in terms of probability 

theory, I will lose if I bet with people who have more relevant knowledge than 

I do (L.J. Cohen, 1980). Following Bayesian norms will lead to disaster! But 

amount of knowledge is the very factor which Bayesian decision theory, as we 

have just seen, almost entirely fails to appreciate. 

Barbara: Well, Colette, I would not claim that the Dutch book is the only ar- 

gument in support of Bayesian theory. In fact, the requirement that beliefs 

conform to the probability calculus can be based simply on the inherent 

plausibility of various constraints on our beliefs associated with the prob- 



ability calculus--but having nothing whatever to do with betting. Shimony 

(1970) outlines a set of such constraints, or axioms, e.g., that our degrees 

of belief in logically equivalent propositions be equal; that our degree of 

belief in A or B is a monotonically increasing function of our belief in A and 
our belief in B; etc. 

Zara: I don't think any of us will deny the interest or desirability of many 

features possessed by the Bayesian system. Just remember, there is no proof 

that this particular method for representing uncertainty is the & one that 
has interesting or desirable formal properties. Indeed, this is far from the 

case. I would argue that the probability calculus remains unsuited for repre- 

senting many species of uncertainty or imprecision. 

Phyllis: The appropriateness of different normative theories may vary as a 

function of the concepts and goals that characterize a particular problem 

domain or application? 

Zara: That's right. One example of a concept not captured by probability 

theory is the one we have been discussing: weight of evidence or knowledge. 

A related concept, which I hope we can discuss shortly, is something called 

"possibility. " 

Colette: I would go much further on this point. Normative theories are no 

more than systematizations, or idealized descriptions, of ordinary intuitions 

about what's reasonable in particular cases. Why should we evaluate an in- 

ference theory in terms of its axioms? What counts is whether it makes sense 

when we apply it to actual problems. 

As: Well, I feel vindicated. As I said earlier, it makes sense to me that a 

good theory of reasoning would be one that describes how people actually 

reason. It seems to me that that is the philosophy that lies behind the 

recently emerging "expert systems" technology in artificial intelligence. 

Barbara: Let me remind Colette that many Bayesians have regarded their theory 

as an "idealization" of actual practice. 

Sy: I hate to be a wet blanket, but the experimental literature in cognitive 

science suggests that none of the current normative models fits actual prac- 



tice very well (e.g., Kahneman, Slovic, and Tversky, 1982; Schum and Martin, 

1980; Goldsmith, 1983). The discrepancies seem to be systematic rather than 

random in any meaningful sense, though I suppose one could stretch 

"idealization" to cover almost anything. 

Shawn: Perhaps so. But a more accurate statement may be that before we con- 

struct an analysis, our beliefs are usually not precise enough or definite 

enough to be identified with or distinguished from various inference 
frameworks (Shafer, 1981). 

Phvllis: Along these same lines, Art might be interested to know that in the 

design of expert systems, computer scientists who specialize in eliciting ex- 

pert knowledge report that an expert's model of his subject area is not simply 

"copied" into the computer. It is a moving target, which is transformed in 

the process of knowledge elicitation. The expert is typically exposed to con- 

straints deriving from the architecture of the system being built, including 

the mechanisms for performing inference; and these constraints influence the 

way he expresses his knowledge. Conversely, of course, the selection of sys- 

tem architecture is influenced by its success in capturing what the expert 

knows. 

Shawn: Your comment, Phyllis, fits my conception of inference theory as 

constructive. We are better off leaving aside abstract arguments about 

axiomatic derivation or about descriptions of how people "reallyn think. The 

ultimate test of a theory is whether its formal properties and its ease of use 

combine to make it an effective tool. The real question is the extent to 

which the scheme prompts us to ask questions that either match what we already 

know or lead to new knowledge. We should ask, how productively can people 

utilize it to achieve given ends in a particular type of problem? 

Art: That sounds good. I guess the next question is, are there alternatives 
to the Bayesian viewpoint that address issues like precision of inputs or 

weight of evidence more adequately? 

Zara, Shawn, Colette: Yes! 



3.7 Fuzzv Reasoning 

Zara: With the permission of my colleagues, I would like to contribute some- 

thing on both of those points, drawing on an approach recently developed by a 

scientist at the University of California in Berkley, named Lotfi Zadeh (1965, 

1978). Fuzzy set theory is a direct effort to model the inexactness in human 

judgment and reasoning. The traditional all-or-none concept of set membership 

is generalized into a membership function which represents the degree to which 

an element belongs to a set. This concept of graded set membership turns out 

to be a very powerful tool for modeling a large number of different tpes of 

imprecision within a common framework. Zadeh's work is closely tied to an 

analysis of how uncertainty is actually expressed in natural language, so it 

has a strong descri~tive component. He argues that in most cases the uncer- 

tainty is "possibilistict' rather than (or in addition to) probabilistic. 

Barbara: Well, I don't know about natural language, but I doubt there is any 

meaningful uncertainty to which Bayesian probabilities could not apply. The 

test, after all, is simply whether or not one could formulate a bet on the 

outcome of the uncertainty. 

Zara: Let me give a simple example that I think does not fit within your - 
framework, Barbara. Assume that you know that the actual number of members in 

a terrorist organization called Pink Thursday is, say, 250. Yet you are un- 

certain about the claim that this organization is large. Notice that there is 

no uncertain outcome to bet on! The problem is that "large terrorist 

organization" is a fuzzy rather than a crisp predicate. Different sizes have 

different degrees of membership or "belongingness" in the fuzzy set denoted by 

"large terrorist organizationn. For example, 400 is more a member of the set 

than is 250. The degree of truth in the claim that Pink Thursday is large is 

expressed by the degree of membership of its size in the fuzzy set "large ter- 

rorist organization" (Zadeh, 1978). Note that we are interested in a depree 

of truth, not in the probability that some proposition is or is not true. 

Barbara: I'm not so sure a probabilistic analysis couldn't be applied here, 

Zara. The relevant uncertainty is whether or not the meaning of "large ter- 

rorist organization" includes 250. 

Sy: Well, how do we decide that? 



Barbara: We could determine the probability that a randomly selected speaker 

of English would agree that a terrorist organization with 250 members was 

large. 

u: I don't deny that you could gimmick up some such analysis, Barbara. 

But look how unnatural it is. You have to force your respondents to make an 

all-or-none decision about largeness. I suspect each one of them would be 

more inclined to regard the meaning itself as a matter of degree. 

Sy:  This is all very interesting, Zara, but what use is it? In your example, 

we know Pink Thursday's exact size to begin with, so why should we worry about 

the degree to which it is large? 

Zara: Good question, Sy. One important reason is that much of our knowledge 

about the world is "fuzzy". So it may be that what makes Pink Thursday's size 

relevant or interesting to us is (in part at least) what it implies when we 

use this fuzzy knowledge. For example, we may believe that "large terrorist 

organizations experience internal organization conflictn. It would be sense- 

less to try to translate this into something non-fuzzy by means of exact cut- 

offs, e.g., any organization above precisely 330 members is large. After all, 

there isn't an abrupt change from not-large to large at some specific size! 

So before we can use this knowledge to draw conclusions about Pink Thursday's 

tendency to experience organizational conflict, we need to know the degree to 

which Pink Thursday is large. Zadeh's system of fuzzy logic enables us to 

draw inferences of just this sort. 

In the second place, our facts are not always so exact. For example, return- 

ing to Art's problem, note that evidence E2 tells us that "a large quantity" 

of Xyleum was purchased by Malbridgia. We are not told the exact amount. 

Maybe the source of this report relied on evidence that pointed to a large 

quantity without specifying how much - -  for example, quick visual observations 
of packages of Xyleum ready for shipment, or the role in contract negotiations 

of high-level officials. According to Zadeh, though, "large quantity" acts as 

a constraint which induces a set of possibility measures for different exact 

amounts. The possibility of 2 kilograms, for example, will be . 8  if its mem- 

bership in the fuzzy set "large quantity (of Xyleum)" is .8. 



Finally, notice that the match between our fuzzy general knowledge and the 

fuzzy evidence may itself be inexact. Suppose, based on our experience as in- 

telligence analysts, that we believe some relevant fuzzy general rule, such as 

the following: "Usually, extremely large quantities of Xyleum are used to 

build components of System ZAP." We can use Zadeh's fuzzy logic to consider 

what the purchase of a "large quantity of Xyleum" (E2) implies in the light of 

this rule pertaining to "extremely large quantities", and to draw appropriate 

conclusions about the chance that Malbridgia is now building ZAP. 

Barbara: Well, Zara, at least now I can see now where we differ. You seem to 

be talking about vagueness or ambiguity in language. A Bayesian--like most 

other analysts, I dare say--would try to eliminate that kind of uncertainty 

before he even began his analysis! I suspect fuzzy set theory has interest 

& as a description of the way people sometimes reason, rather than as a 
normative guide. 

Zara: That depends on how, successful analysts are in eliminating fuzziness, 

doesn't it, Barbara? Even in highly technical contexts reasoning is often 

fuzzy (Zadeh, 1983a). For example, a doctor observes that a patient is 

"seriously burned." By the way, that very expression is incorporated within 

a rule in MYCIN, a computer system designed to replicate medical reasoning. 

PROSPECTOR, a system for geological reasoning, refers to "abundant" quartz 

sulfide "veinlets" with "no apparent alteration halos." Such fuzziness is no 

easier to eliminate than probabilistic uncertainty. Its origin is not 

sloppiness of language, but incompleteness of understanding. The more com- 

plex the phenomenon, the more fuzzy you must be to say anything relevant about 

it, even if you are an expert. Rather than eliminate such imprecision, and 

sacrifice relevance, Zadeh offers a way to incorporate it rigorously within an 

analytical approach. 

Art: Zara may have a point, Barbara. The evidence in our own problem appears 

to be full of fuzzy terminology in addition to the example we just looked at: 

for example, a "very reliable" source, "immediate" purchase, "vital" to the 

development of ZAP (E2); a "mid-level" government employee, a "usually 

dependable" source (E3); "recently" reported, "rather boastfully", "several" 

of the "novel" subsystems, travel "freely" (E4); "influential", "strongly" 



back, "several" subsystems (E5)., It's hard to imagine converting all of these 

to crisp, yes-or-no questions. 

Zara: Even if you did, Art, how meaningful would your result be? You would 

have had to turn this into a different problem. Zadeh provides a method for 

deriving what the possible probabilities are from the evidence as vou 
naturally conceive of it. 

Phvllis: If I follow you, Zara, there are some cases where we could use 

either probability or possibility. Could you clarify for us the relation be- 

tween these two concepts? 

Zara: With pleasure--though I warn you the relationship is not simple. It 

may be helpful first to identify two contexts in which "possibility" plays a 

role in Zadeh's work. At the broadest level, possibility theory is a sys- 

tematic framework for interpreting the meaning of natural language utterances. 

In this framework, as in the example of "a large quantity of Xyleum" a 

proposition induces a possibility distribution on related (perhaps implicit) 

variables, in this case, the weight of Xyleum bought by Malbridgia. In other 

words, given that a large quantity was bought, we can assign a possibility 

value between zero and one to each weight. This approach can be applied, in 

principle, to any proposition whatsoever; and in fact, Zadeh has made impres- 

sive progress in showing how natural language statements can be interpreted by 

means of fuzzy logic, and in showing how rules of inference, based on fuzzy 

set theory, can be applied to them. 

The second context in which "possibility" crops up is as a feature within cer- 

tain natural language statements. Some propositions involve "possibility- 

qualification"--i.e., hedges like "very possible," "quite possible," "almost 
k impossible." The analysis of these statements is a special case of the ap- 

plication of possibility theory .in the broad sense. For example, this 

analysis involves a fuzzy set corresponding to the hedge, together with proce- 

dures for determining the degree of membership of the hedged proposition in 

that set. 

As you might have guessed, possibility and probability are alternative forms 

of hedge. The analysis of linguistic forms involving probability- 

qualification is analogous to that of possibility-qualification. Such hedges, 



called "fuzzy probabilities," include not only expressions like "quite 

probable" and "not very likely," but also so-called "fuzzy quantifiers" such 

as "most," "usually," "several," "few," and "more than half." Each of these 

is a fuzzy set containing numbers between 0 and 1 to varying degrees. Take 

the sentence, "usually, extremely large quantities of Xyleum are used for Sys- 

tem ZAP". The membership of a particular proportion, say .3, in the fuzzy set 

denoted by "usually" determines the possibility that .3 is the proportion of 

the time that extremely large quantities of Xyleum are used for ZAP. 

Phyllis: So what you're saying is, at the level of specific linguistic forms, 

possibility and probability are alternative ways of expressing uncertainty. 

But both of these have a place in a broad possibilistic framework? 

Zara: Exactly, if you'll pardon the expression. 

Sy: This is all very interesting, Zara, but you still haven't told us how 

these concepts help us deal with our original problem: weight of evidence. 

Zara: The point I have been leading up to, Sy, is that Zadeh's theory can - 
help in two ways: by means of possibility-qualification and by means of fuzzy 

probabilities. Each of these can serve as a tool for exploring and repre- 

senting the knowledge that underlies an ordinary probability assessment. 

Possibility, you recall, is degree of compatibility with one's knowledge. 

Assessments of possibility thus depend on what the evidence fails to exclude: 

i.e., to what degree the evidence fails to prove that the proposition is 

false. Assessments of possibility are thus fairly conservative, focused on 

what we know. In contrast, assessing the probability of an event will often 

require considerable guessing--about what might really have happened--that 

goes well beyond what the evidence proves or disproves. Possibilities are 

thus a less demanding sort of assessment and more frequently reflect the form 

our knowledge actually takes. For example, even if I know very little about 

Pink Thursday, I could pretty confidently assess a possibility distribution 

for its size, based on what I know about the range of sizes of such 

organizations; but I might find it quite hard to assess a probability 

distribution. According to Zadeh's (1978) possibility/probability consistency 

principle, possibilities provide an upper bound for probabilities (and thus 

help determine the possibility distribution of fuzzy probabilities). 



A second approach based on Zadeh's theory is the use of fuzzy probabilities. 

As we noticed earlier, Bayesians insist that probabilities are single numbers, 

regardless of the amount (or scarcity) of the underlying data. For Zadeh, 

however, if the information you have is fuzzy, as it so often is, so are the 

probabilities based on it. 

a: Well, these fuzzy probabilities sound to me like second-order probabil- 
ities under a different name. 

Zara: Not at all, Sy. For one thing, a possibility distribution, unlike a 

second-order probability distribution, can't be summarized by a single number, 

i.e., the "average", For example, your vague probability that H (e.g., that 

Malbridgia will build ZAP given that Muldip supports it) might be expressed as 

a possibility distribution that assigns a possibility of zero to all probabil- 

ities below .1 and above .95, and that peaks at .7. When we use it to decide 

among actions, this distribution does not collapse to a single number. 

Phyllis: Well, what can we do with these fuzzy probabilities then? 

Zara: Let me give you just one example. An interesting technique proposed by - 
Zadeh (1982) supports the assessment of probabilities for unique events. For 

example, how are we to assess the probability that Muldip will support the 

building of ZAP, given that he said he would? There is no large sample of 

cases where Muldip said he would support ZAP, in which we can determine the 

frequency with which he actually did support it! Here again, the traditional 

probability paradigm is unsatisfying: if empirical frequencies are unavail- 

able (and if there is no natural decomposition in terms of other 

probabilities) our only recourse is direct subjective assessment. Zadeh's ap- 

proach by contrast, involves an analysis in terms of other events (e.g. , other 
cases where Muldip, or other politicians, in Malbridgia or elsewhere, said 

they would take some action); the crucial factors are the degree of similarity 

of each such event to the unique event at issue, and the extent to which those 

other events possess the property whose probability is being assessed ( e . g . ,  

the action was taken). 

Sy:  So, your claim is that there are two "fuzzy" approaches to the assessment 

of weight of evidence: direct evaluation of the compatibility of a proposi- 



tion with your knowledge, i.e., "possibility", and assessment of your degree 

of confidence in a range of possible probabilities? 

Zara: Right. And I would argue they are complementary ... - 

Art: If I can interrupt a moment, I'm quite disturbed. Please tell me how 

all this is going to make assessment any easier? The standard Bayesian theory 

was pretty daunting, demanding precise numbers where they seemed entirely out 

of place. Fuzzy set theory, like second-order Bayesian theory, seems to want 

to measure the imprecision. That may be terrific from the normative point of 

view, Sy, but what about the poor fellow who has to provide all those numbers? 

Zara: Not to worry, Art. Numerical inputs aren't really required. Decision 

makers would only need to provide verbal descriptions (e.g., "pretty likely" 

or "about 35%"). Such descriptions could then be automatically translated 

into fuzzy set membership functions expressing the "possibility" (or 

confidence) that a particular number was the probability required. Computa- 

tions would take place with the underlying membership functions, and the 

results could be translated back into appropriate verbal descriptions. The 

trick here is to realize that extreme precision is not needed at the level 

where we assess possibilities--results will be relatively insensitive to 

inaccuracies--so an approximate verbal approach is entirely justified. 

Barbara: I have a feeling that you may run into trouble with your verbal 

approach, Zara. People might disagree rather substantially on the possibility 

distributions corresponding to particular verbal expressions. So you would 

have to get numerical assessments from each decision maker after all. I 

doubt if the results will be insensitive enough to errors to let you get away 

without doing that. 

Zara: Well, these are questions for empirical and formal research. 

Barbara: In any case, I have to admit that the betting paradigm is not much 

good as a tool for analyzing fuzzy evidence. But you must admit, Zara, it 

provides a pretty direct link between probabilities and decision making. I 

wonder what a decision maker would & with these "fuzzy probabilities" once he 

had them? 



Zara: I think we can help him, Barbara. We simply "fuzzify" the computation - 
and comparison of expected utilities (Watson, Weiss, and Donnell, 1979; 

Freeling, 1980, 1983). In doing so, we utilize a very general inference rule. 

It tells us how to compute the fuzzy set membership function for a variable 

when it is a function of variables whose fuzzy set membership functions are 

known. So if we know the possibilities for the probabilities and utilities of 

the various outcomes, we can derive the possibilities for the expected utility 

(and also for the maximum expected utility). 

Barbara: Well, the real question is whether all these possibilities finally 

yield a recommended action. 

Zara: In many cases, where one option "fuzzily dominates" another, there is a 

clear recommendation. In other cases, there are a number of possible decision 

rules one could adopt (Freeling, 1980). But perhaps we should not expect un- 

ambiguous prescriptions when the data are very fuzzy. 

a: I think part of what Barbara was getting at, Zara, was the normative 
basis of fuzzy set theory. Why should we accept it as a recipe for belief or 
for action? What, for example, is the basis of this "very general rule" you 

just referred to? 

Zara: Fair enough. I think the normative appeal of this theory derives from 

several sources. First, some work has been done--as it has for Bayesian 

theory--to show that fuzzy set theory is entailed by the acceptance of some 

quite plausible axioms or assumptions (e.g., Bellman and Giertz, 1973; Fung 

and Fu, 1975). Secondly, I think individual applications of the theory have 

their own independent plausibility. Results usually conform to our intuitions 

about what they ought to be. Thirdly, there is additional justification in 

the special case where the theory is applied to fuzzy probabilities, Fuzzy 

logic provides the basis for what is, in effect, a sensitivity analysis or a 

measure of confidence in the original Bayesian probabilities. For example, 

the Bayesian probability that two independent events will both occur is, of 

course, the product of their probabilities. By fuzzifying these 

probabilities, we can derive the interval within which their product lies at a 

given degree of confidence. In short, in this application fuzzy logic retains 

the normative appeal of first-order Bayesian probabilities, while simul 



taneously relaxing the assessment burden and capturing the imprecision in an 

expert's process of reasoning. 

3.8 Belief Functions 

Shawn: I couldn't agree more with Zara's central point: the Bayesian 

framework fails to capture the real significance of the evidence. I think 

there is a simple explanation of this: Bayesians concentrate on strength of 

belief in the truth of a hypothesis, rather than on the meaning of the 

evidence itself. I would like to propose a method that attacks this problem 

quite directly: Shafer's (1976) theory of belief functions. Rather than 

"fuzzify" Bayesian probabilities, Shafer, who is a statistician at the 

University of Kansas, (1976) urges the replacement of Bayesian probabilities 

by a concept of evidential support. The contrast is between the chance that a 

hypothesis is true, on the one hand, and the chance that the evidence means 

that the hypothesis is true, on the other. Thus, we shift focus from truth to 

the interpretation of the evidence. 

Sy: But isn't it the truth that we're interested in? 

Shawn: Perhaps, but remember: our only way of findins the truth is through 

the evidence. So a tool that helps us analyze the evidence may be a lot more 

helpful than one that focuses our attention directly on the truth of the 

hypothesis. 

Barbara: Hold on a minute! Who said Bayesian theory doesn't help analyze 

evidence? We've already talked about how the impact of evidence can be quan- 

tified using likelihood ratios, and how a large number of subtle interactions 

among evidence items' can be captured using techniques of Bayesian hierarchical 

inference. 

Shawn: Of course, Bayesian techniques permit an analysis of evidence. But I 

have several complaints, Barbara. First, those techniques often require you 

to make assumptions that go far beyond anything supported by your evidence. 

Second, there is no way to represent the amount of knowledge, or weight of 

evidence, underlying an analysis. Finally, the method of analyzing and com 



bining evidence is often cumbersome and unnatural. I think you'll see what I 

mean when I explain how Shafer's theory works. 

Recall that in Bayesian theory a probability mass of 1 must be allocated com- 

pletely among the possible hypotheses. It follows, of course, that the prob- 

ability of a hypothesis H and the probability of its complement, not-H, must 

sum to 1. Shafer retains this idea of spreading a fixed amount of some quan- 

tity over a set of alternatives. The difference is that we spread this mass 

among possible meaninps of the evidence. We ask: what are the possible in- 

terpretations of the evidence, and what are their probabilities. 

a: The notion of the "meaning" of a bit of evidence sounds pretty obscure to 
me. 

Shawn: In fact, Shafer gives that notion a very crisp sense. The possible 

"meanings" are simply the hypotheses themselves plus all combinations of 

hypotheses. Let's take Art's problem as an example. We have two hypotheses: 

H = Malbridgia is building ZAP, and not-H = Malbridgia is not building ZAP. 

Now we have some inconclusive evidence E4 in favor of H. E4 is inconclusive 

since our source, L. Melfata, could be lying or mistaken, the technologist she 

talked to could have been lying ,or mistaken, we may be wrong in our assumption 

that the technical advances mentioned in E4 are needed for System ZAP, and so 

on. Please note that if any of these contingencies is the case, it does not 

follow that H is false--that Malbridgia is not building System ZAP. What does 

follow is that E4 tells us nothing at all about whether it is or is not. Un- 

der those circumstances, E4 would be consistent with H or not-H. Shafer rep- 
resents this by saying that E4 could mean H but also could mean the combina- 

tion of both hypotheses (H,not-H). 

The evidential support which E4 lends to H is simply the probability that E4 

means H. Shafer defines a "support function" or "basic probability 

assignment" m4 to reflect E4's evidential impact. For example, we might sub- 

jectively assess m4(H) = .4 and m4(H or not-H) = . 6 ,  This captures our intui- 

tion that E4 lends some support to H, but no support to not-H. M4(H or not-H) 

is the probability that E4 says no more than that something is true. 



The support function m captures the direct support of evidence for a 

hypothesis (or combination of hypotheses). But our degrees of belief may also 

reflect indirect support. Shafer defines the degree of belief Be1 in a 

hypothesis or combination of hypotheses as the total support for any 

hypothesis (or combination of hypotheses) that implies it. Bel(H) captures 

the extent to which our evidence means H or means something that necessarily 
includes H. 

The key point here is that some of the support or belief can remain uncom- 

mitted to any particular hypothesis. The ability to represent uncommitted 

belief is a major difference between Shafer and the Bayesians. It means that 

our modeling need go no further than our evidence takes us. 

Barbara: All it really means, Shawn, is that your model is incomplete-. The 

real virtue of the Bayesian approach is that it forces you to take into ac- 

count all the relevant information. For example, recall that in my treatment 

of this example, I would first have to assess my prior probabilities or odds 

for H and not-H, in other words,my degree of belief in each hypothesis before 

receiving the new data about the technologist's boasting. Then I assess the 

probability of obtaining E4 on the supposition that each of the hypotheses 

were true. Finally, I would use Bayes' rule to combine my prior belief with 

the new evidence. So my new beliefs are logicallv guaranteed - to reflect 

everything I know about this case. 

Phyllis: I have no idea what "logically guaranteed" means, Barbara. I think 

we've already agreed that a Bayesian analysis wouldn't be psvchologicallv 

guaranteed to tap all my knowledge about a case. And it may require knowledge 

that I don't have. We need to talk about real, not idealized, decision 

makers. An analysis which is logically incomplete, but which more closely 

matches the way I organize my knowledge, might be more plausible, and convey 

more knowledge, than the Bayesian one. 

Shawn: That's right. I think it's important to reject the idea that the 

Bayesian theory is automatically appropriate for every problem, just because 

you can always bet on the truth of the conclusion. The key issue is 

whether you can formulate choices among bets that would elicit the required 

probabilities. The real question is, how confident you feel that these 

choices and the resulting model capture what is going on. In a game of 



chance, after all, we bet because of what we know about the probabilities; we 

don't learn about the probabilities by observing our tendency to bet! 

Phvllis: This point seems related to your concept of constructing probability 

arguments. 

Shawn: It certainly is. To the extent that Bayesian theory has anything to 

contribute, it is by establishing a persuasive analogy between your problem 

and a situation, like poker or a lottery, where the truth is generated by 

known chances. We construct Bayesian probability models by reference to such 

comparison cases, or "canonical examplesn (Shafer, 1981). Such analogies, 

however, will usually be imperfect, because in the canonical example we know 

the rules of the game that determine how the truth is generated (e.g., the 

composition of the deck and the procedure for dealing). In real problems, 

there are nearly always many aspects of the situation where comparable rules 

cannot be given without making numerous assumptions. When these assumptions 

become very extensive, it may be better to switch to a simpler kind of model, 

which is more plausible despite not giving a complete picture of how the truth 

is generated. Such simpler models can be based on canonical examples in which 

the meaning of the evidence rather than the truth is generated by known 

chances . 

Sy:  So where did Barbara go wrong? 

Shawn: I think both in her treatment of prior probabilities and likelihoods. 

To start with, it is often hard'to see where prior probabilities should come 

from in a Bayesian analysis. 

Barbara: Perhaps a new example will help. Suppose a prominent politician in 

an allied country has been kidnapped; we'know that a terrorist organization is 

responsible and that only four such groups, which we designate A, B, C, and D, 

could have done it. Our hypotheses are HA, HB, HC, and HD (that A is the 

group responsible in the kidnapping, that B is responsible, etc.). If I have 

no reason to suspect one of the four groups more than another, I can set the 

prior probabilities equal to one another: P(HA) - P(HB) - P(HC) = P(HD) = 

.25 .  



Shawn: Thanks, Barbara. Your example makes it clear that the only way to 

represent J~norance in the Bayesian theory is to allocate probabilities 

equally among a set of alternatives. But there are some serious objections to 

this approach. As a very large number of critics have pointed out, how prob- 

abilities are in fact allocated will depend on how the alternatives are 

described or scaled. We do not know whether A, B, C, or D is responsible, so 

we assign a probability of .25 for the guilt of each one. But suppose group A 

originates in the Middle East and groups B, C, and D originate in Western 

Europe. We have no reason to believe the kidnappers are from the Middle East 

versus Western Europe. So perhaps we should assign a probability of .5 to HA 

and .I67 to each of HB, HC, and HD. In the end, the assignment of priors 

based on "ignorancen' is quite arbitrary. 

Notice how naturally Shafer handles this case. Our prior beliefs consist only 

in the knowledge that A, B, C, or D is responsible, and this is all we have to 

say in our model. We represent this (before receiving any evidence) by as- 

signing support equal to 1 to (HA,HB,HC,HD}. The allocation of probability 

mass within this set is simply unspecified. 

Barbara: Some Bayesians would argue that there is no such thing as total 

ignorance. We always have some prior knowledge, however vague, and this 

should be reflected in the priors we assess. For example, Art has a prior ex- 

pectation that Malbridgia is not building System ZAP, based on a briefing he 

heard about U. S. technical capabilities. 

Shawn: Where there really is some knowledge, we can and should represent it. 

But we can do so in terms of a Shaferian analysis of evidence rather than as 

"prior probabilities." And where there isn't any knowledge, we shouldn't have 

to make arbitrary choices. 

In Art's case, the briefing is evidence, even though indirect. If we assume 

that Malbridgia's technology tends to equal or lag U.S. technology, and if the 

American scientist was honest and accurate, then this evidence means not-H 

(i.e., that Malbridgia is not building ZAP). Otherwise, the evidence means 

nothing at all, i.e., (H,not-H). Since there is a fair chance that at least 

our first assumption is mistaken (Malbridgia's technology could be ahead of 

ours), we might have mo(not-H) - .7 and mo(H,not-H) = .3. 



Barbara: It seems to me that likelihood ratios are a perfectly appropriate 

way to represent the impact of evidence. 

Shawn: I'm afraid I don't agree, Barbara. Some of the same problems arise in 

the assessment of likelihoods as in the assessment of priors. In order to es- 

timate the probability of the evidence given a hypothesis, we are forced to 

include cases where the evidence occurs even though it is in fact not con- 

nected to the hypothesis. In the case of E4, we mentioned the possibility of 

deception or error by L. Melfata or by the technologist, or invalidity of our 

assumption about the relevance of the technology to ZAP. In all these cases, 

even if Malbridgia did happen to be building ZAP, E4 would not have really 

been relevant, and so they are not included in our measure of the support lent 

by E4 to H, m4(H). We have no evidence bearing on the chance of any of these 

eventualities. Nonetheless, the Bayesian probability of E4 given H must some- 

how purport to model them, at least implicitly. 

In Shafer's framework, there is no such requiremept. We directly assess the 

probability that the evidence means, or is connected to, the hypothesis. Of 

course, we leave open the possibility that the evidence occurred by chance: 

i.e., the hypothesis is true and yet the evidence doesn't mean the hypothesis. 

This is included in the support assigned to (H,not-H). Since this support is 

uncommitted among the two hypotheses, no specific modeling of what happens 

when the evidence is not linked to the hypothesis is needed. 

Barbara: I'm not as convinced as you seem to be, Shawn, that there is a clear 

line to be drawn between cases where we do and do not have "knowledge." For 

example, although we have no direct evidence regarding the possibility of er- 

ror or deception, we are likely to have some idea, based on our past ex- 
perience and general information, about these probabilities. The Bayesian 

framework, by insistine, that we come up with the numbers, may draw more infor- 

mation out of us than we knew we had. In terms of Shafer's own constructive 

theory, the knowledge may not pre-exist in a very appropriate or accessible 

form, but the assessment task itself can stimulate us to construct a repre- 

sentation that captures it. 

Shawn: Well, the proof is in the pudding. If you can use Bayesian theory to 

come up with convincing analyses, please do. In fact, the Bayesian theory is 



a special case of Shafer's, where all support is assigned to single 

hypotheses, and none is left uncommitted. 

This issue, however, is related to my second major complaint about the 

Bayesian framework. It provides no distinction between probabilities which 

are based on evidence and those that are not. What we need, and don't get, is 

a way of representing the weight of evidence that underlies an analysis. 

As we discussed earlier, probabilities themselves are simply not appropriate 

measures of the quality or credibility of an inferential argument. An es- 

timate that there is a 90% chance that Malbridgia's building ZAP would not 

necessarily be better supported than an estimate that puts the chance at 50%. 

One would not have much confidence in a conclusion (no matter how high the 

Bayesian probability) if it requires numerous untested assumptions. 

Conversely, the 50% probability could reflect the outcome of a thorough sift- 

ing of evidence bearing in the validity of those assumptions. The credibility 

of the conclusion depends on the comoleteness with which relevant and avail- 

able evidence has been consulted, not on the probabilities assigned to the 

events in question. 

Art: That sounds like a pretty good answer to some of our customers. They 

seem to believe that a "good" analysis is one that eliminates all uncertainty. 

Shawn: It may be more correct to say that a good analysis effectively ex- 

ploits the available evidence to determine what our uncertainty assessments 

are. - 

Compare three cases in our kidnapping example: (1) I set my prior probabil- 

ities P(HA) = P(HB) = P(HC) = P(HD) = .25 entirely on grounds of ignorance and 

symmetry; (2) I set my prior probabilities equal to one another because I dis- 

cover that groups A, B, C, and D each committed comparable kidnappings during 

the past 5 years; (3) I set my prior probabilities equal to one another be- 

cause the manner in which the kidnapping was carried out has definite, but 

comparable, similarities to the modes of operation of each of the four groups. 

Now it seems clear to me that each of these arguments has quite different 
merit. Yet a Bayesian analysis will treat them the same. By contrast, in 

Shafer's system we might have three very different support functions: 



In each case (as in the Bayesian analysis) the support assigned to the in- 

dividual hypotheses is equal. But our degree of confidence that each of these 

arguments is valid is reflected in the varying degree of support assigned to 

the universal set, (HA,HB,HC,HD). The sum of the support for the indtvidual 

hypotheses and the universal set, in each case, is 1. 

Sy: I like that. Your method of representing belief allows you to give 

greater force to an argument based on empirical frequencies, like (2), or 

direct evidence, like ( 3 ) ,  than one based on ignorance (1). 

Shawn: Notice, however, that we need not give full credence to frequency ar- 

guments either. Often it happens that although empirical data are available, 

their exact relevance to the issue at hand is not entirely clear. For 

example, in regard to (2) ,  A, B, C, and D's respective circumstances and goals 

may have changed drastically, in quite different ways, since they committed 

their earlier kidnappings. We may feel uncomfortable with an unqualified ex- 

trapolation of the past into the future. More fundamentally, we may feel un- 

comfortable treating the present kidnapping as if it were drawn randomly from 

the pool of kidnappings committed by the four groups. The .6  support assigned 

to m(HA,HB,HC,HD) is a discounting factor that represents these elements of 

doubt (Shafer , 1982). 

Sy:  In a way, then, the belief assigned to the universal set gives you a 

measure of the incompleteness of your evidence. 

Shawn: In this example, it does; but we can be a bit more general. In a 

sense, Shafer's Be1 function is the lowest degree to which a hypothesis can be 



believed, because it is the lowest level of belief forced on us by the 

evidence. But we have left open the possibility that the hypothesis is true 

in a way not revealed by our evidence. So another function introduced by 

Shafer is the degree of plausibility of a hypothesis, Pl(H), corresponding to 

the maximum possible belief in H. Pl(H) is equal to the total belief assigned 

to H (i.e., Bel(H)) to combinations of hypotheses containing H. The lat- 

ter belief is uncommitted, but new evidence could cause it to go to H. Pl(H) 

is thus the extent to which the evidence is not incompatible with H. So, 

Pl(H) - 1-Bel(not-H). 
S y :  I think I see. The interval between Bel(H) and Pl(H) gives a range of 

belief for H. Its size measures the scope for new discriminations among 

hypotheses to affect our belief in H; hence, in a sense, it measures the 

present incompleteness of our evidence. 

Shawn: Right. But keep in mind our earlier discussion: incompleteness here 

is the chance that a particular collection of evidence fails to discriminate a 

hypothesis from other possibilities. So it reflects the reliability of a 

ticular evidential argument. It makes no attempt to measure how much of the 

total possible evidence we have obtained. 

Art: The latter seems pretty impossible anyway. 

Sy:  That's certainly true. On the other hand, it may be quite natural to 

assess the reliability or strength of a particular argument. If you think 

about it, each argument requires us to assume a specific kind of relationship 

between the hypothesis and the evidence. The evidence establishes the 

hypothesis only if the relationship presupposed by the argument is in fact the 

case. For example, when we use frequency data to estimate probabilities, we 

assume the sample is representative of the population. If we rely on eyewit- 

ness testimony, we assume the witness was in a position to see what she says 

she saw, and that she was motivated to tell the truth. It seems reasonably 

realistic for us to assess the probability that assumptions like these are 

met. 

Shawn: This notion of the completeness or reliability of an argument is cru- 

cial to understanding what the interval between Bel(H) and Pl(H) means. In no 

sense is this a fixed bound on what our belief in H could eventually be. Ad- 



ditional arguments, based on new evidence could come in that conflict with our 

present beliefs and thus lower Bel(H) or increase Pl(H). Be1 and P1 are part 

of our analysis of our present evidence. They function as a bound only if we 

assume that all future evidence is consonant with the evidence we already 

have. 

Art: What does "consonantn mean? 

Shawn: Essentially, it means that different bits of evidence vary in the 

precision of their support i.e., their ability to discriminate hypothesis, but 

they do not conflict. More accurately, consonance means that support goes 

only to nested subsets of hypotheses. For example, suppose in our kidnapping 

example we get three new items of evidence. The first, an anonymous statement 

issued to the press by the kidnappers, is inconsistent, in its wording and 

content, with previous statements by one of the groups (D). So we represent 

this by a support function assigning some support to (HA,HB,HC). The next 

item of evidence (e.g., a demand for money by the kidnappers) might give sup- 

port to (HA, HB) since groups A and B are known to be in financial straits. 

Finally, an eyewitness report turns up regarding the types of weapons carried 

by the kidnappers, and supports (HB). This evidence is consonant, since the 

arguments based on the different pieces of evidence differ from one another 

only by being more precise or more general. They could be valid at the same 

time- -if group B is responsible. 

Art: Shafer's plausibility measure, P1, reminds me of Zadeh's notion of 

possibility. 

Shawn: Quite right, Art. It turns out that if we assume consonance of 

evidence, P1 is a possibility measure (Dubois and Prade, undated). You recall 

that Zara described the possibil.ity of a proposition as its compatibility with 

one's knowledge or evidence. So there is a conceptual, as well as a formal, 

affinity . 

Zara: Well, that's one way of looking at the relationship. Another point of - 
view is to think of Shafer's theory as giving a possibility distribution for 

the probabilities of a proposition, rather than for the proposition itself. 

In other words, all probability values lying between Be1 and P1 are possible; 

all others are not, This is a special kind of distribution in which all the 



possibility values are 0 (outside the interval) or 1 (inside the interval). 

So, from this point of view, Shafer's theory is a special case of Zadeh's, 

rather than the other way around. Possibility theory, of course, allows 

gradations of possibility. 

a: One thing we've been hinting about is how Shafer's theory handles new 
evidence. For example, Sharon mentioned that the interval between Be1 and P1 

reflects incompleteness of evidence. So I presume that when new evidence 

comes in, that interval shrinks. Does Shafer's theory tell us how that 

happens ? 

Shawn: It does indeed. So far, Sy, we have been focusing on the repre- 

sentation of evidence in Shafer's theory. But we could just as easily have 

introduced his theory in terms of how it handles the combination of evidence. 

As you recall, in Bayesian theory we can divide a problem into simple 

components, make assessments, and then combine them using Bayes' rule. Now 

Shafer argues that his framework comes closer to capturing the traditional 

concept of a "probability argument" than Bayes' rule! 

Let's take a simple example. In Art's problem, suppose once again we have 

only one item of evidence, E4, with a support function m4(H) = .4  and 

m4(H,not-H) = .6. Now suppose we receive a second bit of evidence, E5, 

regarding the assertion by the politician P. F. Muldip that he would support 

building ZAP. We regard this new evidence, like the first, as inconclusive: 

the report of Muldip's assertion may be dishonest or mistaken, Muldip may have 

intended to back ZAP but changed his mind or lost his position, Muldip may 

have lied, Muldip may have backed ZAP but been overridden in the final 

decision. We represent the new evidence by a belief function with m5(H) = . 3  

and m5(H,not-H) = .7, the latter once again reflecting the chance that this 

evidence is irrelevant. Now what is our net belief resulting from E4 and E5? 

The basic idea is simple. The combined evidence proves that Malbridgia is 

building ZAP if at least one of the evidential arguments is valid. The prob- 

ability that both are invalid is : 



This is the aggregate support for (H,not-H) based on the combined evidence, 

and, of course, it is lower than the uncommitted support in either m4 or m5 by 

itself. The aggregate support for H, then, is: 

A more general way to look at this same argument is this: The combined 

evidence E4 + E5 "means" H when the common element in the meanings of E4 and 
E5 is H. This happens in three cases: (1) E4 = (HI, E5 - (HI; (2) E4 - (HI, 
E5 = (H,not-H); and (3) E4 - {H,not-H), E5 - (HI. The probability that E4 + 
E5 means H, then, is just the sum of the probabilities for (I), (2), and (3): 

a: What if the new evidence conflicts with the old evidence? Suppose we 

have E4 supporting Malbridgia's building ZAP as before, but now receive El, 

suggesting that Malbridgia does not have the technical capacity to build ZAP. 

Shawn: ,The logic is essentially the same. The combined evidence proves that 

Malbridgia is building ZAP only if E4 is valid and El is invalid. In other 

words, the combined evidence E4 + El means H only when E4 - (H) and El = 

(H,not-H), since this is the only pair of meanings for El and E4 that has H as 

a common element. But notice that both evidential arguments cannot be valid; 

i.e., Malbridgia cannot both build and not build System ZAP. So the chance 

the combined evidence means H must be normalized to exclude the impossible 

case where E4 = (H) and El = (not-H). If we let ml(not-H) - . 9  and ml(H,not- 

H) = .I, 



and 

S y :  These arguments seem fairly straightforward. But is there a rule in 

Shafer's system that takes the place of Bayes' rule? 

Shawn: The rule of combination for Shafer's system is called Dempster's rule, 

and it is essentially just a generalization of the kind of intuitively appeal- 

ing "probability arguments" I have just described. Dempster's rule is more 

general in that it can be used to combine support functions that make use of 

the full representational capability of Shafer's system: i.e., where support 

can be provided by a bit of evidence for any number of hypotheses or combina- 

tions by hypotheses. 

I wouldn't really say it "takes the place" of Bayes' rule though, Sy. 

Bayesians sometimes talk as if the main use of Bayes' rule was to update 

beliefs automatically as new evidence comes in. That presupposes that we have 

anticipated the possible evidence ahead of time and assessed the relevant 

likelihoods. But I think it's very rare that we can do so. For example, in 

Art's problem, the probability of obtaining a report about a technologist 

boasting (E4) was very small indeed before it was actually obtained. 

Phyllis: This point reminds me of your notion of constructing a probability 

analysis, rather than eliciting it. Only ideal decision makers, not real 

people, come fully prepared with "true" probabilities for all possible 

contingencies. 

Shawn: Exactly. And there's a stronger point. Even if we had anticipated 

the actual evidence, the real-life Bayesian may not be wise to abide by the 

results of his automatic updating. Other new knowledge, not previously 

anticipated, may well have been acquired along with the evidence, which 

changes his assessments of the likelihoods used in updating. In other words, 



it's impossible to anticipate all the ways our inter~retatioq of the impact of 

a given bit of evidence could change. 

Sy:  But if your revised beliefs don't conform to Bayes' rule, won't you be 

incoherent, and subject to de Finetti's Dutch book? 

Shawn: That's a common misundertanding. Coherence only requires that your 

beliefs at a given time be consistent with one another. It does not require 

that a current probability cohere with previous priors and likelihoods 

(Shafer, 1981; Horwich, 1982). In my view, the appropriate use of an in- 

ference framework is to organize our knowledge as it exists at a particular 

time, not to try to control its process of growth and change (Shafer, 1981). 

The focus of Shafer's system is the combination of available evidence, rather 

than updating beliefs . 

Barbara: As you know, Shawn, Bayes' rule can also be used in an analysis 

after the evidence is obtained. 

Shawn: Yes, but that brings me to my third major complaint: Bayesian methods 

are not a natural or efficient way to express our knowledge. In this context 

they are inefficient because we .have to assess probabilities for E4, given the 

various hypotheses, even though we already know E4 has occurred. They are un- 

natural because we are asked to imagine a counterfactual situation in which we 

imagine we do not know that E4 occurred. Now what are we supposed to know in 
that situation? Certainly not exactly what we really knew before E4 occurred. 

We may have acquired considerable relevant knowledge since then which can, and 

should, affect our evaluation of E4. Some of this knowledge may even have 

been obtained on account of E4. Yet we are asked to imagine this knowledge 

without knowing that E4 did occur. By contrast, in the assessment of 

Shaferian support functions, the question is about an actual rather than a 

counterfactual state of affairs: what is the probability that the evidence in 

fact means H? 

Barbara: People do seem able to provide Bayesian likelihood assessments, 

though I grant that it's easier with a recurring rather than with a unique 

problem. In any case, as we discussed earlier, there are other forms of 

Bayesian analyses than the use of Bayes' rule. For example, the probability 

of an event H can be broken down into its probability given some other event 



C, its probability given not-C, and the probability of C. Perhaps analyses 

such as this are more natural when we are organizing our beliefs at a given 

time rather than updating them. 

Shawn: I entirely agree, Barbara. Let me point out a major advantage of 

Shafer' s theory in this regard, however. In any Bayesian analysis other than 

the use of Bayes' rule, each assessment is made (in theory, at least) with all 

the evidence; we are supposed to make use of all of our knowledge in all 

judgments. The problem is broken down into simpler questions, but the 

evidence itself is not decomposed. 

Phyllis: But we agreed earlier that real decision makers are seldom able to 

keep all the evidence in mind at once. 

. . 

Shawn: That's right. In contrast, Shafer's system permits us to focus on 

parts of the evidence separately. Each support function describes the impact 

of a distinct collection of evidence. Dempster's rule of combination can then 

be used to pool the different support functions into a new support function 

reflecting all the evidence. Shafer's system provides a way of thinking about 

different parts of the data separately, like Bayes' rule, but does so 

naturally. 

Sy:  Shawn, you have argued that Shafer's system supports "intuitively 

appealingn arguments and that it is a "natural way" of decomposing evidence. 

In terms of Shafer's concept of a "constructive" theory, perhaps you would 

claim that these considerations add up to a normative argument in favor of 

Shafer's system. But it all seems a bit flimsy to me compared to the rigorous 

axiomatic derivations associated with the Bayesian system. For example, if I 

follow Dempster's rule rather than Bayes', wouldn't I be subject to a Dutch 

book? 

Shawn: In fact, you won't be. There is a natural interpretation of Be1 and 

of P1 in terms of betting which will lead to "rational" behavior even in the 

Bayesian sense. An assumption implicit in de Finetti's Dutch book argument is 

that if 70 cents is the most money you would be willing to pay for a gamble 

that pays 1 dollar if H is true, then you would be willing to pay 100-70 = 30 

cents for a gamble on not-H. If this assumption is rejected, you can avoid a 

Dutch book without being a strict Bayesian (e.g., Smith, 1961). In terms of 



Shafer's theory, we use Bel(H) to determine the stakes at which we would bet 

on H, and we use 1-Pl(H) - Bel(not-H) to determine our willingness to bet on 
not-H. To the extent that our knowledge is incomplete (i.e., Pl(H) > Bel(H)), 
we withhold willingness to bet. 

Let me stress though that I don't think avoidance of a Dutch book is the prin- 

ciple rationale for an inference theory. In fact, the structure of Shafer's 

theory is richer than what would be necessary simply to support a theory of 

betting. The main goal is to illuminate the evidence by comparing it to well- 

understood paradigm cases, or canonical examples. For Shafer's theory, the 

canonical examples concern cases where the meaning of the evidence is gen 

erated by some chance process, like a lottery. The real justification of 

Dempster's rule, therefore, is that it is the appropriate rule for this set of 

examples. 

3.9 Inductive Probabilities 

Colette: L.J. Cohen (1977) has proposed a theory of inference which is 

simpler than other views both mathematically and in its assessment 

requirements. It seems to me, moreover, that this theory gets closer to what 

we really mean by completeness of evidence. Cohen, who is at the University 

of Oxford in England, suggests a framework based on the factors that could, in 

principle, prevent a conclusion's being established by your evidence. The 

"inductive probability" of a hypothesis is defined as the number of such fac- 

tors which have been tested and ruled out. 

Phyllis: It sounds like Cohen is quite close to Shafer. Aren't they both in- 

terested in the extent to which an argument can prove the hypothesis, in con- 

trast to the Bayesian's interest in the truth of the conclusion?. 

Colette: That's right. But there's an important difference. Cohen is not 

interested in the probabilitv that the evidence means, or proves, the 

hypothesis. His central claim is that evidence for a proposition is incom- 

plete as a function of the number of different kinds of ways the analysis 

could turn out to be invalid. 

&: It sounds like that might simplify the assessment task quite a bit. 



Colette: Precisely. We could assess our confidence in a hypothesis simply by 

countinq th? number of potentially invalidating factors that have been ruled 

out. From Cohen's point of view, Bayesians and Shaferians seem to have things 

backwards. They give abstract formalisms for manipulating probabilities or 

degrees of support, but they tell us very little about where the numbers 

should come from. It doesn't help to hear that we should not adopt a conclu- 

sion "becausen degree of support is too low or "becausen we won't bet on it at 

sufficiently low odds. What we need to know is &y: what reasons are there 

to withhold acceptance? So Cohen suggests that we look directly at the tests 

that a hypothesis would have to pass before we believed it. We should with- 

hold acceptance of a hypothesis when there is potential evidence we haven't 

looked into yet which could disconfirm it. 

Sy: But if both Cohen and Shafer are concerned with provability of a 

hypothesis by evidence, I'd expect some relationship between the two theories. 

Shawn: Indeed there is, Sy. Cohen's system is a special case of Shafer1s-- 

just like Bayesian theory and possibility theory, I might add. It happens to 

be the same special case associated with Zadeh's theory: consonance of 

evidence. The idea is that new evidence progressively eliminates 

possibilities, rendering our beliefs more and more precise; but new evidence 

does not lend support to conflictins hypotheses. 

Colette: In fact, Sharon, two critical advantages of Cohen's theory arise 

from this restriction: its simplified metric, based on counting, and its in 

corporation of the notion of accepting a hypothesis. We'll talk about that 

later. 

Art: So how does Cohen's theory work? 

Colette: Why don't we take our evaluation of E4 in Art's problem as an 

example. The first question we want to consider is whether L. Melfata is 

telling the truth. 

A s :  So the hypothesis we're examining is that L. Melfata really heard the 

technologist boasting? 



Colette: Right. Let's call that hypothesis B. But we now have to distin- 

guish two senses of "hypothesisn and "evidencen in L.J. Cohen. In one sense, 

our hypothesis is the specific event, B, as you suggested, i.e., Melfata heard 

the technologist; and the evidence for B is Melfata's testimony together with 

our other information about Melfata, as summarized in E4. But Cohen believes 

that in reasoning of this sort, there must be a generalization or uniformity 

that justifies, to some degree, the inference from E4 to B. In our example, 

this general hypothesis would concern human truth-telling behavior and would 

lay out pertinent grounds for believing that what someone like Melfata says is 

true. Now suppose we formulate such a generalization, tailored to our present 

example. According to this generalization, anyone with certain traits who 

says something with certain properties in a context with certain 

characteristics, is telling the truth. We fill in the blanks here with the 

information we have about Melfata, about her testimony, and about our overall 

problem. This generalization might say that anyone who has had the oppor- 

tunity to observe what he reports, whose report is internally consistent, and 

whose report is coherent with at least some other evidence, would be telling 

the truth. Now our evidence for (or against) this hypothesis is to be found 

in our accumulated knowledge about when, where, how, and why people tell the 

truth. If this hypothesis were a general hypothesis in a scientific domain, 

the relevant knowledge might even be a series of rigorous experimental tests. 

Sy:  I think I see where this is heading. To the degree that the general 

hypothesis about truth-telling is supported by relevant knowledge, we are jus- 

tified in inferring B from E4. So the support for our generalization about 

truth-telling can be construed as the degree of "provability" of B by E4. The 

generalization in effect establishes the link between our (specific) evidence 

and our (specific) conclusion. 

Colette: Exactly. Cohen introduces two measures corresponding to the two 

types of hypotheses, and they are related just as you described. The first is 

"inductive support": This is the extent to which a general hypothesis has 

passed the tests which could falsify it. The second measure is the "inductive 

probabilityn of a specific conclusion conditional on specific evidence. 

Here's how the connection works. 



Imagine a simple syllogistic argument: 

(1) x is an R; 

(2) All Rs are Qs; 

(3) Therefore, x is a Q. 

This is, of course, an example of "deductive inference." Cohen's notion of 

inductive inference generalizes this to the case where we are uncertain of the 

generalization, all Rs are Qs, hence also uncertain of the conclusion, x is a 

Q. Now let s[(2),K] be the inductive support afforded to ( 2 ) ,  the 

generalization, by our knowledge K. And let PI[(3),(1)] be the inductive 

probability of (3), the conclusion, given (1)--i.e., the probability that x is 

a Q given that x is an R. Then, for any integer i, 

implies that 

Shawn: This is very reminiscent of Shafer's ideas. For him, the direct sup- 

port of the evidence (1) for the conclusion (3) is the probability that (1) 

means or proves (3); in this example, that is just the probability that the 

generalization (2) is true. If (2) is false, the argument from (1) to (3) is 

invalid, and (1) is irrelevant--i.e., it supports ((3),not-(3)). 

Zara: Well, there is definitely a similarity between Shafer and Cohen. Both - 
of them ignore the fact that terms utilized in reasoning (R and Q) are likely 

to be fuzzy rather than crisp. 

Sy:  Good point, Zara. A difference between Shafer and Cohen, though, is in 

how the measures of inductive probability PI or support m are arrived at. 

Colette: That's right. For Shafer, m is assessed by direct judgment, and is 

interpreted numerically as if it were a real probability. For Cohen, as I 

said before, PI is just a count. And he provides a framework in which it can 

be derived. 



Sy:  I remember complaining that Bayesian theory gave us little or no guidance 

in selecting probability values, so I'm curious about what Cohen has to say 

about this. 

Colette: Cohen believes that in every domain where we want to know the truth 

about something, such as a field of science or human behavior, there is a set 

of "relevant variables" associated with the general hypotheses in that domain. 

In a scientific investigation, for example, the relevant variables represent 

potential explanations of a phenomenon that compete with the hypothesis of 

interest. So they are factors which must be experimentally controlled before 

the hypothesis can be accepted. The scientist performs a series of studies in 

which, hopefully, the phenomenon of interest continues to be observed despite 

variations in each of those factors. 

a: So the support for the hypothesis equals the number of tests that are 
successfully performed? 

Colette: Right. Each test eliminates one more way the hypothesis could have 

been wrong. The tests are ordered in terms of the importance of the 

variables. 

a: This may or may not make sense in an experimental science, Colette, but I 
have a real problem seeing its relevance to a field like intelligence 

analysis. It's hardly usual or even possible to test general hypotheses about 

what countries are up to. 

Colette: The main difference, I think, is that we have to draw on our 

informal, implicit experience to determine how each relevant variable affects 

the truth of a hypothesis, rather than on formal experiments. 

Art: Even in the scientific example, though, we had to rely on such ex- . - 
perience to determine what the relevant variables were. 

Colette: That's right. Let's go back now to our evaluation of E4 in Art's 

problem and start with a very simple general hypothesis: Everyone who speaks 

is always telling the truth. Based on our experience, this claim has little 

or no inductive support. The reason is that it fails to pass the pertinent 

tests. Consider all the variables that might falsify it: We distrust a 



speaker if he has a certain demeanor (shifty eyes, etc.), if what he says is 

internally inconsistent, if what he says is independently implausible, if it 

clashes with other evidence, if we have certain facts about his motives or 

character or his opportunity to obtain knowledge of what he reports, and so 

on. Let's suppose we have identified 20 such variables. To get a valid 

generalization, we can qualify the original claim by stipulating specific 

levels on each of the 20 relevant variables which are advantageous to the 

truth of the hypothesis: anyone who speaks with a relaxed demeanor, gives a 

consistent and plausible report, etc., is telling the truth. Based on our 

general knowledge of people, the resulting very lengthy hypothesis would have 

maximal inductive support. 

: So any hypothesis that involved only some of the required qualifications 

would have only partial support? 

Colette: That's right. If advantageous levels on only i of the 20 relevant 

variables are mentioned in the hypothesis, its support is 1/20. For example, 

it's likely that Melfata had an opportunity in her travels to hear the tech- 

nologist boasting; her report is internally consistent; and it coheres with at 

least some of our other evidence. So our generalization which we use to jus- 

tify the inference from Eq to B will include three qualifications that are ad- 

vantageous to its truth. Thus, we might conclude that the inductive probabil- 

ity of B, Melfata's telling the truth, given E4 is 3/20. 

Barbara: It's pretty clear that 3/20 isn't a Bayesian probability! 

Colette: Certainly not. It measures the completeness or weight of evidence 

behind the hypothesis, B, that Melfata is telling the truth. It does so 

simply by counting the number of relevant kinds of evidence that have been 

covered and which are favorable to B. When the inductive probability of a 

hypothesis B is low, it doesn't mean that the inductive probability of not-B 

is high. In fact, the inductive probability of not-B will be zero, since we 

can't have conflicting support. What a low inductive probability does mean is 

that there is potential evidence that has not yet been considered. 

Shawn: It's like Shafer's support function again, in that you can have posi- 

tive support for B and zero support for not-B. B falls short of maximal sup- 

port because some of it goes to (B,not-BI--corresponding, I suppose, to 



Cohen's unconsidered evidence. In both theories, new evidence can increase 

support for B without decreasing support for not-B. I agree with Colette that 

this accords much better with our intuitions about evidential impact than the 

Bayesian approach. 

Art: Something has been puzzling me, Colette. In our discussions of Bayes 

and Shafer, we assessed the impact of E4 directly on H, the hypothesis that 

Malbridgia is building ZAP. Why aren't we doing that in Cohen's case? 

Colette: Well, we could do that if there were a pertinent general hypothesis 

to establish a link between E4 and H. But there are just too many different 

kinds of considerations involved to expect a single generalization here in- 

volving a single domain of knowledge or experience. In Cohen's system, we 

would probably construct a separate analysis for each inference: from E4 to 

the truth of what E4 reported, from the technologist's boasting to the truth 

of what he said, and from that to Malbridgia's building ZAP. 

Barbara: That's exactly why in the Bayesian analysis we talked about breaking 

the assessment down into a hierarchical or cascaded inference, We probably do 

have more confidence in our assessments when we consider the steps in this 

chain separately. But, as Art said, we had the option of assessing E4's im- 

pact on H directly. And the result probably succeeds in capturing a fair 

amount of our relevant knowledge. 

S y :  In Bayesian hierarchical inference, you can compute the probability of 

the ultimate conclusion, H, based on uncertainties in each link of the chain. 

Is there some similar way to combine the results of the separate inferences in 

Cohen's system? 

Colette: There isn't. And the reason brings out an important philosophical 

difference between Cohen and the other views we have considered. For Cohen, 

inference is domain-dependent; each inference process takes place in its own 

closed universe of relevant variables. Cohen's measures of inductive support 

and inductive probability are appropriate for comparisons of hypotheses within 

a domain, but not for comparisons that cross domain boundaries. 

Sy:  So the guidance we get in assessing inductive probabilities comes at a 

steep price. We can't do as much with them once we have them. 



Colette: Well, don't be too hasty. I'm not sure it's so bad to be forced to 

be honest about what we know and don't know. Cohen's theory makes us parti- 

tion the inference process according to natural divisions in our knowledge. 

Zara: But I think it's worth pointing out that, at least from my point of - 
view, this feature of Cohen's system is not essential. We could drop its 

reliance on general hypotheses and the derivation of "inductive probability" 

from "inductive support." We then have a theory of the "necessity" of a 

hypothesis that complements Zadeh's theory'of "possibility." Both have at- 

tractive ordinal, or "counting," properties. 

Shawn: That's because both of them are special cases of Shafer's system, 

where evidence is consonant. 

Colette: But there are some things you can do with inductive probabilities 

that you can't do with Bayesian probabilities or Shaferian belief functions. 

a: Such as? 

Colette: You can draw conclusions, in the ordinary rather than the probabil- 

istic sense of the word. In the hierarchical inference case, if we get suffi- 

cient evidence in favor of a hypothesis at a lower level (e.g., that Melfata 

told the truth), we can accept it. We can then use it as evidence in the in- 

ference at the next higher level, and so on. 

Barbara: Instead of propagating uncertainty through a series of inferences, 

it sounds like you're suppressing it: acting "as if" an uncertain proposition 

is true. That's inviting trouble. 

Art: It seems to me that we do that all the time. But isn't there any way to - 
"accept" conclusions in the Bayesian or Shaferian systems? 

Colette: Not really, Art. You end up with an assignment of probabilities (or 

degrees of support) to hypotheses, but not with a set of "acceptable" 

hypotheses. 



Sy:  Why can't you just decide to accept all the hypotheses whose probability, 

or support, exceeds a certain threshold? 

Colette: Cohen argues that a reasonable criterion of acceptance cannot be 

formulated in terms of these measures. For example, let's say I set a 

threshold x so that if the Bayesian probability of a hypothesis is greater 

than x, I accept it. But now it's possible that I will accept proposition J 

and I will accept proposition K, and yet I won't accept the conjunction J&K. 

The reason, of course, is that the probability of the conjunction is the 

product of the probabilities of its component events, and so (unless one of 

the probabilities is unity) will be less than each of them. So a Bayesian who 

tried to formulate criteria for acceptance would end up not believing some 
very clear logical consequences of other things he believes. And this seems 

both irrational and contrary to what most people would actually do. . 

An even worse problem for both Bayesian and Shaferian theories is that they 

may provide support for conflicting hypotheses, e.g., for J and for not-J. So 

if people did believe the logical consequences of their beliefs, we would have 

support for a contradiction, J&not-J. . 

Barbara: Why bother with acceptance at all? If I know the probabilities I 

assign to every relevant hypothesis, I know all I need to know for a decision: 

I can maximize expected utilities. By ''accepting" hypotheses, you're not only 

suppressing uncertainty; you're increasing the chance of inappropriate action. 

Colette: In fact I think it is the Bayesian who is suppressing uncertainty, 

at least in the sense of incompleteness of evidence. But I see I have to 

clarify what I mean by acceptance; to me, it is primarily a device for revre- 

sentinq degree of uncertainty, not sweeping it under the rug. The uncertainty 

in a hypothesis (even a probabilistic one) is, for me, the risk I would be 

taking if I accepted it: i.e., it is the amount of potential evidence out 

there that I haven't looked at yet. Now it's up to me to decide how much of 

this sort of risk I will take; in other words, how much of the relevant 

evidence I will require before I accept a hypothesis. As we noted earlier, 

Bayesian probabilities do not help me in the least in dealing with this kind 

of uncertainty. Moreover, I believe the Bayesian is wrong in supposing that 

this kind of uncertainty is irrelevant to action. 



Art: I expect there's a positive side of acceptance, too, Colette. I suspect 

it will prove to be very difficult to communicate a complex Bayesian probabil- 

istic analysis, in which every relevant hypothesis is assigned a probability. 

Colette: That's right, Art. By "communicate" I assume you mean more than 

simply providing the inputs for a decision analysis in which we maximize ex- 

pected utility. Action may be rather far down the road, in science and even 

in intelligence analysis. In the meantime, others must be able to understand 

(in some intuitive sense of that word) what the possible accounts of the 

situation are. Discussion in terms of acceptance enables us to present alter- 

native full, cogent models for consideration. Each model will be, as noted 

above in the discussion of conjunction, a logically closed story: i.e., any- 

thing logically implied by the model is also part of the story. Such-a model 

or models, together with some measure of the completeness of their evidential 

support, is--I submit--what the product of an intelligence analysis ought to 

be. 

Phyllis: Shawn said that Cohen's theory fits a special case of Shafer's 

system, where evidence couldn't support conflicting hypotheses. Cohen is 

clearly relying on that feature in his concept of acceptance, where you don't 

want to have support for a contradiction. But I don't see how the possibility 

of conflicting conclusions has been ruled out. 

Colette: In Cohen's system, if the evidence lends positive inductive support 

to conflicting hypotheses J and not-J, it follows that something is wrong with 

the evidence. Support for a contradiction should lead us to reevaluate the 

method by which we arrived at that support. Apparent contradictions prompt us 

to reconsider our understanding of the problem and to generate new hypotheses 

to explain them away. New variables may need to be added, or the ordering of 

the variables may need to be changed. Under the revised list of relevant 

variables, the evidence should become consistent. Cohen (1977) compares this 

process to a "scientific revolution," in which our basic presuppositions and 

methods shift in the face of recalcitrant data. 

Shawn: Well, this looks like wishful thinking to me. Sometimes we simply 

won't be able to resolve the inconsistencies. Perhaps this should worry us, 

but we should still be able to represent all the relevant evidence, even when 



it appears to point in different directions. I'm afraid Cohen's theory puts 

us in a straightjacket. 

Colette: The problem is, how can we use the evidence at all if it's 

inconsistent? We certainly couldn't use it to draw conclusions. 

Art: I guess the problem is that a lot of the real work of inductive 

inference, i.e., establishing and revising the list of variables, is left out- 

side of the theory proper. Cohen's theory doesn't support the assessment 

process as much as I had hoped. 

Phyllis: In that respect, it's no different from the Bayesian theory with its 

reliance on the "artn of problem structuring, or Shafer's notion of construct- 

ing a new probability argument each time we receive new evidence. Perhaps we 

have here an inescapable feature of theories that purport to explain or guide 

inference. 



4.0 THE BRIEFING 

As a result of his conversations with Phyllis, Sy, Barbara, Zara, Shawn, and 

Colette, Art comes well prepared to the briefing. He has mustered all the 

relevant evidence he can find, but has been unable to discover any evidence 

which is conclusive. Nonetheless, with the assistance of his colleagues, he 

is prepared to answer questions about the strength and plausibility of his 

conclusions. 

Art's strategy in the briefing is to begin with a more traditional, qualita- 

tive approach and to introduce concepts or analyses based on the various 

theories of inference when they become appropriate in response to questions or 

comments. 

New participants in this dialogue include several unidentified members of the 

audience, and Cus, the customer for whom the briefing is intended. 

4.1 Verbal Hedginp, Based Upon a Marshallins of Evidence 

Art begins his briefing by stating the two hypotheses suggested by the 

customer's requirements: 

HI: Malbridgia is now building a prototype ZAP system, 

H2: Malbridgia is not building a prototype ZAP system. 

Art acknowledges a prior expectation that Malbridgia is not yet ready to 

develop a prototype ZAP system, and its basis in a recent briefing Art heard 

by a nationally-recognized American scientist. 

Art then summarizes the specific evidence he and his colleagues had obtained. 

His briefing chart looks like this: 



In summarizing the evidence, Art points out that El seems to favor H2 but all 

the rest of the evidence seems to favor H1 to varying degrees. In this -dis- 

cussion Art tells how he considered the credibility of the sources and how, in 

certain instances, such as E4, he was forced to assign relatively small weight 

to the evidence because of doubts about the credibility of the source. In 

addition, Art discusses how each item of evidence is inconclusive or, to some 

degree, consistent with the truth of either hypothesis. Art concludes by 

saying that, in his opinion, the "preponderance of the evidence" seems to 

favor HI over H2. His concluding statement is, "I believe it more likely that 

A is now building a Z system than that A is not." Following this statement, 

Art asks if there are questions; several hands are raised. The first person 

recognized is the person who requested the briefing. 

m: Your conclusion is actually quite tepid and certainly not very specific, 
even though you did inform us about its evidentiary basis. Incidently, we 

thank you for telling us what your initial bias was. I am afraid I must ask 

you to be a bit more specific about how strongly you believe that the evidence 

favors H1 over H2. I asked for this briefing because I must recommend pos- 

sible choices for our own weapon planners. In order to do this, I must have 

some sense of HOW MUCH MORE LIKELY is H1 than H2. All you have told me is 

that H1 Itis more likely" than H2; this is not enough. If HI is just slightly 

more likely than H2, I might recommend one thing; but if H1 is, say, ten times 

more likely, I might recommend another. 

I have a feeling also that by quantifying your reasoning, you will give us a 



better understanding of how you reached your conclusion. You have not really 

told us & you think El is outweighed by the other evidence. 

4.2 A Point Probabilitv Analysis 

Art: I am prepared to respond directly to your question. In fact, I can be 

very specific about how much more likely I believe H1 is than H2. I was not 

more specific in my opening statement because some persons have an aversion to 

the kind of specific numerical assessment that I will now provide for you. My 

next chart will show how I used a well-known probabilistic rule, called 

"Bayes' rule," for revising my opinion about the relative likeliness of H1 and 

H2, based on the evidence I was able to find. I believe this rule is 

appropriate to my task since it allows me to show you how my initial opinion 

about the likeliness of H1 relative to that of H2 changed as a result of in- 

corporating each item of evidence I considered. I ask you to consider my 

second briefing chart: Line 1 of this viewgraph shows the "odds-likelihood 

ratio" form of Bayes' rule. It instructs us to take the product of the prior 

odds of H1 to H2 and the likelihood ratios for each item of evidence in order 

to determine the posterior odds of H1 to H2. 

Prior odds expresses the extent of initial biases or expectations about the 

relative likeliness of the hypotheses before the evidence is evaluated, The 

likelihood ratios for each evidence item show which hypothesis each item 

favors inferentially and by how much. For any evidence item Ei, if the 

likelihood ratio LEi is > 1.0, the item favors H1. If LEi is < 1.0, the 
item favors H2. Thus, the posterior odds of H1 to H2 show the relative 

likeliness of H1 and H2, after the evidence has been incorporated. This is a 

simplified version of Bayes' rule. Proper use of this expression requires 

that consideration be made about whether or not the evidence items are 

independent, conditional upon H1 or upon H2. 



Viewgraph 2.0 
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In l ine  2 of t h i s  viewgraph are the specif ic  values I used i n  my calculations.  

I n i t i a l l y ,  I thought H2 was about 5 times more l ike ly  than HI. This r e f l ec t s  
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the pr ior  b ias  I to ld  you I had. I evaluated the evidence items - . as follows: 
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I thought El more probable assuming H2 than assuming H1, i n  the r a t i o  1 / 2 .  

The other four items I thought a l l  favored H1 over H2 i n  the r a t i o s  shown i n  

l ine  2.  A s  you see, the r e su l t  of my applying Bayes' rule  leads me to  say 

that  it is about 2 . 7  times more l ike ly  tha t  A is building the prototype than 

tha t  A is not.  I can go one s tep far ther  and determine the posterior prob- 

ab i l i ty  of H1 and H2 i n  l i g h t  of my evidence. Line 3 shows how you convert 

posterior odds t o  posterior probability. I f  you ask me how probable H1 is, 

given my evidence, I w i l l  say tha t  t h i s  probabili ty is  0.73. Under the ru les  

of probabili ty i n  which Bayes' rule  is appropriate, I must say tha t  the pos- 

t e r io r  probabili ty of H2, given the evidence, is 0 .27 .  I believe I have given 

you the speci f ic  answer you requested. 

Hmmm. I see several hands i n  the a i r .  My attempt t o  be specif ic  has not 

pleased everyone! 



Membez Audience: I must say that I don't have any idea where you got these 

numbers you call odds, likelihood ratios, etc. I thought probability was sup- 

posed to apply to well-defined sampling operations in which the probability 

of an event is estimated by the number of times the event occurred in the 

sample compared with the size of the sample. What is the sampling operation 

here? Have you collected data from a series of extremely similar cases? I 

doubt it! Your evidence seems to involve rather unique or one-of-a-kind 

events, such as Eg. In addition, your hypothesis H1 is a unique event and 

not subject to a sampling operation of any kind I can think of. Your whole 

approach sounds very subjective to me and I must say that your use of mathe- 

matics seems like an attempt to make respectable a judgmental process that you 

could make come out any way you chose to. 

- .  

Art: You are quite right about one thing: the probabilities, odds, and 

likelihood ratios I used did not arise as a result of any empirical sampling 

operation. Indeed, they are simply measures of the intensity of my beliefs 

about the various propositions at issue. In short, I readily admit that these 

assorted ingredients in line 2 of my viewgraph are subjective judgments. As 

far as your allegation that I used mathematics here to make this respectable, 

I have only this to say. I made admittedly subjective judgments about logi- 

cally necessary components or parts of my inference task. Bayes' rule simply 

shows me how to combine these judgments in a logically consistent manner. As 

it turns out, if I tried to combine them or use them in a different way than 

I, in fact, did, my inconsistency could easily be exploited by anyone who 

knows how to construct a "Dutch book" against me. A "Dutch book" is a com- 

bination of wagers, based upon my incoherently expressed beliefs, which in- 

sures that I will lose regardless of whether H1 or H2 is actually true. I 

simply desire my beliefs and the process of revising these beliefs to be con- 

sistent or coherent. I have honestly expressed the extent of my uncertainties 

here, and I wish to combine these uncertainties in a rational way. 

Member of Audience: I'm certain that you are not simply trying to impress us 

by putting a mathematical or scientific cloak on your subjective judgments. 

I appreciate the fact that you have attempted to combine your uncertainties in 

a consistent manner. I have another reason for being less than impressed with 

your analysis. You did, in fact, answer the first question by giving a 

precise estimate. My difficulty is that your analysis suggests you have far 



more precision in your estimations than any half-way serious person would 

believe you actually possess. For example, in your second viewgraph, on line 

2, you tell us that E2 is exactly 3 times more probable assuming HI than as- 

suming H2. How can you justify such precision; could this value not have been 

5.0, 4.63, or 2.941 How do you know it is precisely 3.01 I must say that 

your analysis assumes an estimative precision which I, for one, do not believe 

you, or anyone else, possesses. 

4.3 A Second-Order Probabilitv Analvsis 

Art: The numbers I estimated and showed you in my last viewgraph are es- 

timates of my prior uncertainty and of various other uncertainties associated 

with the evidence I have. Your essential question seems to be: how uncertain 

am I about my uncertainty? The general issue of estimative precision is one 

that I did give some thought to. My next viewgraph is designed to give-you an 

estimate of what I will call my "second-order" uncertainty. 



Viewgraph 3.0 
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Here I show you intervals which I am 95% certain will contain my "truen prior 

odds and likelihood ratios. The largest values I call my "upper 95% certainty 

bounds," and the smallest values I call my "lower 95% certainty bounds." For 

example, someone asked about E2; I would estimate a 95% chance that the 

likelihood ratio for this datum is no larger than 5.2/1 favoring HI, and no 

lower than 1.7/1 favoring HI. By the way, the middle column in this viewgraph 

contains the "pointn estimates I gave you in my second viewgraph. The bottom 

two rows show the result of applying the probability calculus, together with 

a few assumptions, to the 95% certainty intervals. The next to last row gives 

a 95% interval for the posterior odds of H1 to H2. My upper 95% certainty 

bound corresponds to posterior odds of H1 to H2 of 10.8/1; my lower 95% cer- 

tainty bound corresponds to posterior odds of HI to H2 of 1/1.5 (favoring H2). 
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Member of Audience: I gather that this interval aggregates together all the 

various uncertainties in your analysis? 

A 



Art: That's right. The imprecision in my assessment of prior odds and 

likelihoods "propagatesn into the conclusion. This propagation can be com- 

puted by means of a formula in probability theory that expresses the variance 

of a function of random variables in terms of the variances of the random 

variables. The last row, by the way, shows what the corresponding posterior 

probabilities of H1 are for my upper 95% and lower 95% bounds. This gives you 

some idea of how imprecise I believe my estimate is. Stated another way, this 

is a view of how uncertain I am about my uncertainty. 

Member of Audience: I am very curious about why your "point" estimates when 

aggregated do not produce a posterior calculation which falls at the midpoint 

of the range of posterior odds; 2.7 is not halfway between 10.8 and 1/1.5. 

Art: Take any one of my estimate intervals, say the one for Eg; here my upper 

estimate is 9.8 and my lower estimate is 1.6, the "point" estimate I gave you 

was 4. I do not wish you to assume that my uncertainty is spread uniformly 

across this interval. If it were, I would have reported the midpoint between 

9.8 and 1.6, which is 5.7. For each estimate I actually determined a dis- 

tribution which shows how my uncertainty is spread across the interval be- 

tween my lower and upper estimates. To simplify this task, I assumed that 

these distributions were normal on a logarithmic scale. Thus, for example, my 

\ 
uncertainty about LE follows a log-normal distribution, so that on a 

\ logarithmic scale, the graph of my uncertainty in LE would look like this: 

Member of Audience: So this is one of the "assumptions" you said you needed 

in arriving at your result? 



Art: That's right. It seems appropriate to use log-normal distributions when 

my uncertainty pertains to ratios. For example, it implies that I am equally 

confident that the true value of LE falls in the interval between 4/1 and 

2/1, as I am that it falls in the interval between 8/1 and 4/1. In each case, 

I am off by a factor of 2. So, in terms of ratios, or logarithms, these 

second-order distributions are symmetrical. But on a linear scale, they are 

asymmetrical or "skewed." 

Member of Audience: Now hold on. This doesn't seem right at all. You have 

been trying to quantify your belief concerning H1 and H2, based on the avail- 

able evidence. The problem that led to these second-order probabilities was 

that you were implying too much precision in your assessments. But now, you 

say that you are 95% certain that your belief lies in the stated range. This 

sort of "second-order belief" seems to require even more precision than the 

first-order assessments. If I could say things like I'm 95% certain about 

ranges of my own belief, I think I could be more precise about my belief. But 

I can't. What you meant by giving ranges, I think, was that you couldn't in- 

terpret the evidence well enough to do better than say your belief was within 

a particular interval. You certainly couldn't say your uncertainty about your 

uncertainty was log-normally distributed! You couldn't even say that about 

your uncertainty. I think you're assuming too much in this exercise about the 

structure of your beliefs. 

Member of Audience: I guess if Art were unsure about the log-normality of his 

second-order probabilities, he could just introduce third-order probabilities! 

That does seem like madness! 

4.4 A Fuzzv Probabilitv Analvsis 

Art: Well, let me confess that I think there is some justice in those 

remarks. In fact, I anticipated them. Although I think it can be illuminat- 

ing and even necessary in building a model to make assumptions like log- 

normality, it can also be useful to see how far you can get without them. We 

don't need to stick with the idea that everything we don't know for certain 

should be modeled with probability theory. Some ideas by Zadeh may help us 

out here. Instead of assessing probabilities for our first-order 

probabilities, we can "fuzzify" them, by simply stating what values are 

possible. I happen to have a viewgraph where I do just that. 
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What this means is that LE , for example, is "about 1/2," but is possibly as 
high as 4/5 and possibly as low as 1/4. The last two lines give the range of 

possible values for the posterior odds and posterior probabilities. The upper 

estimate for the posterior odds, 100/1, is just the result of applying Bayes' 

rule to the upper estimates for the prior odds and likelihoods. This makes 

sense, since if the largest possible values for all the priors and likelihoods 

happened to be true, the value of the posterior odds would be 100/1; so that 

is the largest possible value of the posterior odds. The same is true, of 

course, for the lowest possible value of the posterior odds; to compute it, we 

just multiply the lowest possible values of the priors and likelihoods. 

Member of Audience: Well, that's certainly a simpler computation than the 

second-order probability analysis. But am I right in saying that you actually 

think the probability of HI, given the evidence, is somewhere between 0.99 and 

0.08? If so, I don't see what you have told us. I could have made such a 

judgment without ever considering any evidence at all. 

&: Oh, we can do a lot more than that. For Zadeh, possibility comes in 

degrees; so far, we have talked as though it were all or none. For each of 

the priors and likelihoods, I have assessed a possibility distribution. For 

example, the distribution for LE shows that values near 4/1 are more possible 

than those farther away; values less than 1.5/1 or greater than 10/1 are not 

possible at all. These graphs look a little like the probability distribution 

I showed you: 

Now we can give possibility intervals for LE just as we gave probability 

intervals. These intervals are called "level sets," since they contain all 



values whose possibility exceeds some chosen level. For example, we already 

know that any value whose possibility is greater than zero falls between 100/1 

and 1/11.6. Suppose we want to know what interval includes all values whose 

possibility is at least .5. To get the upper bound on this interval, we first 

take the upper values of the priors and likelihoods that have exactly .5 

possibility; for example, from the dotted lines in the chart we see that the 

possibility that LE is 6/1 is .5. We then multiply these upper values 

together. Similarly, for the lower 50% possibility bound, we take the lower 

values that have .5 possibility and multiply them. 

Member of Audience: I'm sure that this would produce narrower intervals than 

we got in viewgraph 4.0. But I guess you have to make some assumptions, about 

the shape of the possibility distribution, just as you did in the probability 

analysis, to get them. 

Art: That's right. Though some would argue that assessments of possibility 

are easier; and certainly the computation is simpler. 

Member of Audience: I think there may be something more fundamentally wrong 

with both second-order probabilities and fuzzy probabilities. Your final 

assessment actually shows more uncertainty than you began with. That is, in 

the fuzzy probability analysis the 'range of possible posterior odds is much 

larger than the range of possible prior odds. The same is true in the 

Bayesian second-order analysis, where the 95% certainty interval for the pos- 

terior odds is larger than for the prior odds. Now, we try to find relevant 

evidence in order to reduce our uncertainty, not to increase it. You have 

shown us your analysis based on five pieces of evidence. If you are saying 

that your evidence has value to us, it seems pretty clear that neither second- 

order probabilities nor possibilities have correctly captured that value. 

Cus: I have a concern that may be related. I am going to assume that your - 
point estimates, which are what I actually asked for, simply represent your 

best guesses. Your conclusion is that the probability that Malbridgia is 

building a ZAP system, based on your evidence, is about 0.73. This seems to 

be a fairly strong probability based, as it is, on just five items of 

evidence. But you have said nothing about any other evidence that may bear 

upon this problem which you have not been able to obtain or consider. How 

does this enter into your assessment? 



4.5 A Belief Friction Analvsis 

&&: These are important and valid points. They help us realize that what we 

have been assessing with our various intervals is something akin to 

"measurement error" or imprecision in my assessment of each prior or 

likelihood. Imprecision is larger in the conclusion than in the premises 

simply because each premise adds in some new imprecision of its own to the 

conclusion. But we have not yet focused on the completeness or weight of our 

evidence, taken as a whole. In that case, presumably, the more bits of 

evidence, the more certain we are. 

You will not be surprised to hear that I have anticipated this problem as 

well. Here I think some ideas of Glenn Shafer can help us. The next 

viewgraph shows how a Shaferian analysis might look. For each item of 

evidence I have assessed what Shafer calls a "simple support function" - i-e., 
a function that assigns support to only a single elementary hypothesis, H1 or 

H2, but not to each. This captures our feeling that each bit of evidence adds 

credence to one or the other of our hypotheses, but not to both 

simultaneously., Of course, these simple support functions also assign some 

support to (H1,H2), reflecting any doubts we might have about the validity of 

the evidence. 



The last few lines show the aggregate support function and belief function ob- 

tained when we combine these bits of evidence by Dempster's rule. The easiest 

way to do this is in two steps. First, I combined separately the concurring 

evidence (EO,E1) in support of H2, and the concurring evidence {E2,E3,E4,E5) 

in support of H1. This gave me two conflicting support functions--with sup- 

port of .955 for H1 based on [E2,E3,E4,E5) and support of .85 for H2 based on 

(EO,E1). So the second step was to combine these two functions, normalizing 

to eliminate the impossible situation in which both functions were valid. 

The important thing to notice is that as we add evidence, the range of permis- 

sable belief narrows. The uncommitted support at the end of the analysis is 

.04, which is far less than the uncommitted support based on any of the 

individual items of evidence. Thus, the range of belief in H1 consistent 



with all this evidence is between .76 and .80, and the range for belief in H2 

is between . 2  and .24. These bounds are much narrower than the ones we got 

from second-order Bayesian probabilities or fuzzy probabilities. The 

conclusion, I think, is that these different models have touched on different 

concepts. Here we have a measure of the completeness or weight of our total 

collection of evidence, rather than of the "measurement errorn in our assess- 

ment of a probability. 

Member of Audience: Perhaps then each of these analytical approaches has some 

role to play in increasing our understanding. 

Art: Perhaps so. - 





REFERENCES 

Bellman, R.E., and Giertz, M. On the analytic formalism of the theory of 
fuzzy sets. Inform. a., Vol. 5, 1973, 149-156. 

Brown, R.V., and Lindley, D.V. Improving judgment by reconciling incoherence. 
Theorv and Decision, 1982, 14, 113-132. 

Cohen, L.J. probable and the provable. Oxford, England: Clarendon 
Press, 1977. 

Cohen, L.J. Application conditions for eliminative induction. In Cohen, 
L.J., and Hesse, M. (Eds.), A~plications of inductive logic. Oxford, England: 
Clarendon Press, 1980. 

de Finetti, B. Foresight: Its logical laws, its subjective sources. English 
translation in H.E. Kyburg, Jr., and H.E. Smokler (Eds.), Studies in subiec- 
tive probabilitv. New York: Wiley, 1964. (Original: 1937). - 
Dubois, D., and Prade, H. Evidence measures based on fuzzy information, un- 
dated manuscript. 

Freeling, A.N.S. Fuzzy sets and decision analysis. IEEE Transactions on 
Svstems, Man, and Cvbernetics, 1980, SMC-lO(7). 

Freeling, A.N.S. Possibilities versus fuzzy probabilities--Two alternative 
decision aids. In H.-J. Zimmerman, and L. A. Zadeh (Eds.), Decision analysis 
through fuzzv sets. TIMS/ORSA Studies in Management Science, 1983. 

Fung, L.W., and Fu, K.S. An axiomatic approach to rational decision-making in 
a fuzzy environment. In L. Zadeh et al., (Eds.), Fuzzy sets and their av- 
plication to cognitive & decision processes. New York: Academic, 1975. 

Horwich, P. Probability and evidence. Cambridge, England: Cambridge Univer- 
sity Press, 1982. 

Goldsmith, R.W. Evaluating evidence in criminal cases by means of the eviden- 
tiary value model. In Gardenfors, P., Hansson, B., and Sahlin, N.-E. (Eds.), 
Evidentiarv value: Philosophical, iudicial & psvcholo~ical aspects of a 
theorv. Lund, Sweden: CWK Gleerup, 1983. 

Kahneman, D., Slovic, P., and Tversky, A. (Eds.): Judpent under uncertaintv: 
Heuristics biases. New York: Cambridge University Press, 1982. 

Keeney, R.L., and Raiffa, H. Decisions with multiple oblectives: Preferences 
and value tradeoffs. New York: Wiley, 1976. -- 

Lindley, D.V., Tversky, A., and Brown, R.V. On the reconciliation of prob- 
ability assessments. Journal of the Royal Statistical Societv, Series A, 
1979, 142(2) , 146-180. 

Ramsey, F.P. Truth and probability. In H.E. Kyburg and H.E. Smokler (Eds.), 
Studies in subiective probabilitv. New York: Wiley, 1964. (Original: 
1926). 

Savage, L.J. foundations of statistics. New York: Wiley, 1954. 



Schum, D.A. Current developments in research on cascaded inference.processes. 
In Wallsten, T.S. (Ed.), Co~nitive processes in choice decision behavior. 
Hillsdale, NJ: Lawrence Erlbaum Assoc., 1980, 179-210. 

Schum, D.A. Sorting out the effects of witness sensitivity and response 
criterion placement upon the inferential value of testimonial evidence. Qp 
ganizational Behavior and Human Performance, 1981, 2. 

Schum, D.A., and Martin, A.W. Probabilistic opinion revision on the basis of 
evidence at trial: & Baconian or a Pascalian process? (Report 80-02). 
Houston, TX: Rice University, 1980. 

Shafer, G. mathematical theory of evidence. Princeton, NJ: Princeton 
University Press, 1976. 

Shafer, G. Constructive probability. Synthese, 1981, 48, 1-60. 

Shafer, G. Lindley's paradox. Journal of the American Statistical 
Association, June 1983, =(378), 325-334. 

Shafer, G., and Tversky, A. Weighing evidence: The design and comvarison of 
probabilitv thought - experiments. Stanford, CA: Stanford University, June 
1983. 

Shimony, A. Scientific inference. In R.G. Colodny (Ed.), nature & func- 
tion of scientific theories. University of Pittsburgh, 1970. -- 

Smith, C.A.B. Consistency in statistical inference and decision (with 
discussion). Journal of the Royal Statistical Society, Series g ,  1961, 23, 1- 
25. 

Spiegelhalter, D. J. A statistical view of uncertaintv in exvert svstems. 
MRC Biostatistics Unit, MRC Centre, Hills Road Cambridge, 1985. 

Tani, S.N. model in^ & decision analvsis (EES-DA-75-3). Stanford, CA: 
'Stanford University, Department of Engineering-Economic Systems, June 1975. 

Watson, S.R., Brown, R.V., and Lindley, D.V. Three papers on the valuation of 
decision analysis (Technical Report 77-2). McLean, VA: Decisions and 
Designs, Inc., May 1977. 

Watson, S.R., Weiss, J.J., and Donnell, M.L. Fuzzy decision analysis. IEEE 
Transactions Svstems, Man, and Cvbernetics, 1979, SMC-9, 1-9. 

Zadeh, L.A. Fuzzy sets. Information & Control, 1965, 8 ,  338-353. 

Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets 
and Svstems, 1978, 1, 3-28. - 

Zadeh, L.A. Fuzzy probabilities and their role in decision analysis. IFAC 
Theory &Application of Digital Control, 1982, 15-21. 

Zadeh, L.A. The role of fuzzy logic in the management of uncertainty in ex- 
pert systems. Fuzzy Sets and Svstems, 1983(a), 11, 199-227. 

Zadeh, L.A. A computational approach to fuzzy quantifiers in natural 
languages. Com~ & Maths. with Avpls., 1983(b), 9(1), 149-184. 




