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1.0 INTRODUCTION 

,%.ecent years expert systems have been designed to replicate human reasoning in 

increasing sphere of inference and decision-making tasks (Hayes-Roth et al., 

83; Buchanan and Duda, 1982). Expert systems have now been developed for medi- 

.a1 diagnosis and treatment (e.g., Shortliffe, 1976), geological exploration 

r- (e.g., Duda et al., 1979), chemical analysis (Lindsay et al., 1980), military 

planning (Engelman et al., 1979), and other areas of specialized human skill. 

In other areas, however, such as image analysis, the infiltration of expert system 

techniques has been relatively slow. One reason, at least, is that predominantly 

mathematical or statistical methods appear to be appropriate for such tasks as 

filtering or pattern matching against pixel data. The result has been a failure 

thus far to integrate satisfactorily such "bottom up" methods with requirements 

that promise to be more adequately met by expert system technology: e.g., the in- 

corporation of intelligence information or explicit general knowledge in the 

process of image analysis and image understanding, and the resolution of conflicts 

between alternative sources of evidence or analysis (cf., Rosenfeld, 1984). 

The objective of our research has been to address this problem on both a theoreti- 

cal and a practical plane. Our theoretical goals were: 

to explore the feasibility of developing improved mechanisms for ex- 
pert system inference, and 

to provide a better general understanding of inference mechanisms for 
expert system applications. 

In our subsequent effort, we have (a) developed a heuristic framework for the 

evaluation, selection, and/or design of inference methods in expert systems; (b) 

critically scrutinized, within that framework, a variety of alternative schemes 

for handling uncertainty--those associated with Bayes, Shafer, Zadeh, and non- 

monotonic logic; and (c) identified shortcomings and recommended modifications or 

extensions of those technologies. A major thrust of this part of our work is that 

requirements exist within expert system technology itself which will (or should) 



drive it toward a closer accommodation with mathematical or statistical methods; 

and, conversely, that the intelligent and flexible automation of probablistic 

methods will require techniques of qualitative reasoning traditionally associated 

with artificial intelligence. This work is reported in Section 2.0 below. 

- 

On the practical side, we have developed the high-level conceptual design of a new 

inference mechanism, incorporating and extending many of the findings of our 

theoretical work. This system, the Non-Monotonic Probabilist (NMP), utilizes 

Shaferian belief functions, fuzzy measures, and non-monotonic reasoning--where 

different concepts of uncertainty call for them. Probabilistic inference is em- 

bedded within a framework of qualitative reasoning which is in turn controlled by 

measures of the credibility of inferential argument. "Fuzzifying" these measures, 

in turn, ensures a simple but graded process of high-level control. Our work on 

this system has established the feasibility of a flexible and "intelligent" 

deployment of probabilistic methods in image understanding. This work is reported 

in Section 3.0 below. 

To bridge the gap between theory and practice, we have developed and 

compared specific applications of Bayesian, Shaferian, and fuzzy methods to three 

representative problems in the field of image analysis: the incorporation of 

general knowledge or intelligence information, filtering and template matching, 

and "probabilistic relaxation." A description of this work is contained in Appen- 

dix A. 

Finally, Section 4.0 summarizes the main line of argument leading to the develop- 

ment of NMP and describes the prospective application of a system like NMP. 



2.0. INFERENCE METHODS FOR EXPERT SYSTEMS 

In typical expert systems applications, the highest available standard of reason- 

ing in the relevant area of knowledge is expert practice itself, rather than a 

formal theory, algorithm, or search technique. As a result, much of the effort in 

expert systems development consists in the extraction of relevant knowledge from 

human experts for translation into machine-usable form. A second consequence, 

whose importance is only now being fully understood, is the need to represent 

uncertainty, to implement processes of inexact reasoning, and to incorporate some 

form of "metaknowledge": i.e., knowledge about the strengths and weaknesses of 

the system's own knowledge base. 

A variety of alternative frameworks now exist for representing and reasoning about 

uncertainty. Among the most prominent are Bayesian probability theory, belief 

functions (Shafer, 1976), and fuzzy set or possibility theory (Zadeh, 1965, 1972). 
i 

There is also considerable interest in non-numerical methods of inexact reasoning, 

such as non-monotonic logic (Doyle, 1979). Uncertainty calculi of these types can 

contribute to a variety of expert system functions; for example: (1) to combine 

different items of evidence or lines or reasoning in drawing a conclusion; (2) to 

control the allocation of computational resources among different lines of reason- 

ing or knowledge resources; (3) to generate requests for additional data or judg- 

ments from users; (4) to halt computations when acceptable results are obtained; 

and (5) to explain to users how a conclusion was arrived at and what its 

credibility is. 

The selection of a framework for accomplishing these functions will also have an 

impact on knowledge acquisition. The choice of such a framework will help struc- 

ture the dialogue between knowledge engineer and domain expert, determining what 

questions are asked and how they are answered (cf., Shafer and Tversky, 1983). 

This process is seldom (if ever) the literal "transfer" of information, or rules, 

from expert to system. Much of the relevant knowledge is (as yet) unverbalized 

and only implicit in expert action and intuition. The value of frameworks for 

representing uncertainty must be assessed in part, therefore, by the way they in- 



fluence the quality and quantity of the information an expert provides (Cohen, 

Mavor, and Kidd, 1984). 

Unfortunately, there has as yet been little systematic research on the impact of 

alternative inference frameworks either on knowledge acquisition or on expert sys- 

tem functioning. In part, this can be attributed to the pragmatic urgency of get- 

ting systems up and running. In part, it may be due to a bias against numerical 

methods in the artificial intelligence tradition (as noted by Shafer, 1984a). 

Finally, however, it may be, due to a set of real methodological obstacles. For 

example : 

(1) Alternative frameworks for uncertainty differ in the degree to which ap- 

propriate normative justifications have been achieved; they differ also .in the 

demands they impose on the expert for assessments, in the computational burden 

they impose on the system, and in the ease with which they represent distinctions 

and yield conclusions which are natural to a particular expert or user. 

Evaluation, in short, must be multidimensional. But it is by no means clear how 

eradeoffs among these competing considerations should be resolved. 

(2) The theories themselves are in a process of evolution. To some extent, the 

success of an application depends on the ingenuity of the developer as much as on 

the intrinsic worth or potential of the theory. 

(3) Alternative frameworks often appear to differ in the concept, or kind, of un- 

certainty which they attempt to capture (e.g., chance, imprecision, or complete- 

ness of evidence). On the other hand, defenders of each theory tend to regard the 

other theories, in some instances, as special cases of their own, and in other in- 

stances as invalid. Thus, it is seldom clear whether these theories are best 

regarded as competitors or as alternative tools with different, but complementary 

functions. 

These three methodological challenges will be a recurring focus of Section 2.0. 

In Section 2.1 we amplify the notion that different concepts of uncertainty may be 

involved in expert reasoning, and in Section 2.2 we lay out a provisional multi- 



dimensional framework for evaluating alternative theories of inference and pin- 

pointing areas in need of improvement. All this is by way of prelude to an ex- 
rt- 

, amination of alternative systems of uncertainty in Sections 2.3 through 2.7. 

t 2.1 Concepts of Uncertainty 

T 

How many different "kinds" of uncertainty or inexactness are there? The answer 

will depend on what theory (or theories) of uncertainty we ultimately choose to 

accept. Such a theory might derive a variety of apparently distinct notions from 

a single underlying principle. Nonetheless, on a more superficial plane, humans 

do seem to possess separate bodies of intuition, and abilities to make relatively 

independent judgments, concerning different sorts of uncertainty. These appear, 

moreover, to have different implications and roles in expert system design. 

Briefly delineating them will clarify what it is a theory of uncertainty could or 

should explain. We will distinguish among three notions: 

chance or uncertainty about the facts 

imcompleteness or quality of evidence 

imprecision or vagueness 

2.1.1 Chance vs. imprecision. The imprecision with which facts are specified is 

not the same as uncertainty about what the facts are. For example, the data 

provided by a digitized aerial photograph, consisting of a set of numbers repre- 

senting gray levels at each pixel, are a precise set of data, but noise in the im- 

aging process may make us uncertain what the '"true" levels ought to be. Data such 

as "there is a long straight feature in the upper left of the photo" are 

imprecise, but entail no uncertainty. Similarly, an inference rule such as "if 

there is a rectangular object, then it is either a building or a field" is both an 

imprecise and an uncertain rule. 

2.1.2 Chance vs. incompleteness. Uncertainty about the facts is. not the same as 

incompleteness of evidence. Consider the rule: 

R1. If x is rectangular, it is a building with probability . 9  or a field 
with probability .l. 



This statement produces a high degree of certainty that x is a building, but it 

represents only a small portion of the obtainable evidence (viz., shape) which 

might bear on that question'. Consider, on the other hand, the following rule: 

R2. If x is rectangular and far from a road, it is a building with 
probability .5 or a field with probability .5. 

This statement covers more of the available evidence (i.e., shape and distance 

from a road), but yields a lower degree of certainty about the facts at issue. 

2.1.3 Imprecision vs. incom~leteness. Finally, imprecision and incompleteness of 
evidence are distinct. In the example above, R1 was imprecise, since x could be 

rectangular (and also perhaps a field or a building) to varying degrees. What if 

we obtain all possible data relevant to classifying x as a rectangle (i.e., a new 

set of very exact measurements of x's angles and sides)? Will we finally know for 

sure that x is or is not a rectangle? No (unless x turns out to be a perfect 

rectangle), since the imprecision in this example was the result of our ability to 

stretch the use of the term "rectangle", i.e., our willingness to tolerate a 

degree of deviation from perfection, not our lack of knowledge. Judgments of 

imprecision, in this sense, are more akin to judgments of similarity (e.g., of x 

to the "typical" rectangular object) than to judgments of the quality of evidence. 

We conclude that there is at least a plausible case for distinguishing three no- 

tions of uncertainty. The remaining questions (to which we turn in later 

sections) are: (1) To what extent and in what way are each of these notions 

relevant to expert system design? (2) Can any of these concepts be successfully 

or naturally reduced to any of the others? (3) How successfully is each notion 

captured by current theories of uncertainty? 

2.2 A Framework for Evaluating Theories of Uncertaintv 

2.2.1 g framework? Our discussion of strengths and weaknesses of alternative 

theories will largely be structured within the framework shown in Figures 2-1 and 

2-2. The purposes of the framework are heuristic: 
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to clarify our understanding of the features involved in such an 
evaluation, their relationships, and the tradeoffs that must be 
resolved in the actual design of a system; 

to suggest directions for the modification of current methods, the 
development of new methods, or the synthesis of current methods, that 
remedy specific shortcomings while retaining existing advantages; and 

a to serve (perhaps) as the eventual basis of a knowledge engineering 
tool for the design of inference methods in specific applications. 

2.2.2 Comvonents of evaluation. As shown in Figure 2-1, evaluative criteria fall 

under two main headings: validity and feasibility (corresponding roughly to 

benefits and costs). Under each of these are two subcategories which include fac- 

tors relating to representation and reasoning, respectively. Thus, feas-ibility 

breaks down into the quantity of inputs required by the representation of uncer- 

tainty and the computational tractability of the reasoning process. Validity 

breaks down into the validity of the semantic representation and the validity of 

the process of inference or reasoning. "Concept of uncertainty" is an important 

conditioning parameter; i.e., the performance of a given theory of uncertainty on 

the various criteria included under validity will depend on the type of uncer- 

tainty which is appropriate to the application at hand. 

Under validity, inference and semantics are further broken down into sets of more 

specific criteria, as shown in Figure 2-2. Each of these sets is a mix of formal 

and informal factors, i.e., criteria which seem purely mathematical or behavioral, 

on the one hand, and those which have a more cognitive or pragmatic aspect, on the 

other. Thus, under semantics, we indicate the desirability of an explicit be- 

havioral specification for the required inputs. For example, if I assign a4rob- 

ability of .9 that x is a building, then according to Bayesian theory, I would be 

indifferent between a bet whose outcome depended on x's being a building and a bet 

on drawing a red ball from an urn containing 90 red and 10 black balls. As we 

shall see later in this section, alternative views of uncertainty have not had as 

much success in providing behavioral specifications for their inputs as has 

Bayesian probability theory. On the other hand, we also indicate under semantics 

the desirability that inputs take a form that is, in some sense, natural for the 



expert to provide. The unnaturalness of Bayesian inputs for many applications has 

been astrong selling point for theories attempting to supplant Bayesian probabil- 

ity theory. 

Similarly, under inference, we include not only the existence of an axiomatic 

derivation, but also the face validity of the theory's basic postulates or rules, 

the plausibility of conclusions drawn by use of the theory in specific 

applications, and the successful achievement of goals by persons or systems which 

use the theory. 

2.2.3 What is validity? The evaluation of inference frameworks in terms of 

"validity" has an inevitable air of circularity, since defenders of various alter- 

native theories typically regard different sets of criteria as relevant; Thus, we 

had better comment on the concept of validity which is reflected in our choice of 

criteria. For example, Bayesians write as though only behavioral specification 

and axiomatic derivation mattered (e.g. Lindley, 1982), while defenders of alter- 

native views tend to focus exclusively on the more cognitive or pragmatic criteria 

, (e.g. Shafer, 1981). At the other extreme from the Bayesians, L. J. Cohen (1981) 
! 

argues that only the conformity of a theory with actual instances of unaided human 

. . reasoning counts toward its validity (see commentary by M. S. Cohen, 1981). Thus, 
;. 
Y the range of criteria under validity can be regarded as defining a "political" 
\ 

spectrum from conservative to reform. (The non-Bayesians may regard themselves as 

the reformers since they oppose the "prevailing" Bayesian position on pragmatic 

grounds, but in a more meaningful sense the Bayesians are the reformers, since 

they advocate that many habitual ways of thinking be rejected as cognitive 

illusions.) 

Our own position is that all the criteria are important. Our argument is simply 

that no deep or principled distinction can be made among them. An axiomatic 

derivation lends credibility to a theory to the degree. that the axioms themselves, 

and the assumptions in the derivation, are found to be plausible, desirable, or 

applicable (cf., ,Shimony, 1970). This is only a difference in degree from the 

case where a theory lacks such a derivation, but where its basic postulates them- 

selves have face validity or plausibility. Similarly, since accepting a theory 



entails acceptance of inferential conclusions drawn with its aid, there is no 

reason why the intrinsic plausibility of those conclusions, in specific instances, 

should not count for or against the plausibility of the theory. Finally, since we 

do not regard our intuitions regarding plausibility as infallible, we must allow 

actual success in using a framework to achieve our goals as an additional, though 

highly imperfect, indication of the overall plausibility of that framework. 

(Intuitions of plausibility in general may be the product of an evolutionary past 
'-1 

comprising along series of actual successes and failures . )  In sum, we regard all % 
A 

the criteria listed under validity as tools for enhancing the overall plausibility 

of our system of beliefs and, ultimately, our success in action. No one of them 

has a privileged status, and no one can be wholly ignored for other than arbitrary 

or ad hoc reasons. 

2.2.4 Implications for knowledge en~ineerin~. There are two important corol- 
laries of this view for the process of knowledge engineering. First, the cus- 

tomary distinction between replicating expert knowledge and deviling an analytic, 

prescriptive, or statistical model cannot be regarded as a sharp one. Adoption of 

a particular inference framework is a process of "bootstrapping": prior intui- 

tions and judgments (at the level of axioms, postulates, and/or specific 
' / 

inferences) determine the initial design of an inference mechanism; the output of 
Bib, ' /  

that mechanism then may lead to the reconsideration and revision of previous in- / 

tuitions and judgments wxth which it does not agree, or to redesign of the 

mechanism. Builders of expert systems have tended to put more weight on 

"capturing" an expert's pre-existing intuitions about specific instances than on 

the selection of inference schemes with globally plausible properties (i.e., I 

axioms or postulates) which might lead to some revision in those intuitions. 

Note, however, that in other contexts, knowledge engineers do not hesitate to im- 

pose constraints on the format in which experts are asked to report-their 

knowledge (cf., rule-based elicitation methods, such as EMYCIN; also the descrip- 

tion of Nii's methods in Feigenbaum and McCorduck, 1983; Buchanan et al., 1983). 

By formulating his knowledge within these constraints, the expert himself may 

achieve new insights. We would argue that constraints imposed by theories of in- 

ference should be regarded in a similar light. (Cohen, Mavor, and Kidd, 1983, 

contains further discussion of this point.) 



Some guidance, however, can;be provided to the knowledge engineer in his initial 

selection of an inference framework. The discussion in Section 2.1 suggested that 

intuitions about uncertainty fall into three relatively separable sets, cor- 

responding to different concepts of uncertainty. Thus, a proposed theory of un- 

certainty cannot be evaluated in the abstract; we must consider its plausibility 

with respect to the appropriate set of intuitions. This suggests the following 

approach to a methodology of knowledge engineering: 

prior determination (through use of an evaluation framework such as 
the one described above) of inference mechanisms which are well-suited 
for specific concepts of uncertainty, 

determination on the spot, for various components in a specific 
application, of the concept or concepts of uncertainty that are 
relevant. 

Judgments relating components of a specific expert system application to different 

concepts of uncertainty would thus serve as a mediating link between that applica- 

tion and the initial selection or design of an inference mechanism. Note that 

determination of the relevant concept of uncertainty in a specific application 

may, in part at least, be a function of explicitly identifiable features of the 

application: for example, the generic problem type (e. g. , diagnosis, estimation, 

classification, monitoring, or choice of actions) and generic interactive func- 

tions (e.g., interpretations of user queries and data inputs, display of conclu- 

sions and explanations to users, alerting with regard to real time events, 

requests for user judgments or data, and incorporation of user overrides or revi- 

sions into the knowledge base). Thus, general guidelines linking problem types 

and interactive functions to concepts of uncertainty might eventually be devised. 

2.3 ~urren't Status of Methods for Handlins Uncertainty 

If expert systems are to replicate the performance of experts in cognitive tasks, 

in almost all cases some method must be found that matches the human ability to 

carry out inexact reasoning. In the remainder of Section 2.0, we examine a 

variety of calculi to that end. We will focus far less on the details of the 

theories than (a) on their strengths and weaknesses in the various categories out- 



lined in Section 2.2, and (b) on potential modifications , amplifications or syn- ' ' 

theses to redress weaknesses. After briefly discussing MYCIN, we shall move on to 
,/ 

Bayesian probabilities (Section 2.4), belief functions (Section 2.5), fuzzy sets / 

(Section 2.6), and non-monotonic logic (Section 2.7). The major positive con- 

tribution of this review is that numerical calculi will not adequately capture the 

human ability to intelligently and flexibly manipulate uncertainties unless they 

are embedded in a higher-order system of qualitative reasoning. This thesis 

provides an essential basis for the new system of reasoning to be proposed in Sec' 1 
tion 3 .O. A less technical' description of the various theories themselves may beJ 

found in Cohen et al., 1984. 

2.3.1. MYCIN. The developers of MYCIN, by far the most familiar and influential 

expert system, recognized the need for an uncertainty calculus and proceeded to 

invent their own (Shortliffe, 1976, Chap. 4). Based on Shortliffe's calculus of 

certainty factors, MYCIN has had a certain degree of pragmatic success. 

Unfortunately, its developers as well as others have recognized an increasing num- 

ber of difficulties, especially in the area of validity (Buchanan and Shortliffe, 

1984) . 

Feasibility: Shortliffe's calculus has been demonstrably successful in this area. 

The required number of inputs is kept to a minimum, since complex judgments of 

evidential interdependencies and prior probabilities are not elicited. Inference 

rules are computationally consistent with a highly modular, rule-based, backwards 

chaining architecture. 

Validity: Semantics: An original goal of MYCIN was to provide a format for ex- 

pert inputs with a natural interpretation, as the degree to which a bit of 

evidence "confirms" a conclusion. However, no behavioral specification for cer- 

tainty factors has been offered. Moreover, even on an informal level, it is un- 

clear whether experts can have a sufficient grasp of the meaning of the numbers 

they are asked to assess. For example, certainty factors confound different 

senses of uncertainty, as well as confounding uncertainty and the importance of 

the hypothesis under consideration. 



Axiomatic derivation: MYCIN lacks any deep normative justification. Adams (1976) 

has shown, moreover, that MYCIN cannot be plausibly regarded as an approximation 

to Bayesian methods, as Shortliffe had originally supposed. 

Face validity: Numerous postulates or procedures in certainty factor theory ap- 

pear ad hoc, implausible, or inconsistent. These include its disregard for 

interdependencies, its disregard for prior probabilities, the arbitrary cutoff on 

the certainty of the antecedent required to trigger a rule, and the inconsistent 

simultaneous use of the MIN operator and multiple rules to capture a disjunction 

of evidence, 

Plausibility of instances: MYCIN has had some success in empirical tests which 

compared its performance, in prescribing therapy, with that of experts (Lu et al., 

1979). In some cases, however, MYCIN's conclusions do not match intuitions. Ac- 

cording to Buchanan and Shortliffe, with concurring evidence, results converge too 

rapidly on certainty even when the evidence is very weak. In an earlier version 

of the calculus, a very small amount of conflicting evidence could overwhelm a 

large amount of concurring evidence. 

What concepts of uncertainty does MYCIN address? It makes no provision for im- 

preciseness of user inputs; for example, there is no measure of the degree to 

which the user's description of the data matches the antecedent of a rule. As for 

the chance of a hypothesis being true and the quality of evidence supporting the 

estimate of that chance, MYCIN is ambiguous. Certainty factors could be construed 

as representing either one (Buchanan and Shortliffe, 1984, Chap. lo), contributing 

no doubt to the semantic confusion of experts asked to provide these numbers. In 

light of the problems with validity indicated above, it cannot be concluded that 

MYCIN gives an adequate account of either of those concepts. 

2 . 3 . 2  Other develo~ments. Another well-known system,.PROSPECTOR, incorporates 

elements of a Bayesian calculus, but deviates significantly from it in important 

respects, i.e., the treatment of AND and OR by MIN and MAX operators, and the con- 

catenation of inferences across a series of rules (Duda et al, 1979). In the past 

two or three years, there has been a growing sense of dissatisfaction among 



developers of such systems with the ad hoc nature of the inference mechanisms thus 

far attempted, and an increasing interest in presumably more rigorous 

alternatives. For example, Gordon and Shortliffe (1984) have proposed that the 

next step for MYCIN is to replace certainty factors with Shafer's theory of belief 

functions. Some preliminary applications of belief functions (e.g., Lowrance and 

Garvey, 1983) have been proposed, and fuzzy logic now has a number of applications 

(cited in Zadeh, 1984a). 

Unfortunately, such new departures may encounter difficulties comparable to those 

which faced MYCIN, unless careful consideration is given to conditions of validity 

involved in representing the appropriate concepts of uncertainty. 

2.4 Bavesian Probabilities 

2.4.1 Using probabilitv theorv for inexact reasoning. Probability theory has be- 

come central to modern scientific culture. As such, it is the obvious calculus to 

consider for handling inexactness in expert systems. Its supporters in this role 

date back to the early work on probabilistic information processing (see Edwards, 

1966) and earlier; more recent contributors have been de Dombal (1973), in the 

field of medical decision making, and Schum (1980) in the intelligence field. 

The application of probabilistic reasoning to rule-based expert systems is 

complex, but it can be illustrated with a simple example. Part of an expert sys- 

tem for image analysis could be a scene labeller, based on texture vectors. A 

rule in a system resembling PROSPECTOR might be: 

IF (TEXTURE IS OF TYPE X) 
THEN (OBJECT IS A BUILDING) (LR = 2.3), 

where LX quantifies the impact of the evidence (the texture) on the hypothesis 

(that the object is a building). LR is a likelihood ratio, i.e., the probability 

of finding a texture of type X given that the object is a building divided by the 

probability of that texture given that it is not a building. Sat.isfaction of the 

antecedent of this rule would lead to a process of Bayesian updating, in which the 



impact of the new evidence is combined with the prior odds of the hypothesis being 

true. Suppose H is the hypothesis that the object is a building. Then Bayes' 

Theorem gives, in odds-likelihood form, 

- 
where D is the data that the texture is of type X, and H is the hypothesis that 

some other interpretation for the object is appropriate. To carry out a si 

analysis of this kind, three assessments are required, namely Pr[DIH], Pr[ 

and Pr[H:], i.e., the likelihoods and the prior probability. 

Information for understanding aerial photographs may come not only from-the image 

itself, but also from other facts that are known about the world. So the prior 

belief about H might itself be derived from a probabilistic analysis. Suppose, 

for example, that our view of how likely an object is to be a building is affected 

by the existence of intelligence reports of some recent construction 

the area. Call the existence of construction activities A, and its absen 

Then we might write 

Pr [HI - Pr [H I A] Pr [A] + ~r [H 1x1 ~r [XI . 

Our estimation of the reliability of the reports is captured in Pr[A], and we can 

now think about how likely H is in the light of A or separately. 

Work on Bayesian approaches to inference has advanced from a simple one-step ap- 

plication of Bayes' rule to the elaboration in recent research of rather complex 

structures capable of capturing a wide diversity of human inference tasks and 

prescriptive intuitions (e.g., Schum, 1979, 1981). Bayesian techniques, for 

example, are able to accommodate a number of different ways that items of evidence 

can be related to one another with respect to a hypothesis (Schum and Martin, 

1980): e.g., they may be contradictory (reporting and denying the same event), 

corroboratively redundant (reporting the same event), cumulatively redundant 

(reporting different events which reduce one another's evidential impact), or non- 



redundant (reporting different events which enhance or do not change one another's 

evidential impact). In other, more complex cases of interdependence, Bayesian 

techniques capture the evidential impact of biases in an information source or 

non-independence of information source sensitivity with respect to what is being 

observed. 

As might be expected, evaluation of Bayesian theory leads to results that largely 

are the reverse of those for MYCIN; it ranks high in validity, but low in 

feasibility. 

2.4.2 Feasibility: Quantity of inputs. When one attempts to use Bayesian prob- 

ability theory on real inference problems, one quickly becomes aware of the com- 

plexity of the task. This complexity led Shortliffe (apparently) to construct his 

calculus of certainty factors as an alternative (see Shortliffe, 1976, Section 

3.2). Schum (1980, p. 207) ends his advocacy of the Bayesian approach with a 

negative note: "...now we have other problems. I believe nobody realized how 

many ingredients there would be and how complex the judgments about these in- 

gredients would be even in apparently simple cases." In all but the most trivial 

cases, a proper Bayesian analysis requires a great many conditional probabilities 

to be assessed. Schum presents the analysis of a fairly simple legal trial in- 

volving 7 pieces of evidence (Salmon's pills) and shows that at least 27 probabil- 

ity judgments are needed, even if all reasonable independence conditions hold. As 

well as requiring a very large number of probability assessments, the relations 

between them are difficult to organize, and the coherence of the total set of 

assessments is often difficult to determine. 

Two important lines of defense for Bayesians are (a) that simplifying assumptions 

can always be made, e.g., equal prior probabilities, conditional independence of 

events; and (b) that variables which one does not care to deal with may be 

"integrated out," i.e., the resulting probabilities are regarded as marginal 

("averages") with respect to possible values of the ignored variables. Thus, a 

Bayesian model may be created which is as simple as one likes. - 



Unfortunately, however, the situation is not quite as clear cut as this. 

"Simplifying assumptions" must in some sense be judgments (e.g., that priors are 

roughly equal, that events are conditionally independent). Otherwise,,,one 

sacrifices the validity of the Bayesian approach. As one Bayesian (Lindley, 1984) 

has put it, the Bayesian argument shows you the things you have to think about; 

so, think about them. From the Bayesian point of view, an argument which omits 

these factors is simply spurious. In the case of "integrating out" certain 

variables, no formal problem presents itself, since from a theoretical point of 

view the results with and without such variables should be the same. In actual 

fact, however, the difference in plausibility of the overall analysis can be very 

great (as we shall note below, Section 2.4.5). Thus, although the required number 

of assessments may in fact be reduced by either of these means, the difficulty of 

the judgments required to do so may be considerable. Schum speaks of them as 

"exquisitely subtle". 

A quite different approach, which we shall explore in greater detail below, is to 

regard simplifying strategies as assumptions whose validity is tested imvlicitlv 

through their use in reasoning. If the outcome of using such assumptions is 

plausible, the burden of explicitly judging their validity is avoided. 

A related tactic is to accept the Bayesian framework as, in principle, the correct 

way to handle uncertainty, and divert our research interests to approximations 

that are as close as possible to the Bayesian norm. Indeed, Shortliffe (1976, p. 

164) originally saw certainty factors as a device in this direction. Shortliffe, 

however, did not explicitly derive his theory as 'a special case of the more 

general Bayesian model. Adams (1976) showed that assumptions necessary to derive 

Shortliffe's postulates in some cases do not exist, and in other cases are far 

more restrictive and implausible than the usual assumptions of equal priors and 

conditional independence. We shall return to this topic in the discussion of 

Shafer's theory (Section 2.5). 

2.4.3 Computational tractability. There is no known, computationally tractable 

method for propagating uncertainties consistently through an arbitrary Bayesian 

network. Restrictions of some sort on the kind of model that is utilized are 



necessary. The only question (as in the previous discussion of inputs) is whether 

the restrictions will be plausible (i.e., define a meaningful, useful special case 

of Bayesian modeling) or ad.hoc. PROSPECTOR adopted the latter approach. More 

recently, Pearl (1982) and Kim (1983) have explored the former. They show that 

independence assumptions make sense, and probabilities can be propagated by simple 

local computations, if the inferential network has (a) a causal interpretation, 

and (b) the form of a Chow tree (i.e., it lacks undirected cycles). 

Unfortunately, not all real problems will fit this special structure. 

If validity is not to be sacrificed, computational tractability for a Bayesian 

system can be purchased only in special cases; and even then, only at the cost of 

complex and subtle judgments regarding interdependence among items of knowledge 

and the overall structure of the inferential argument. As we shall see,.the 

situation is quite similar for Shaferian belief functions. For this reason, 

Shafer (1984a) has recently argued, the introduction of probability into expert 

systems appears to be inconsistent with the modularity of knowledge repre- 

sentations that up to now has been the most salient characteristic of such systems. 

In Section 3.0 we shall return to some of these questions. We will propose that a 

careful use of qualitative reasoning, super2mposed upon a probabilistic system, 

may reduce the requirement for experts (or users) to address issues of interdepen- 

dence and model structure explicitly, and make such assessments easier when they 

are required, without undo compromise of validity. 

2.4.4 Validity: Axiomatic derivation. Bayesian probability theory has a 

preeminent, though perhaps not conclusive, claim to validity among current 

proposals for the handling of uncertainty. De Finetti (1937/1964) showed that un- 

less your beliefs conform to the rules of probability, a clever opponent could 

make you the victim of a "Dutch book," i.e., a set of gambles you would accept, 

but in which you lose regardless of the outcome of an uncertain state of affairs. 

More recently, Lindley (1982) has given a new derivation. Suppose that people are 

going to measure the uncertainty of events by some method, and we wish to know how 

good they are at doing so. If we devise a scoring system of sort--as along as 

(a) the score is a joint function of the uncertainty measure and the event's truth 



or falsity, and (b) scores are additive across different events--then no matter 

what events actually occur, the best achievable score will always go to a form of 

Bayesian probability. Lindley concludes that "only probability is a sensible 

description of uncertainty." 

A common objection to this sort of demonstration is that we are not in fact always 
(or usually) faced with a malicious adversary or, indeed, with a scoring system. 

But the point is not that we are, or should somehow presume that we are, always 

subjected to such peculiar circumstances. Even if we never encounter these 

conditions, other things being equal, a system which has the property of working 

well in them is more desirable (in circumstances) than one which does not. In 

terms of Section 3.3, it is plausible than an adequate system of uncertainty would 

guard against a Dutch book. It is plausible that such a system would score high 

if we ever chose to score it. - 

The more fundamental objection, in our view, is that while probability theory has 

been shown uniquely to possess a desirable property, but has not been shown to be 

uniauelv iustified. Other systems of uncertainty may have desirable properties 

that probability theory lacks. (In particular, alternative theories might deal 

more adequately with different kinds of uncertainty, such as incompleteness of 

evidence or imprecision. In this regard, note that De Finetti's and Lindley's ar- 

guments do not apply to systems which provide more than a single measure of uncer- 

tainty for each event, such as the upper and lower measures in Shafer's theory, or 

fuzzy probabilities in Zadeh' s. ) 

Nonetheless, it seems incontrovertible to us that the existence of foundational 

arguments such as those described is a strong plus for Bayesian theory. 

2 . 4 . 5  Plausibility of instances.' As noted, the thrust of Bayesian analysis is 

to improve, rather than to replicate ordinary thinking.. Bayesians argue that if 

one's ordinary intuitions are probabilistically incoherent, they ought to be 

changed. We might expect, nevertheless, that these revisions of belief would 

typically lead to judgments that are regarded as more plausible after reflection. 

In other words, the plausibility of the axioms should outweigh the initial 



plausibility of an incoherent set of judgments. In some cases, this seems true, 

e.g., most people who understand an explanation of the "gambler's fallacy" seem to 

accept that it is a fallacy; in other cases, perhaps, it is not true (e.g., Slovic 

and Tversky, 1974). 

There is another issue here which is, we feel, more important. Even if revised 

(hence, coherent) beliefs are more plausible than unrevised, incoherent ones, all 

the credit cannot go to Bayesian theory. The reason is, that the selection of a 

specific revision is not uniquely determined by the requirement of coherence. 

Consider, again, the example above of inferring the chance of H, i.e., that a par- 

ticular object is a building, based on intelligence reports of construction 

activity, A. Bayesian theory tells us only that our assessment of Pr[H] should be 

the same as Pr [HIA] Pr [A] + Pr [H 1x1 Pr ['jl] , which is based on our assessments of 
Pr [H I A] , Pr [A] , and Pr [HP] . The theory provides no guidance in the case where 

the two are not equal. Coherence by itself does not dictate that the result of an 

analysis is to be preferred to a direct judgment. We might choose to revise one 

or more of the assessments in the analysis, rather than to revise Pr[H]. 

This problem, which we may call the incom~leteness of Bayesian theory, is exacer- 

bated by the fact that in any problem there is more than one possible form of 

analysis. Many advocates and many critics of the Bayesian approach seem to imply 

that there is only one way a probabilistic analysis could be carried out and only 

one possible conclusion. To see that this is not the case, we return to the ex- 

ample of inferring H. Let B be intelligence information that a strong pressure 

group exists within the country our photograph represents, for the erection of 

barracks in that general area. Instead of, or in addition to, conditioning our 

assessment on A, as above, we could condition on B, namely 

Pr[H] = Pr[HI B]Pr [B] + P~[HJF] Pr[T] . 

Yet again, we could condition jointly on A and B: 

Pr [HI = Pr [H 1 AB] Pr [AB] + Pr [HI a] Pr [GI + Pr [H I%] Pr [GI + ~r [HIE] Pr [%-I . 



Still more choices are open to us: for example, we could assess Pr[AB] directly, 

and/or further analyze it as Pr[AJB]Pr[B], and/or as Pr[BIA]Pr[A]. 

The Bayesian theoretical attitude is straightforward, namely that it does not mat- 

ter which of these forms of analysis we perform or which answer we select, since 

coherent probability assessors should derive the same number whichever method they 

choose. Theory, however, is of use because we are not ordinarily coherent in our 
assessments. An analysis may well give us a different estimate of Pr[H] than if 

we directly judged it; otherwise, we wouldn't bother with the analysis. Moreover, 

different analyses may well give us different answers; otherwise, we would have no 

cause for regarding some analyses as "better" than others. 

An important assumption of Bayesian theory is that all analyses (by the -same 

person) are based on the same evidence; they do not differ in ehe knowledge they 

draw upon. We would argue that this is, psychologically, not true. Different 

ways of formulating the same problem may well tap different internal stores of 

information. What is missing from the Bayesian framework is some notion of the 

quality of probability inputs, i.e., the amount of knowledge or completeness of 

evidence that underlies them. Several points can be made: 

p Revision of probability judgments should be guided by a judgment of 
their quality, i.e., the amount of knowledge they represent. 

o More than one analysis may be of value, if they bring different 
knowledge to bear on a problem (cf., Brown and Lindley, 1982). 

e The application of Bayesian theory to a problem is not necessarily a 
linear process in which inputs are provided and conclusions computed. 
It is (or often should be) an iterative process, in which comparison 
of conclusions arrived at by different methods leads to revisions of 
inputs and assumptions, until overall consistency is achieved. 

In ordinary statistical problem solving, perhaps, judgments of quality may safely 

remain implicit. But a major limitation in the automation of Bayesian theory 

within expert systems is the lack of an ex~licit measure of completeness of 

evidence, and a mechanism for its use in the revision of probability estimates. 



This will be a major focus in our discussion of Shafer, in Section 2.5, and in the 

new developments to be described in Section 3.0. 

2.4.6 Semantics: Behavioral specification. Bayesian theory provides a clear be- 

havioral interpretation of probabilities in terms of preferences among bets. We 

can know what someone's probabilistic beliefs are by observing their actions under 

specified conditions. By contrast, a common complaint by Bayesians regarding 

other theories is the difficulty of knowing what the basic measures mean. 

There are three different, but related, misunderstandings of this "operational 

definition." First, critics point out that betting may be an awkward and in some 

cases an impossible method for eliciting probabilities. It is often easier to ask 

for direct verbal judgments. There is a standard answer to this point by sophis- 

ticated Bayesians: Meaning need not be equated with evidence. Bayesians can use 

any method they like for estimating your probabilities, if there is a reasonable 

expectation that the result will match, or at least approximate, what they would 

have gotten had they used the betting paradigm. 

This response hides a more subtle misunderstanding. It is still assumed that we 

can, at least in principle, always know what a person's probabilities are, simply 

by testing his preferences among bets. Since the operational definition specifies 

a situation where he must make a choice, it is implied that any person "has" prob- 

abilities waiting to be uncovered or "elicited". Is Bayesianism thus inevitable? 

This conception seems to be contradicted by the incoherence we typically find in 

people's unaided judgments, and which is amply documented in the experimental 

psychology literature (e.g., Kahneman, Slovic, and Tversky, 1982). 

The sophisticated Bayesian was right, we suggest, in distinguishing meaning and 

evidence. But--sophisticated as he is--he has not absorbed the full implications 

of that distinction. Although he permits other kinds of evidence, he is still 

equating meaning with a particular observable operation. The problem, as pointed 

out by Quine (1953) and others in a more general critique of positivism, is that 

the selection of this rather than some other component of the theory as a 

"definition" is arbitrary. To return to our earlier example, suppose we equate 



Pr[H] for a person X with X's betting behavior in regard to H. Then we determine 

in the same way his value for Pr [H I A] , Pr [H 1x1 , and Pr [A] . Finally, we compute a 

new probability of H, Pr1[H], from the latter three values. Why shouldn't we 

define X's probability for H in terms of this operation, i. e. , as Pr' [HI ? One 

reply is that this operation requires a theoretical assumption viz., that X is 

coherent, to justify the computation of Pr' [HI from Pr [H IA] , pr [H 1x1 , and Pr [A] . 
But the earlier "operational definitionn could be regarded as theoretical, too, 

since it is a theoretical hypothesis (i.e., that X acts so as to maximize subjec- 

tively expected utility) that enables us to derive X's probability for H from his 

preferences among gambles involving H. Conversely, we could regard the definition 

in terms of Pr'[H] as purely "behavioral", by ignoring the theoretical hypotheses 

implicit in our calculations. 

It is far more natural to regard these potential "definitions" simply as 

theoretical predictions. How then, without definitions, do we assess the prob- 

abilities and utilities required to derive the predictions? The answer is that 

testing a theory is, inevitably, a bootstapping operation, in which we use the 

theory, as if it were true, to estimate values for an interrelated set of 

parameters, then test for consistency of the results. If the results are 

consistent, the theory is confirmed; if not, it is disconfirmed. (For a general 

discussion see Glymore, 1980.) To the extent that people are probabilistically 

incoherent, therefore, probability theory is disconfirmed, and they cannot be 

regarded as "having" probabilities at all. 

Have we overlooked the difference between descriptive and prescriptive theories? 

Perhaps "operational definitions" make sense for probabilities because they form 

part of a prescriptive theory. On the contrary, we suggest that there is a strong 

and important parallel between theory testing, as we just described it, and 

prescriptive analysis (as we saw it in Section 2.4.5). Just as in descriptive 

science, we assume the prescriptive theory to be true,,use it to perform a set of 

interrelated analyses, and then test them for consistency. However, if we find 

inconsistency among alternative prescriptive analyses, or between an analysis and 

direct judgment, we do not (necessarily) drop the prescriptive theory; we may 

choose to revise the values in one or more analyses so as to make them consistent. 



In so doing, we construct rather than discover or confirm a probability model for 

our beliefs. 

The analogy between descriptive and prescriptive processes may be carried a step 

further by recalling our observations in Section 2.2.3. If the inconsistency of 

our judgments with respect to probability theory is great enough, and if 

coherence-producing revisions seem implausible, we may indeed decide to reject 

probability theory as a proper prescriptive guide. 

What then is left of the Bayesian claim that operational definitions are required 

for clarity of concepts? The third and final misunderstanding we wish to address 

is the notion that because "operational definitions" are arbitrary, and do not 

guarantee the applicability or even the relevance of a prescriptive theory, that 

behavioral specification is of no use. In fact, it is quite critical: without 

it, there is no link, or else no clear link, between the prescriptive theory and 

action. With it, the prescriptive process described above, in which a coherent 

set of judgments is arrived at through successive iterations, also produces a 

clear set of implications for action. In expert system applications, such im- 

plications are typically the reason for developing the system. Moreover, such 

specifications may play a clarifying.role for the decision maker in the-process of 

iteratively arriving at an appropriate set of judgments. (We return to this point 

in Section 2.5.11 below.) The existence of such specifications must, therefore, 

be counted as a plus for the Bayesian theory. 

2.4.7 Naturalness of inputs. Behavioral specification is not sufficient to 

guarantee the usefulness of an inference framework. A common objection to 

Bayesian theory urged by proponents of alternative views, is that the inputs it 

requires exceed, in various ways, the capabilities of the decision makers it is 

designed to aid. Two complaints of this type must, however, be carefully 

distinguished: 

Im~recision: Bayesians assume that experts are capable of quantifying their un- 

certainties and values to an arbitrary degree of precision. But this is true of 



no other known process of measurement. Experts may simply not know, to'the 

required exactitude, what their beliefs or preferences are. 

Incomvleteness of evidence: The evidence may not justify the degree of confidence 

suggested by use of a single number to assess an uncertainty. Some assessments 

(e-g., the probability that the Soviets will invade Western Europe within the next 

year) are less well supported than others (e.g., the probability that a coin in my 

pocket will land heads if tossed). In the former cases, the available evidence 

may justify no more than a range of probabilities rather than a single number. 

There is an important distinction between these two complaints: the first is con- 

sistent with the basic prescriptive adequacy of probability theory, but seeks to 

accommodate human shortcomings in the assessment task. In contrast, the second 

objection has a normative basis: probabilities themselves are inappropriate where 

evidence is incomplete. We shall explore these positions in more detail in our 

discussions of Zadeh and Shafer, respectively. 

2.4.8 Concepts of uncertainty. Bayesian theory is clearly designed to capture 

,the concept of chance, or uncertainty about facts. We argued in Section 2.4.5 

that an important gap in Bayesian theory is the lack of a measure of completeness 

or quality of evidence, i.e., the lack of a distinction between firm probabilities 

(.5 as the probability of heads on a coin toss) and those based on guesswork (.5 

as the probability of a Soviet invasion). Intuitively, the weight of evidence 

supporting some probability judgments is stronger that that supporting others. We 

argued that this concept in fact plays an important role in ordinary applications 

of probability theory, by guiding the choice among potential revisions of belief 

in the light of an analysis or set of analyses. We hope to demonstrate below 

(Section 3.0) that an explicit measure of this sort is critical for the control of 

reasoning in an expert system that intelligently handles uncertainty about facts. 

To what extent could Bayesian theory itself be extended to cover the concept of 

completeness of evidence? Lindley et al. (1979) have recently attempted to for- 

malize the intuitive notion that we are firmer about some probability assessments 

than others. The tool they introduce is a second-order probability distribution 



over possible values of the true first-order probability. The spread of the . 

second-order distribution is a measure of the firmness of the original 

probabilities. Lindley et al. have described procedures for statistically ag- 

gregating inconsistent probabilistic analyses by means of such second-order 

judgments . 

These efforts have failed, in our opinion, for a variety of reasons. Feasibility: 

The quantity and difficulty of required inputs is increased, rather than 

decreased, to the degree that one's evidence is incomplete. Computational intrac- 

tability will certainly be increased as well. Validity: Axiomatic justifications 

and behavioral specifications which apply to first-order probabilities become much 

less convincing at higher levels, where, for example, gambles or scores which 

depend on one's own "true" probabilities, rather than actual events, lack 

plausibility. Face validity is dubious as well: e.g., if we attempt to measure 

the quality of our second-order probabilities in the same way, we. are threatened 

with an infinite regress. Perhaps the most serious difficulty, however, is the 

implausibility of the inferences to which this model gives rise. In brief, the 

procedure for aggregating probabilistic analyses assumes that they disagree only 

because of "noise," or random error, in the assessment process; hence, it yields 

results which do not reflect the possibility that different analyses have drawn 

on different evidence. We suggest that from a psychological point of view, dif- 

ferent analyses may tap different portions of our store of knowledge, even when 

performed by the same individual. These points are amplified in Cohen et al., 

1984, and in a planned paper by Cohen and Lindley. 

2.4.9 Summary. Bayesian probability theory is strong in the formal aspects of 

validity. Its logical foundations are perhaps uniquely compelling in application 

to the concept of chance. However, the input and computational burdens which it 

imposes, except when specialized models are adopted, are considerable. It has no 

adequate resources for representing the quality of an inferential argument, and 

requires an arbitrary degree of precision in numerical judgments. Even its 

validity, in a more informal sense, can be questioned. Bayesian theory, as it 

stands, implies that one's beliefs should be coherent but provides no guidance for 

choosing among alternative equally coherent analyses. Moreover, by assuming that 



all assessments are based on the same evidence, it closes off the most promising 

source of such guidance. We have argued that the application of Bayesian theory 

to a problem is not linear process in which conclusions are computed from inputs. 

It is (or often should be) an iterative bootstrapping process in which comparison 

of conclusions arrived at by different methods leads to revision of inputs and 

assumptions, until overall plausibility is maximized. This process of revising 

probability assessments should be guided by a judgment of their quality. A more 

satisfactory account of completeness of evidence is, therefore, essential. 

2.5 Belief Functions 

2.5.1 Nature of the theory. In the theory of belief functions introduced by 

Shafer (1976), Bayesian probabilities are replaced by a concept of evidential 

support. The contrast, according to Shafer (1981; Shafer and Tversky, 1983) is 

between the chance that a hypothesis is true, on the one hand, and the chance that 

the evidence means (or proves) that the hypothesis is true, on the other. Thus, 

we shift focus from truth of a hypothesis to the interpretation of the evidence. 

As a result, the system (a) is able to provide an explicit measure of quality of 

evidence, (b) is less prone to require a degree of definiteness in inputs that 

exceeds the knowledge of the expert, and (c) permits segmentation of reasoning 

into analyses that depend on independent bodies of evidence. 

In Shafer's system, the support for a hypothesis and for its complement need not 

add to unity. For example, if a witness with poor eyesight reports the presence 

of enemy artillery at a specific location, there is a certain probability that his 

eyesight was adequate on the relevant occasion and a certain probability that it 

was not, hence, that the evidence is irre1evant.y In &&ase could the evidence 

@ 
prove the artillery is not there. 

To the extent that the sum of support for a hypothesis,and its complement falls 

short of unity, there is "uncommitted" support, i.e., the evidence is incomplete. 

Evidential support for a hypothesis is a lower bound on the probability of its 

being true, since the hypothesis could be true even though our evidence fails to 

demonstrate it. The upper bound is given by supposing that all present evidence 



that is consistent with the truth of the hypothesis were in fact to prove it. The 

internal between lower and upper bounds, i.e., the range of permissable belief, 

thus reflects the incompleteness of evidence for that hypothesis. This concept is 

not captured by Bayesian probabilities. 

In Shafer's calculus, support m(') is allocated not to hypotheses, but to sets of 

hypotheses. Shafer allows us, therefore, to talk of the support we can place in 

any subset of the set of all hypotheses. In the case of three hypotheses, HI, H2 
and H3, for example, we could allocate support to HI, H2, H3, (HI or H2), (HI or 

H3), (H2 or H3), and (HI or H2 or H3). As with probability, the total support 

across these subsets will sum to 1, and each support m(') will be between 0 and 1. 

It is natural, then, to say that m(') gives the probability that what the evidence 

means is that the truth lies somewhere in the indicated subset. 

Suppose, for example, that we know in the case of three hypotheses that H3 is 

false, but have no evidence to distinguish between H1 and H2. In that case, we 

would put m((H1 or H2)) = 1, and give zero support to all the other possible 

subsets. Alternatively, we may feel that the evidence eithe mean that H3 is P 
true, or that (HI or H3) is true, or that it is not telling us anything (i.e., (HI 
or H2 or H3) is true), and that the weight of evidence is just as strong with each 

possibility. In that case m(H3) = m((H1 or H3)) = m((H1 or H2 or H3)) = 1/3. In 

a Bayesian analysis, arbitrary decisions would have to be made about allocating 

probability within these subsets, requiring judgments that are unsupported by the 

evidence. 

This same device, of allocating support to subsets of hypotheses, enables us to 

represent the reliability of probability assessments. Suppose, for example, that 

the presence of texture X in an image region is associated with a building 70% of 

the time and with other labels 30% of the time, based on frequency data from a set 

of training photographs. If we are confident that an image now being analyzed is 

representative of the training set, we may have m(bui1ding) = .7 and m(other) = 

.3. But if there is reason to doubt the relevance of the frequency data to the 

present problem (e.g., due to geological or cultural differences between the two 
D 

geographical areas), we may discount this support function by allocating s h e  per- $ 



centage of support to the universal set. For example, with a discount rate of 

30%, we get m(bui1ding) = .49, m(other) - .21, and m ((building, other)) - .30. 
The latter reflects the chance that the frequency data is irrelevant. 

Shafer's belief function Bel(') summarizes the implications of the m(') for a 

given subset of hypotheses. Bel(A) is defined as the total support for all sub- 

sets of hypotheses contained within A; in other words, Bel(A) is the probability 

that the evidence imvlies that the truth is in A. The plausibility function PI(') 

is the total support for all subsets which overlap with a given subset. 

Thus, Pl(A) equals 1-~el(x) ; i.e. , the probability that the evidence does not 
imply the truth to be in not-A. In one of the examples above, with 

we get: 

2.5.2 Demvster's rule. Thus far, we have focused on the representation of uncer- 

tainty in Shafer's system. For it to be a useful calculus, we need a procedure 

for inferring degrees of belief in hypotheses in the light of more than one piece 

of evidence. This is accomplished in Shafer's theory by Dempster's rule. The es- 

sential intuition is simply that the "meaning" of the combination of two pieces of 

evidence is the intersection, or common element, of the two subsets constituting 

their separate meanings. For example, if evidence El proves (HI or H2), and 

evidence E2 proves (H2 or H3), then the combination El + E2 proves H2. Since the 

two pieces of evidence are assumed to be independent, the probability of any given 

combination of meanings is the product of their separate probabilities. 

Let X be a set of hypotheses HI, H2,. . . ,Hn, and write 2' for the power set of X, 

that is, the set of all subsets of X. Thus, a member of 2' will be a subset of 

hypotheses, such as (H2, H5, H7), H3, or (Hl, H2, H3, H4), etc. Then if ml(A) is 

the support given to A by one piece of evidence, and m2(A) is the support given by 

a second piece of evidence, Dempster's rule is that the support that should be 



given to A by the two pieces of evidence is: 

The numerator here is the sum of the products of support for all pairs of subsets 

A1, A2 whose intersection is precisely A. The denominator is a normalizing factor 

which ensures that m12(') sums to 1, by eliminating support for impossible 

combinations. 

Consider, for example, the following two support functions: 

Table 2-1 

In the third column, we have used Dempster's rule to compute m12('). For example 

where C = ml(Hl) [m2(H2) + m2(H3) + m2 (H2H3) 1 + ml(H2) [m2 (HI) + m2(H3) + m2 (H1H3) 1 

+ ml (H~) [m2 (HI) + m2 (H2) + m2 (H1H2) 1 + ml(H1H2)m2 (H3) + ml (H1H3)m2 (H2) 

+ ml (H2H3 )m2 (HI) 

and so 



Let us now examine the performance,.or at least the potential, of Shafer's theory 

within our evaluation framework. 

2.5.3 Feasibility: Quantity of inputs. One of the main difficulties standing in 

the way of a Bayesian analysis is its complexity. At first sight the Shaferian 

approach seems simpler, since complicated independence judgments and conditional 

probability assessments appear not to be required. This appearance is illusory. 

Support functions must be assessed over not just the hypothesis set, but over the 

power set of the hypothesis set. With 10 hypotheses, for example, the support 

distribution has 1,023 elements. For both Bayesian and Shaferian models, the 

required number of assessments or judgments increases exponentially with the num- 

ber of events or hypotheses. To see the parallel, compare the Bayesian rule: 

Pr[A or B] = Pr[A] + Pr[B] - Pr[A]Pr[BIA] 

with Shafer's rule: 

Bel((A or B)) = m(A) + m(B) + m((A or B)). 

In each case, to get an uncertainty measure for a disjunction (i.e., a member of 

2X), we must make one assessment in addition to the measures already assessed for 

the elements. For Bayesians, the extra assessment is a conditional probability 

Pr[BIA]; for Shaferians it is the direct evidential support m((A or B)). 

A Shaferian response to this, in parallel with the Bayesian response (Section 

2.4.2), is that specialized models may be developed that require far fewer 

assessments. In fact, the belief function framework admits a variety of interest- 

ing special cases: e.g., 

simple support functions: all support goes either to some one in- 
dividual hypothesis or to the universal set X, i.e., either the 
evidence is reliable and pinpoints the answer or it is totally 
untrustworthy; 



discounted probabilistic support functions: all support goes to in- 
dividual hypotheses (as in a standard probability distribution), with 
some additional support possibly going to the universal set X 
(reflecting a judgment of the quality of the evidence for the prob- 
ability distribution) ; 

consonant support functions: all support goes to a nested series of 
subsets of hypotheses; i.e., the evidence points in a certain direc- 
tion but is unclear how far we should go; 

hierarchical support functions: the evidence supports subsets of 
hypotheses that can be arranged in a tree. 

Here again, however, (as in the Bayesian case) complex and difficult judgments 

must be made to determine that a particular specialized model is applicable, 

before savings in quantity of assessments can be realized. 

The problem for Shaferians may even be deeper. The applicability of Dempster's 

rule to two bits of evidence El and E2 is not automatic. It requires rather care- 

ful and' difficult consideration of a whole set of independence assumptions. We 

shall return to this point in our discussion of the validity of Shafer's theory 

(Section 2.5.5). 

2.5.4 Computational tractability. Here again the story is parallel to the 

Bayesian case. The employment of unrestricted belief function models would in- 

volve prohibitive computation. As a result, Gordon and Shortliffe (1984) propose 

to modify Dempster's rule to simplify computation in MYCIN. Shafer (1984a) has 

argued in response that ad hoc modifications 'of this sort might be avoided by a 

control strategy that intelligently exploits the structureof restricted belief 

function models, such as the hierarchical structure proposed for MYCIN. Here as 

in the Bayesian case, feasibility is purchased only in special cases, and, 

evidently, at the cost of complex and subtle judgments regarding the structure of 

the overall argument. 

2.5.5 Validity: Semantics. Shafer argues that the requirement for a behavioral 

specification of probabilities is irrelevant. People bet in a certain way because 

of their beliefs and preferences; observing their own betting behavior will not 



help them to assess those beliefs. Shafer thus urges a shift from the positivist 

to a more cognitive orientation. He argues that uncertainty is quantified on the 

basis of an analogy between one's problem and a "canonical example". In Bayesian 

modeling, we assess the probability of an event by comparing its likelihood with 

the likelihood of a frequency-based event, such as a random drawing from an urn. 

Thus, for Shafer, to say that the Bayesian probability of an event is x is to say 

that it is "like" the chance of drawing a white ball from an urn with a proportion 

of white balls equal to x. Similarly, to say that your Shaferian belief in a 

proposition is y, is to compare it to canonical examples of the type we shall ex- 

plore in Section 2.5.6, where the reliability of an evidential source is deter- 

mined by chance. 

Unfortunately, Shafer's position is weakened by two considerations: First, his 

canonical examples, as we shall see below, are far more complex and less obviously 

useable, even from a cognitive point of view, than the Bayesian examples. Second, 

behavioral specification probably plays a cognitive - role in clarifying the sense 

of a canonical example. For example, what does it mean to say that ny uncertainty 

about whether an object is a building is "like" my uncertainty about drawing from 

an urn? In what respects must they be similar? Many people will find it il- 

luminating when told it means that I would bet at equal stakes on either event. 

A major strength of Shafer's theory, nevertheless, is the naturalness of the input 

format it imposes: 

Assessments need go no further than the evidence justifies. As we 
have seen, "ignorance" is naturally represented by assigning support 
to a subset of hypotheses, with no further commitment to an allocation 
within the subset. A Bayesian must decide among quite definite and 
distinct, but equally arbitrary, allocations of probability. 

Weight or completeness of evidence is quite intuitively represented as 
the degree to which the sum of belief for a hypothesis and its comple- 
ment falls short of unity. 

Assessments may be based on distinct, separable bodies of evidence, 
rather than requiring--as in Bayesian theory--that all assessments be 
based on all the evidence. 



2.5.6 Face validity. Belief function theory possesses no deep axiomatic jus- 

tification comparable to the de Finetti and Lindley arguments for Bayesian theory. 

Not coincidentally, however, Shafer has offered a view of model "validation" which 

contrasts sharply with the axiomatic approach. On Shafer's view (1981; Shafer and 

Tversky, 1983), theories of inference are tools which can be used to help us con- 

struct (rather than elicit or discover) a set of probabilities. The justification 

for applying a particular tool to a particular problem is that we see an analogy 

between that problem and the canonical example underlying the theory. For 

example, to the extent that the Bayesian theory has anything to contribute, it is 

by establishing a persuasive analogy between your problem and a situation, like 

drawing balls from an urn, where the truth is generated by known chances. 

Bayesian analogies of this sort, according to Shafer, will usually be imperfect, 

because in the canonical example we know the rules of the game that determine how 

the truth is generated (e.g., the composition of the urn and the procedure for 

drawing a ball). In real problems, there are nearly always many aspects of the 

situation where comparable rules cannot be given without making numerous 

assumptions. When these assumptions become very extensive, it may be better to 

switch to a simpler kind of model, which is more plausible despite not giving a 

complete picture of how the truth is generated. Such simpler models can be based 

on canonical examples in which the meaning of the evidence rather than the truth 

is generated by known chances. 

We comment on Shafer's position at two levels: First, how convincing is his con- 

cept of validity? Second, how plausible or useful are the canonical examples un- 

derlying belief functions? 

2.5.7 Concept of validity. For Shafer, validity reduces to face validity and 

plausibility of instances. His argument for this position, however, contains some 

confusion. Shafer mistakenly assumes that the adoption of an axiomatic framework 

implies a belief in pre-existing rather than constructed probabilities. Thus, 

Shafer (1984a) speaks deris$vely of assessment in the Bayesian context as 

"pretending" that one already has probabilistically coherent beliefs and 

preferences, and then, somehow, "trying to figure out what they are." 



Our own view is that Shafer is correct to regard probability frameworks as tools 

for the construction, rather than discovery, of probabilities. But he is wrong in 

supposing that the axiomatic derivation of a framework detracts from this role--as 

long as we understand, as argued in Section 2.2.3, that axiomatic derivation is 

only one argument in favor of a given framework. If taken seriously, Shafer's ar- 

gument would declare as "non-constructive" any set of prior constraints on the way 

uncertainty is represented or manipulated; thus, it applies as strongly against 

belief functions and Dempster's rule as to Bayesian probabilities. The solution 

in our view is not to drop constraints, but to drop the view that any particular 

set of constraints is inevitable. Thus, probability assessment as we understand 

it (Section 2.4.5) is an iterative and constructive process, in which a tentative 

framework (e.g., Bayesian or Shaferian) is adopted, assessments are made within 

the framework, checked for consistency, and revised; if the overall result is un- 

natural or implausible, the framework itself may be rejected or revised. In other 

words, "pretending" that a framework is correct is a legitimate strategy in uncer- 

tainty assessment; indeed, it is the only possible strategy. A framework is of 

use as a tool precisely because it does impose (tentative) constraints on the 

assessments that are produced. It challenges the expert to actively shape a pre- 

viously disorganized and perhaps even unverbalized set of beliefs. It serves as a 

medium or language in which the expert "thinks" about uncertainty and in which he 

expresses those thoughts. A supposedly "neutral" framework, that imposed no for- +' mat or structurep/beyond that already present, would not help the expert in the 

process of construction and could not advance his or our understanding of his 

beliefs. (See Cohen, Mavor, and Kidd, 1984, for a more general argument in the 

context of knowledge engineering.) 

In sum, Shafer's argument for a constructive process of probability assessment is 

correct. But he appears to have drawn two unnecessary conclusions: (1) It in no 

way contradicts the added plausibility that may be lent to a framework by the ex- 

istence of an axiomatic derivation; and (2) it should not blind us to the impor- 

tance of the iterative strategy of tentatively adopting a framework and testing 

its implications. 



2.5.8 Shafer's canonical example. As noted above, when we apply a belief func- 

tion analysis, we "pretend" that the meaning of the evidence is generated by known 

chances. In order to evaluate Shafer's theory in terms of face validity, we must 

examine this analogy more closely. In particular, we must focus on the indepen- 

dence assumptions embodied in the canonical example which are required to license 

an application of Dempster's rule. It turns out that these assumptions are the 

primary constraints imposed by Shafer's theory on the process of evaluating 

evidence; hence, they are its main contribution to the "constructionw of probabil- 

ity judgments. They have also been the major source of controvery between Shafer 

and Bayesians. Early critics of Shafer's work (e.g., Williams, 1978) complained 

about the obscurity of Shafer's notion of "independent evidence." In a recent 

paper, however, Shafer (in,press) has clarified this concept considerably. 

Shafer's interpretation of belief functions involves two sets of hypotheses (or 

"frames") as shown in Figure 2-3. One frame, S, is a set of background hypotheses 

which concern the state of the process that produced the evidence at hand. For 

example, if the evidence El is a witness's testimony that he saw artillery in a 

certain location, the frame S may simply be the two possibilities (the witness is 

reliable, the witness is not reliable). The other frame, T, contains the 

hypotheses of primary interest, e.g., {the artillery is present, the artillery is 

not present). To get a belief function, we only need (i) a probability distribu- 

tion over S; i.e., standard probabilities P1 and P2, for the reliability and un- 

reliability of the witness; and (ii) a mapping from S to T based on the content of 

the evidence. Since the evidence is the witness's report of artillery, 

reliability in S maps onto (the artillery is present) in T; unreliability in S 

maps onto the set (the artillery is present, the artillery is not present) in T. 

Support m(A) for a subset A in T is just the probability for hypotheses in S that 

map only onto A. (We have referred to this, somewhat loosely, as the probability 

that the evidence "means" A). Bel(A) for a subset A in T is the sum of the prob- 

abilities for hypotheses in S that map onto subsets of T that are contained in A. 

Thus, in our example, Bel(artil1ery is present) = PI; Bel((present, not present)) 

= P1 + P2. 
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Suppose we now receive a second piece of evidence, E2, which is the testimony of a 

second witness that he saw artillery in the same vicinity. We define a new belief 

function for this witness by specifying a frame S2 with the elements (the second 

witness is reliable, the second witness is unreliable) , and by assessing probabil- 

ities PI' and P2' over S2. What is our new overall belief in the elements of T? 

\f'E-ai'& S as Sl, Figure 2-4 shows a new frame, SlxS2, which results from combining 

' elements of S1 and S2. Each cell has a probability which is the product of the 

probabilities of the elements from Sl and S2; and each cell is mapped onto a sub- 

set of hypotheses in T, based on knowledge of El and E2. According to this map- 

ping (as shown by the labels in the cells), support for the artillery being 

present equals the chance that either witness 1 or witness 2 is reliable, i.e., 

PIPl' + PIP2' + P2Plq. This is the result given by Dempster's rule. 

What if the report of the second witness contradicts, rather than confirms, the 

first? That is, E2 is a report that artillery is not present in the specified 

location. In that case, the new frame, SlxS2, appears as in Figure 2-5. The only 

change is in the mapping of the cells to subsets in T--a change required by the 

change in E2. It turns out, however, that the cell corresponding to both wit- 

nesses being reliable does not map to any subset in T. Since El and E2 are 

contradictory, both cannot be true. Thus, we use our knowledge of El and E2 to 

prune out impossible cells in SlxS2. According to the mapping, support for artil- 

lery being present equals the chance that witness 1 is reliable and witness 2 is 

unreliable, i.e., P1P2'/(1-PIP1'), normalizing to remove the impossible case. 

Once again, this is the result of applying Dempster's rule. 

In many of Shafer's discussions, he appears to argue that Dempster's rule is jus- 

tified in situations which "resemble" this canonical example, because it is the 

correct rule for the example (just as Bayesian rules are correct for the case of 

drawing balls from an urn). But what makes it correct? Even these simple ex- 

amples may seem too complex for such a direct appeal to intuition. A recent paper 

by Shafer (in press) contains a more extensive discussion of the preconditions of 

Dempster's rule. We can use Dempster's rule, he says, only if the following judg- 

ments are made: 
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(a) Before consideration of the mapping to T, any hypothesis in S1 is com- 
patible with any hypothesis in S2 (so SlxS2 can be defined as a new 
frame). 

(b) Probabilities for elements of S1 are independent of elements in S2 
(e.g., we do not alter our estimate of the reliability of one witness 
based on the reliability or unreliability of the other witness). 

(c) If we could draw a conclusion about the truth of a subset in T by 
knowing that a certain combination of hypotheses from S1 and S2 was 
the case, then we could have drawn the same conclusion by knowing that 
either one or the other of the hypotheses (from S1 or S2)  was the 
case. (In the example of concurring witnesses, we can conclude that 
artillery is present if both witnesses are reliable; but all we needed 
was one or the other to be reliable). 

(d) The evidence we use for assessing S1 and S2 tells us nothing more 
directly about T. (All the work of reasoning about T is transferred 
to reasoning about S.) 

Having enumerated these assumptions, we must remark that our original question 

about the rationale for Dempster's rule remains unanswered. It has not been 

demonstrated in any way that Dempster ' s rule " follows from" these preconditions. 
Perhaps Shafer means simply that when these particular conditions are met, 

Dempster's rule will appear more plausible or natural. 

Note, however, that the canonical situation described by these conditions includes 

a chance model: Because of assumptions (a) and (b), the probability for a com- 

ponent of SlxS2 is simply the product of the probabilities assigned to the com- 

ponents of S1 and S2. It is tempting, therefore, to view the belief function 

model as a special case of a Bayesian analysis, defined by the restrictions out- 

lined in (a) - (d). In that case, Dempster's rule should be justifiable from (a) 

- (d) by the rules of probability theory. Moreover, Shafer's model would then in- 

herit the axiomatic justification of the Bayesian model in the special cir- 

cumstances where it applied. 

2.5.9 A Bayesian foundation for belief functions? To see how this might work, - 
consider the simple case of Figure 2-3, with H = the artillery is present, H - the 
artillery is not present, R = the first witness is reliable, and = the first 

witness is not reliable. It follows from probability theory that: 



Pr (H) = Pr (H I R) Pr (R P' + ~r (H lx) ~r 6) . 

Following Shafer' s definitions, we interpret m(H) as Pr(R) and m(H or Ti) as ~r(5). 
In addition, from our knowledge of El (i.e., the mapping from S1 to T which it 

establishes), and using (d), we know that Pr(H1R) - 1; if the witness is reliable, 
then the artillery is present. Hence, we may write 

and this gives 

Bel(H) = m(H) Pr (H) 5 m(H)+m(H or 5)  - Pl(H) , 

where Bel(H) and Pl(H) are Shafer's belief and plausibility functions. It 

appears, then, that the belief function analysis is simply an incomplete Bayesian 

analysis. Our uncertainty about Pr(H) is due to our failure, in the belief func- 

tion approach, to specify P~(H)E) , i . e . , the chance of the hypothesis being true 
despite the fact that the present evidence is unreliable. This is just another 

way of saying that Shafer is interested in the proof of the hypothesis, not its 

truth. If ~r (H 15) = 0, Pr (H) = Be1 (H) ; and if P~(H lfi) = 1, Pr (H) - Pl(H) . Thus, 

Bel(H) and Pl(H) give lower and upper bounds for the Bayesian probability. 

Let us now see how Dempster's rule works within this Bayesian interpretation. Let 

R1 and R2 refer to the reliability of the first and second witness, respectively, 

and take the case where El and E2 agree. A Bayesian probability Pr('l'), is a 

function of arguments, the event and the evidence. Presumably, therefore, in 

using Dempster's rule, the probability to be bounded is Pr(HIE1,E2). Let us for 

the moment, however, ignore this consideration and use Pr(H). (Note that in the 

case of one piece of evidence, we likewise used Pr(H) ,instead of Pr(H(E1).) By 

probability theory, we have 



Substituting based on conditions (a) and (b), we have 

By Dempster's rule, 

Using (c) and (d) and the mapping from SlxS2 to T, Pr(HJR1 or R2) - 1. Therefore, 

Pr(H) - m12 (H) f P~(H lx1;2)m12 (H or . 

It follows that 

Thus, Bel(H) and Pl(H), when computed by Dempster's rule, continue to give upper 

and lower bounds for Pr(H). (Note, however, that Bel(') and PI(') are not bounds 

on what the future probability could be, given further evidence. They are bounds 

on Pr(') implied by our present evidence.) A similar demonstration can be given 

for the case where El and E2 conflict. This approach can be generalized to the 

case where support is assigned to arbitrary subsets of hypotheses by regarding 

"reliability" as a set of separately assessed skills involved in discriminating 

subsets of hypotheses from their complements. 

The problem, of course, is that we have not justified Dempster's rule as a bound 

on the Bavesian probability, Pr(HI'E1E2). When we conditionalize on the evidence, 

as we certainly must in a Bayesian analysis, Pr(R1 or R2) is replaced by 



This brings out a curious and critical feature of Shafer's theory. He is asking 

us to assess the reliability of a witness (or more generally, the status of an 

evidentiary process) without taking into account our knowledge of what the witness 

said. In Shafer's canonical example, knowledge of the evidence enters in only for 

the mapping from S to T, after all the probability work has been done on S. In a 

Bayesian analysis, on the other hand, the credibility of a witness can be shown to 

depend both on what is said and on its prior probability, i-e., our original ten- 

dency to think it true. If a witness says something which is independently 

believable, our estimate of his reliability increases. More importantly, perhaps, 

the credibility of one witness can, in a Bayesian analysis, be increased by cor- 

roboration of a second witness, and decreased by contradiction. 

Assumption (b) is plausible only in light of this restriction. The strict 

Bayesian version of (b) is 

Note that EIRl implies H, i.e., if witness 1 is reliable and says H, H is true. 

But we would expect, quite generally, that Pr(R2(E2H) > Pr(R21E1E2), i.e., learn- 

ing for a fact that what the witness said is true increases his credibility more 

than corroboration by a second witness. On the other hand, if we are assessing a 

witness's reliability prior to (or without consideration of) his testimony, it 

does make sense to require that his reliability be independent of the reliability 

of another witness. We thereby preclude shared uncertainties (e.g., a conspiracy) 

in the two evidential processes being combined. 

A group of Swedish researchers, whose work is summarized and extended in Freeling 

and Sahlin (1983), and Freeling (1983), has explored issues such as this. Like 

Shafer, they focus on the reliability of the evidence, rather than the truth of 

the hypothesis, i.e., they reject the traditional Bayesian effort to model the 

chance of a hypothesis when the evidence is unreliable. But unlike Shafer, they 

analyze reliability in the light of the evidence, as Pr(R1E) rather than Pr(R). 

In effect, this is an effort to give a proper Bayesian account of the notion of 

quality or completeness of evidence, rather than truth. (As such, it is an alter- 



native to the idea of second-order probabilities discussed in Section 2.4.8) The 

upshot of this research is that if m(H) is equated with Pr(RIE), Dempster's rule 

cannot in general be justified. Depending on the character of the belief func- 

tions being combined, and the kinds of conditional dependence assumed in the 

Bayesian analysis, Dempster's rule may be correct, a good approximation, or en- 

tirely off the mark in comparison to the "properw Bayesian rule of combination. 

While it fails to fully validate Dempster's rule, the Swedish work also lacks 

most, if not all, of the virtues of the belief function representation. In terms 

of feasibility, formulations which conditionalize on the evidence become extremely 

complex even for the simplest examples. The Swedish group has made little 

progress in deriving rules for the combination of evidence involving the full 

range of cases to which Dempster's rule applies, in particular, where varying de- 

to arbitrary subsets of hypotheses. Moreover, the 

is incompatible with the segmentation of 

Shafer' s system. 

Shafer (in press) explicitly rejects the attempt to provide any sort of Bayesian 

foundation for belief functions. Arguments based on Dempster's rule "have their 

own logicw--based on the appropriate canonical examples and an intuitive convic- 

tion that the appropriate conditions of independence are satisfied. As noted 

above, Shafer's appeal to intuition has not entirely succeeded in making that 

"logic" clear. We propose, however, that it can be clarified. In opposition to 

both Shafer and the Bayesians, we would argue the merits of the pseudo-Bayesian 

analysis of Bel(') and PI(') as bounds on Pr('), which we illustrated in this 

section. It fails to derive Dempster's rule as a special case of probability 

theory. Nonetheless, it clarifies the relationship of Dempster's rule to the 

canonical example; by an argument that resembles a valid Bayesian argument in most 

respects. Moreover, the dissimilarity can be crisply and clearly stated: the ar- 

gument concerning reliability is conducted without consideration of the content of 

the evidence. The latter can be regarded as an explicit decision, justified by 

enormous gains in the simplicity and power of the calculus. This is not 

equivalent, however, to a fixed belief that the content of evidence is irrelevant. 

In an iterative, bootstrapping system, we can guard against the pitfalls of that 



assumption by continually reexamining it as an analysis proceeds. In Section 3.0 

we explore the design of a system in which the function of recalibrating sources 

of evidence in light of corroboration or conflict is assigned to a process of 

qualitative reasoning. 

2.5.10 Role of the assumptions in constructin~ an analysis. Conditions (b) and 

(c) play an important role as constraints in the construction of a belief function 

analysis. Violation requires reassessment of the overall structure of an 

analysis, redefining frames for either S or T or both (cf., Shafer, 1984a). 

(c) says that elements from both witnesses' testimony must not be required in or- 

der to construct a chain of reasoning that gets us to T. For example, if one wit- 

ness said p and the other saidp-tq we would need to assume both were reliable to 

infer q. Therefore, these two statements must be counted as parts of a single 

evidential argument. In this sense, Dempster's rule combines self-contained 

"arguments" rather than "bits" of evidence. And application of the rule presup- 

poses a more global process of reasoning addressed to problem structuring. 

(b) and (c) represent a limitation on Dempster's rule in a second sense: Once our 

evidence has been segmented into independent arguments, we can combine it by 

Dempster's rule, but that rule tells us nothing about how two dependent pieces of - 

be combined within a self -contained argument.  or piamP1.f we 
.. . -, ~ -. 

--I________.._ 

are large rectangular ---.-- buixg;",anGmost large 
-I% _ 

f f14 buildings ~r%-rre-a-r--a--.'~f'oa-r>what can we say about the chance that an object , known 
- - . . . . . - ---- "-".---+-" -----_ 
to be a C ~nstallation, is near a road? Clearly, in any expert system 

application, Dempster's rule must be supplemented by other forms of inference. 

Interestingly, in a recent paper, Shafer (1984a)himself suggested that expert sys- 

tems will have to make provision for dependent evidence, and that the full range 

of Bayesian operations can be applied on probabilities for the background frame, 

S. This is a departure from the position that only Dempster's rule is appropriate 

for combining evidence in the belief function context.. 

We have now noted three different ways in which an expert system application of 

Shafer's system might need to be supplemented: 



recalibration of sources of evidence in terms of the content of the 
evidence, 

a reframing evidence and hypotheses to achieve independence of 
arguments , . arid 

a reasoning about dependent evidence within an argument. 

We may refer to this set of issues as the incomvleteness of Dempster's rule, in 

analogy to the incompleteness of Bayesian theory discussed in Section 2.4.5. The 

system of qualitative reasoning proposed in Section 3.0 addresses all three. 

2.5.11 Plausibility of instances: conflict of evidence. To what extent does 

belief function theory yield inferences which are intuitive and plausible in 

specific applications?, A topic of special concern in this regard is conflict of 

evidence. Zadeh (1984b) recently raised an example of the following sort. Sup- 

pose we have two experts who we believe to be very reliable and who produce con- 

flicting judgments. For example, there are three possible interpretations of an 

object x in a specified location: HI--x is a field; H2--x is a forest; H3--x is a 

building. Analyst A, using photographic evidence, assigns .99 support to HI and 
hP- .L 

.O1 to H2; analyst B, using independent intelligence information, assigns 
A u .99 support to H3 and .O1 to H2. We have the following two support functions, and 

may combine them by Dempster' s rule, as shown in Figure 2-6: 

Table 2-2 

mA( ' mg( ' mAB( ' ) 

The counterintuitive result, according to Zadeh, is that exclusive support is now 

assigned to H2, a hypothesis that neither expert regarded as likely. Moreover, 

the result is independent of the probabilities assigned to H1 or H3. 
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Figure 2-6. Support Functions to Illustrate Combination of 
Conflicting Evidence by Dempster's Rule 
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Shafer 's  response ( i n  press) is cogent, but ult imately,  we f e e l ,  off the mark. If  

we rea l ly  regard these experts as  perfectly r e l i ab le ,  Shafer says, the argument as 

s ta ted  is  correct .  After a l l ,  A says tha t  H3 i s  impossible, and B rules out  HI; 

tha t  leaves H2 as the only remaining poss ib i l i ty .  ( I t  i s  important to  note tha t  

exactly the same r e s u l t  would be obtained i n  Bayesian updating, i f  we in terpre t  

the m(') as likelihoods of the evidence given the hypothesi 

m b a b i l i t i e s  f n ~ ~ - . l . ;  On the other hand, Shafer 

argues t h a t  experts are  seldom i n  f ac t  perfectly r e l i ab le .  A more reasonable pro- 

cedure would be t o  "discountw the belief functions supplied by the experts to  

r e f l e c t  our degree of doubt i n  the r e l i a b i l i t y  of t h e i r  reports.  In discounting, 

we reduce each degree of support by a fixed percentage, and a l loca te  the remainder 

t o  the universal s e t  (H1,H2,H3). The re su l t  of applying Dempster's r u l e  w i l l  now 

be a be l ie f  function tha t  assigns support t o  a l l  three hypotheses. 

Let us examine t h i s  response i n  a b i t  more de ta i l .  Recalling t h a t  we regard these 

experts as  highly r e l i ab le  (though not per fec t ) ,  suppose we discount A's be l ie f  

function by 1% and B ' s  by 2%. The resul t  i s  the following, as  depicted i n  Figure 

2-7: 

Table 2-3 

mg(') mAB ( ' ) 

We now have a "bimodal" belief function, with the prepbnderance of support going 

t o  H1 and H3. This appears, a t  f i r s t  look, to  be an in tu i t ive ly  plausible resul t :  

it re f l ec t s  our feel ing,  which we represented i n  the form of discount r a t e s ,  that 

A or B (or both) could possibly be unreliable.  But l e t  us look a l i t t l e  more 

closely. 
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Figure 2-7. Support Functions to Illustrate Combination of 
Conflicting Evidence with Discounting 



The first thing to note is what a vast difference a small amount of discounting 

makes. In Table 2-2, after combination by Dempster's rule, there was exclusive 

support for H2. In Table 2-3, final support for H2 is only slightly greater than 

1%. The second thing to notice is the large discrepancy between mAB(H1) and 

mAB(H2). Although we did in fact discount B at twice the rate as A, the actual 

numbers (2% and 1%, respectively) and the difference between them were very small. 

It is by no means clear that the resulting difference in support for HI and H3 is 

intuitively plausible. More to the point, the sensitivity of the result for all 

three hypotheses to very small differences in discount rates is disturbing. 

Finally, to dramatize the sensitivity even further, note that if support for 
2, X {H1,H2,H3) were 0 for both experts, and if A assigned 0 support to Ha, and B as- 

2- 
signed 0 support to HZ, these very small changes render Dempster's rule - 

indeterminate. 

Perhaps the problem is that our original assessment of the reliability of the ex- 

perts was mistaken. Suppose then we discount A by 29% and B by 30%. We now get: 

Table 2-4 

Support for H1 and H2 after combination is now roughly equal, certainly a more in- 

tuitive result. Then should we have discounted A and B more in the first place? 

According to Shafer, presumably, this is indeed the case; the fault is not in the 

theory, but in the initial allocation of support. The example, however, high- 

lights a deeper problem. As we noted in Section 2.5.5, reliability is to be 

assessed as if we had no knowledge of the evidence actually provided. Thus, we 



are apparently not permitted to use the conflict between A and B as a clue regard- 
ing their capabilities or as a guide to the appropriate amount of discounting. We 

return to this issue very shortly. 

Zadeh himself objects to the procedure in Dempster's rule of normalizing support 

measures to eliminate impossible combinations. But we think this objection is 

mistaken. Normalization is in fact the only way in Shafer's theory (albeit quite 

indirect) that our knowledge of the evidence enters into the assessment of 

reliability. It accomplishes a sort of de facts discounting as a function of con- 

flict of evidence. Note in the earlier example of Figure 2-5 that the reliability 

of witness 1, after combining his testimony with the conflicting evidence of wit 

ness 2, is (P1P2'/(1-PIP1'). This is less than PI, the original assessment of 

witness 1's reliability. 

Although normalization is in itself not problematic, nevertheless, it is not a 

complete or adequate solution to the problem of conflict. First, because there is 

no lasting effect on later problems, i.e., we have not truly updated our estimate, 

Pl, of A's reliability in the light of his conflict with B. Second, there is no 

procedure for exploring potential reasons for the conflict. A closer examination 

of (a) the factors that determined our original reliability estimates, (b) our as- 

sumptions regarding independence of the two arguments, and (c) the internal struc- 

ture of the arguments employed by A and B, might lead to a revision in beliefs and 

assumptions that permanently improves our knowledge base. 

We argue, then, that the revision of reliability estimates is only one possible 

result of an iterative, constructive process of problem solving prompted by con- 

flict of evidence. (We also have the options of reframing evidence and hypotheses 

to reflect revised judgments of independence and of revising specific beliefs in- 

ternal to the conflicting arguments. These are the alternatives outlined at the 

conclusion of Section 2.5.10). Therefore, such revisions must be justified by 

considerations which, once discovered, carry weight independent of the conflict of 

evidence that led to their discovery. Ideally, these newly discovered factors 

could be regarded as sufficient to justify revisions in reliability estimates in- 

dependently of El and E2. (Referring to these factors as F, we would have 



Pr(R1JE1E2F) = Pr(RIJF).) This justifies the reassessment of reliabilities in the 

light of the evidence in the Shafer-Dempster system, and is the method implemented 

in the system to be described in Section 3.0. 

2.5.12 What is "conflict of evidence"? So far, we have taken for granted the no- 

tion of conflicting evidence, and that in some cases at least special steps are 

justified in dealing with it. But it is by no means obvious what "conflict" is, 

or why steps outside the normal calculus of uncertainty should be required to 

handle it. Conflict of evidence does not appear, on the surface, to be the same 

as incoherence. The formal constraints of Bayesian theory dictate, as we saw in 

Section 2.4.5, that multiple probabilistic analyses should agree with one another 

and with direct judgment. Similar coherence constraints can be derived for 

Shafer's theory from the requirement that uncertainty on S be measured by a 

probability. But it is implicit that these analyses are, or should be, based on 

the same evidence. There appears to be no corresponding guarantee or prescription 

that arguments based on different evidence should arrive at the same or similar 

conclusions. Dempster's rule is designed explicitly to combine arguments based on 

independent evidence; hence, there are no direct constraints on the extent to 

which those arguments must agree (except that there be at least one pair of mean- 

ings from the two arguments whose intersection is non-empty). 

Nevertheless, we propose that the resolution of conflict in a belief function 

analysis be construed as a desire for coherence. The missing element, which is 

responsible for the incoherence, is a judgment, often implicit, regarding the 

overall structure which the final belief representation is expected to have. Such 

judgments are based on one's knowledge about reasoning in a particular problem 

domain. "Conflicting evidence" is evidence whose combination produces a structure 

that violates such a prior expectation. Thus, the definition of "conflict" will 

vary from one problem domain to another. The locus of conflict is not, strictly 

speaking, between the two sources of evidence, but between both of them, on one 

side, and a structural expectation regarding the outcome of the argument, on the 

other. When a conflict of this sort occurs, in an iterative, constructive 

context, the decision maker has a choice of either revising the expectation or 

else making one or more of the three kinds of changes we discussed above (revising 



discount rates, frames, or steps in an argument). 

If belief functions are probabilistic with discounting (i.e., assign support only 

to single hypotheses and to the universal set), then it is often plausible to 

require that hypotheses which receive very little support from either of two argu- 

ments not receive predominant support in the combined analysis. This was the 

basis of the adjustment of discount rates in the above example (and also seems to 

underlie the use of discounting in Shafer, 1982). Note that an analogous require- 

ment is recommended for Bayesian analysis by deGroot (1982). 

Other possible structural expectations regarding the form of a belief function 

model include that it be consonant or hierarchical. In these cases, support is 

assigned only to nested subsets of hypotheses or to subsets that.form a tree, 

respectively. Neither of these properties is necessarily preserved through com- 

bination by Dempster's rule. Yet, as we noted in Section 2.5.3 above, such struc- 

tural constraints may (a) be quite plausible for particular problem domains (cf., 

Gordon and Shortliffe, 1984, on medical diagnosis), and (b) be required to reduce 
' w 

the computational tractability of a Dempster-Shafer model. Thus, once again,a 
t' 

higher-order process of qualitative reasoning may be necessary to explore revi- 

sions in beliefs and assumptions, in order to handle "conflict" and to ensure the 

applicability and plausibility of a Dempster-Shafer calculus (see Section 3.0 

below). 

An important by-product of requiring consonance should be noted. One potential 

criticism of Shafer's theory is that it lacks a concept of the acceptance of a 

hypothesis once it achieves a sufficient degree of evidential support (e.g., Levi, 

1983; L.J. Cohen, 1977). A precondition of acceptance--and what makes it a useful 

concept in some contexts--is that it should yield a logically consistent and com- 

plete story. Neither is true if a threshold or cutoff for acceptance is defined 

on Bel(') in Shafer's system. Both a hypothesis and its complement could have 

positive support, and thus conceivably both could be accepted, yielding a 

contradiction. Moreover, two propositions, p and q, might be acceptedbut their 

conjunction, p&q, rejected. Both of these problems disappear in a consonant 

belief function: Since a hypothesis and its complement are not nested, they can 



not both receive support; and it can be shown that Bel(p&q) - MIN(Bel(p),Bel(q)) 
and thus that a conjunction is at least as credible as either of its .conjuncts. 

In all these cases, there is a tension between the desirability or plausibility of 

depicting the state of evidence "as it is," conflicts and all, and attempting to 

produce a resolution or reconciliation within the framework of some plausible or 

desirable global requirement. We claim that this tension is at the heart of any 

truly intelligent and flexible reasoning with probabilistic systems. 

2.5.13 Summarv. Shafer's theory provides a natural representation of quality of 

evidence and relaxes the assessment requirement to the extent that the evidence is 

incomplete. Like Bayesian theory, however, belief function models impose inor- 

dinate input and computational demands unless specialized models are adopted. The 

validity of Shaferian theory has not been clearly established, although it may be 

illuminated by a partial Bayesian derivation. A major difference is that Shafer's 

theory does not permit reassessment of the quality of an information source in 

terms of what that source says; the credibility of one witness cannot be increased 

by corroboration of a second witness or decreased by contradiction. In belief 

function theory, the outcome of combining the information from two conflicting 

data sources can vary dramatically, depending on our assessment of their 

credibility. Yet we cannot use the two sources to crosscheck one another. We 

argue that this gap in Shafer's theory requires that it be supplemented by a 

process of qualitative reasoning that reexamines sources of evidence as an 

analysis proceeds, and recalibrates them in the light of corroboration or 

conflict. The same process might supplementShafer's theory in other ways: by 

reframing evidence and hypotheses to establish independence of evidential 

arguments, and by revising inferential steps which are internal to such arguments. 

2.6 Fuzzv Set Theory 

2.6.1 Nature of the theory. Since L.A. Zadeh advanced fuzzy set theory in 1965, 

an enormous amount of interest, and a very large literature, has been generated. 

Most of this interest has been theoretical, concerned with the mathematical im- 

plications of the theory, but there have been a number of attempts to apply the 



4D~p-4 -6- 
theory to practical problems. This is in U n e  with Zadeh's original reason for 

h 
introducing the concept. oE imdequsL~ he-. \ 
C-~3 i ~ v t r w p y p  Y G  He felt that our intuitive understanding \ 

I 
of concepts and, more interestingly, our reasoning about those concepts, were 

wt s J- I typically imprecise, yet,,ana ysis +spadal'y v.7' +- required I 
! 

precisi &&G~uL To resolve this paradox, he introduced the now well-known concept j 
I 

of the fuzzy set--a set with imprecise boundaries. The essential element is the i 
I 

membership function vA(x) which represents an element x 

belongs to some set A. If pA(x) = 1 then elongs to A, while if 'p 
yA(x) - 0, x does not belong to A. An intermediate value, such as pA(x) = 0.6, 

\\ 
indicates that x belongs to the set to some degree. Fuzzy sets are thus a precise 

tool for representing and manipulating imprecise notions. 

cnAw-+- I 

Application of fuzzy set theory involves: first, the representation of imprecise 
f h concept by fuzzy sets; second, the use of a calculus to construct other fuzzy sets @ A 

&representingothe output variables ~*anal~sis; and third, reinterpretation of 
cAd.nculr6 f i  

the results in imprecise language (see L.A. Zadeh, 1975). The first and last I 

k 
steps are crucial if the flavor of the fuzzy theory is to be fully captured. The , 

core idea is to construct a calculus for the formal (i. e ., precf se), manipulation of I 
imprecise concepts, which takes in imprecise inputs and puts out imprecise outputs. \ 

2 .6.2 Au~lications of fuzzv set theorv to inference. The theory of fuzzy sets /' 

can be applied in many ways, in the sense that wherever a mathematical relation- 

ship exists, it can be fuzzified. Thus, there are many possibilities for using 

the fuzzy calculus in conjunction with other inference theories. Alternatively, 

it can be applied directly to ordinary imprecise reasoning (by experts or non- 

experts) in natural language. We will introduce some of the formalism of fuzzy 

set theory by examples of these two types. 

2.6.3 Fuzzv implication. could be 

written: 

"If the texture is rough, and the illumination is good, then the object is 
a forest." 



To express this rule using fuzzy set theory, we need to define the input fuzzy 

sets. The first will be yR(t), which measures the extent to which a particular 

texture-vector t can be said to belong to the set of 'rough' texture vectors. The 

second will. be vG(i), the extent to which an illumination level, i,.can be said to 

be 'good.' The third will be pF(x) describing the 'forest1-ness of the object: x 

is some variable which gives a precise categorization of each object andp F(~) 

will be a fuzzy-set on the variable x. 

The first manipulation will be to representp RG(t,i), the extent to which an image 

with texture-vector t and illumination level i can be said to be both "rough" and 

"good." Zadeh's calculus suggests that this is the minimum of the two membership 

functions: 

Implication in fuzzy set theory is defined as a relation. Thus, "if U is F, then 

V is G," where F and G are fuzzy sets on the variables u and v underlying U and V, 

is described by the relation 

using an obvious notation. This may be interpreted as the extent to which a par- 

ticular value of U implies a particular value of V. 

The next step is to combine the rule with a statement about the fact described in 

its antecedent. In fuzzy implication, not only may be the concepts involved be 

fuzzy, but the match between a fact and the antecedent of a rule may be a matter 

of degree as well. Thus, we may a rule stating "If U is F then V is G," but * an input stating that "U is F*". ZITIWJ F* are not the same. Zadeh defines 
4 

this as 



where Y is the fuzzy set that rqsults from combining F* and V/U. Thus, in our I 

a,+- 
example, suppose p '(t,i) is a fuzzy set on the variables for texture and 

l' 
illumination, t and i. bLl/'(t,i) may reflect an input to the effect that 

I 
is "very rough" and the illumination is "not very good." We find that 

A 

is the induced fuzzy set on the categorization variable, x. py(x) is a quantita- 

tive measure of the possibility that the object is a forest given the fuzzy i 

evidence regarding roughness and illumination and the fuzzy implication rule. The 
. . 

output may now be translated into an imprecise natural language expression (e.g., 

"very possibly a forest") corresponding to py(x). 

2.6.4 Fuzzv probabilities. Uncertainty about facts (i.e., chance) was not men- 

tioned above; we just talked about imprecision. Zadeh stresses that the two con- 

cepts are distinct, and that fuzzy set theory should only be used to describe 

imprecision. If we are imprecise our uncertainties, however, then a role exists 

for describing that imprecision with fuzzy sets. Watson et al. (1979) and Zadeh 

(1981) discuss this idea in the context of decision analysis, but it can clearly 

be applied to any use of Bayesian probability theory, or belief function theory. 

The basic tool for fuzzifying a calculus is Zadeh's extension principle, which 

enables us to compute the fuzzy set membership function for a variable when it is 

a function of variables whose fuzzy set membership functions are known. Let 

Y = F(X~ ,X2, . - . ,9. Then py(y) = max[min(uX (xl) , pX2(x2) 7 . . . , p (9) 1 where 
1 4 py(y) is the extent to which a value y belongs to the set of possib e numbers for 

the output variable. 

Suppose a scene labeling procedure leads to a probability p that an object should 

be classified as a building. Imagine we have a loss function which gives unit 

loss if misclassification occurs, and zero loss if not. Then the expected loss 

from classifying the object as a building is 



while the expected loss from classifying the object as 'not a building' is 

1 x  p + 0 x (1-p) - p. 
Clearly, we minimize expected loss by categorizing it as a building if p>1/2. Now 

suppose that we are imprecise about p to the extent that we can only describe a 

fuzzy setp(p) about possible values of p. Fuzzy sets for the expected loss in 

the two cases (actually ~(1-p) and ~(p)) can be produced using Zadeh's extension 

principle. But what conclusions can we draw? Freeling (1980) discusses this in 

some detail, suggesting several alternatives approaches. As we might expect, when 

results are fuzzy, the analyzis may not indicate any particular decision regarding 

classification. 

As with the Bayesian analysis, there are some non-trivial problems in attempting 

to apply fuzzy set theory to inference in expert systems. 

2.6.5 Feasibilitv. We criticized both Bayesian theory and belief function theory 

on the grounds that the analysis involved in practical problems can be quite 

complex. This will also be true of fuzzy set theory. The fact that functions of 

variables have to be handled in computations makes the analysis difficult to 

handle numerically. Nonetheless, there are indications that the max-min opera- 

tions are numerically easier than the sum-product operations of the other 

theories. It would be wrong, however, to assert that the use of fuzzy set theory 

removes all of the difficulties caused by complexity in the other two theories ex- 
' 

amined here. 

2.6.6 Validity. For a theory which has had an enormous literature, there is 

still a considerable discussion amongst scholars on the justification and inter- 

pretation of the theory. 

2.6.7 Semantics: Where do the numbers come from? This question is raised by 



most people when they f i r s t  study fuzzy s e t  theory. There are no standard proce- 

dures to  be applied i n  every case; anything plausible would seem to  do. I n  

par t icu lar ,  there are  neither behavioral specifications nor canonical examples of 

the kind Shafer claims to be important. Zadeh would argue tha t  a theory of i m -  

precision should not need precise inputs,  so tha t  we should not bother too much 

over the exact nature of the imput membership functions. I f  t h a t  is  the case, 

then answers should not  be very sensitive t o  input membership functions. . 
In  many applications, t h i s  i s  not the case, and indeed, 

sitivetojustonepointonamembershipfunction. 

What i s  the meaning of the o u t ~ u t ?  Paralleling the uncertainty relationship be- 

tween human perceptions of imprecision and the calculus of fuzzy se t s  i s  the 

reverse relationship: once,we have computed an output fuzzy s e t ,  what do we do 

with it? We br ief ly  discussed the poss ib i l i ty  of l ingu i s t i c  interpretat ion above. 

This does not appear t o  have been a sa t i s fac tor i ly  implemented approach, a&&m%-&r 

i n  par t  because people d i f f e r  i n  the conclusions they draw from the same natural  

language statement. 

I n  the l i g h t  of these d i f f i c u l t i e s ,  it is  not surprising that  e f fo r t s  should be 

made t o  assimilate fuzzy se t s  t o  some other framework of uncertainty, such as the 

Bayesian or Shaferian. I t  i s  d i f f i c u l t  t o  do th i s  i n  a natural way, however, due 

t o  the difference between imprecision and uncertainty about f a c t s .  For example, 

suppose Analyst A refers  to  an object x as  "long", a f t e r  having measured x 

exactly. There i s  no doubt as t o  x ' s  actual length-and although A may regard x as 
3 

long only to a cer ta in  degree, he is  not uncertain whether or  not x i s  long. What 

f a c t  then could A be uncertain of?%e add three caveats: ( i )  i f  A t e l l s  a second 

Analyst B tha t  x i s  long, then fl may be uncertain regarding x ' s  actual length; 

( i i )  i f  A had only glanced a t  x ,  rather than measuring it ,  he might be uncertain 

(as  well as imprecise) about x ' s  actual length; ( i i i )  we may i n  f a c t  be uncertain 

as to  whether a random English speaker would c a l l  the object "long". 

Nevertheless, the most natural approach is  t o  t r e a t  t h i s  kind of uncertainty as 

the degree t o  which x (or an object of x ' s  length) is  long, ra ther  than the chance 

tha t  x i s  long. Put another way, these degrees are p a r t  of the meaning 

(denotation) of "long", and not (necessarily) a r e su l t  of uncertainty about what 



"long" means or about the actual length of an object. 

Nonetheless, it may be worthwhile exploring ways to represent imprecision in terms 

of other frameworks. For example, a consonant Shaferian support function (Section 

2.5.3 above) obeys a calculus that closely approximates Zadeh's possibility 

theory. Consonant support functions seem appropriate for representing imprecision 

in the implications of evidence (it points to a set of nested regions where the 

truth could lie). And they have the advantage of a somewhat more secure normative 

foundation (Sections 2.5.5 - 2.5.11 above). Thus, the possibility of translating 

between natural language expressions and support functions might be worth 

exploring, despite some cost in naturalness. 

2.6.8 Inference: What are the appropriate connectives? In terms of e5ther 

axiomatic justification or face validity, the procedures Zadeh recommends for com- 

bining his membership functions are not unique. For example, Zadeh argues that 

the degree to which an element belongs to a set A1 another set A2 should be 

computed by 

This is clearly consistent with the requirement that if both sets are crisp (i.e., 

only takes the values 0 or 1) , set membership should obey the usual rules ( i . e . , x 
pA1nA2 if and only if x d l  and xd2). Note however, that this is not the only con- 

nective rule with this property. For example, the family of connectives 

all have this property, where 1- ais a power to which the membership function is 

raised. Zadeh choosesa- 1; the choice ofa- 0 gives the Bayesian rule for the 

probability of a conjunction (namelyp (x). pA (x)). There are many other pos- 
A1 2 

sible definitions (see Dubois and Prade, 1984). 



Similarly, disjunction, negation and implication all have alternative 

representations, and the choice of the forms usually employed is arguable. So far 

as we are aware, very little research has been carried out on the implications of 

using different connectives on the results of a fuzzy analysis. There is, 

therefore, some arbitrariness in the connectives chosen by Zadeh--an arbitrariness 

which pervades the theory. 

2.6.9 Plausibility of instances: The main strength of Zadeh's theory is in its 

ability to produce instances of reasoning that are acceptable on a case by case 

basis. In this regard, it has a richness and scope that no other theory even at- 

tempts to capture. In particular, it is the only theory that attempts to formal- 

ize the combination of considerations based on similaritv (e.g., the closeness of 

F* to F in the above example) with more traditional considerations in inference 

(e.g., traditional logic or probability). In this largely uncharted domain, the 

(present) absence of deep normative foundations may be no disgrace. 

Nonetheless, there may be cases where fuzzy logic gives implausible (or non- 

useful) answers. Fuzziness is concerned with what is possible, rather than what 

is probable. Zadeh sees a possibility distribution as being an upper bound on a 

probability distribution. Articulating the possible may be important, but if many 

options are possible, it does not help in our search for what is probable. In 

practice, this point is expressed by the tendency for fuzzy sets to produce rather 

bland answers, giving high values of the membership function for large sets of 

variables. One can see some applications when this is not an obstacle to 

understanding, if some important options are seen to have very low or zero 

possibility. In general, it does present a difficulty. 

2.6.10 Summary. Fuzzy logic is a highly flexible and versatile tool for handling 

imprecision. It may be applied directly to reasoning with verbal expressions or, 

at a higher level, to reasoning with a numerical calculus like probability theory. 

Unfortunately, the meaning of fuzzy measures is not always clear; and the rules 

for manipulating them seem to lack any deeper justification than the plausibility 

of the answer in a specific application. 



2.7 Non-Monotonic Reasoning 

In this section we turn to a quite different approach to reasoning under condi- 

tions of uncertainty. Although non-monotonic reasoning emerges directly from the 

tradition of non-numerical reasoning in artificial intelligence, it is designed to 

address problems of incomplete information. The basic ideas of non-monotonic 

reasoning were first applied by Stallman and Sussman (1977) in a system for 

electronic circuit analysis. Since then, theoretical work has been associated 

with Doyle (1979), McDermott and Doyle (1980), Reiter (1980), McCarthy (1980), and 

others. 

2.7.1 Nature of the theorv. Traditional, axiomatic formal systems are monotonic, 

in the following sense: beginning with an initial set of premises, the -number of 

provable statements or theorems of the system increases monotonically in time as 

new axioms or premises are added on. 

In contrast, the content of practical structures of argument and belief may 

diminish as well as increase. New data may compel an analyst to challenge and 

reject previously derived conclusions. Such systems are non-monotonic in time. 

Humans become skilled at merging conflicting data into existing arguments or 

beliefs so as to regain consistency while minimally disrupting the established 

systems. Non-monotonic logic is the name associated with a set of formal and 

computer-based systems designed to incorporate new, conflicting data into systems 

of belief based on incomplete information. 

2.7.2 Dependencv-directed backtracking is a key concept in implementing non- 

monotonic systems. As data and constraints are added to a non-monotonic system, 

they are treated as valid until a contradiction is found. Traditional systems, in 

the face of a contradiction, must backtrack past the data that was added im- 

mediately prior to the contradiction, searching for a new path that is 

contradiction-free. Many dead-ends are likely to be encountered in an exhaustive 

search of this type before a consistent total set of beliefs is found. In a non- 

monotonic system, only those beliefs which actually contributed to the contradic- 

tion need to be considered. 



Dependencies among statements in a non-monotonic system (Doyle, 1979) are repre- 

sented (primarily) by data structures called support lists. A support list jus- 

tification for a statement has the form 

Statement # statement (SL <i&list> <&list>). 

Such a justification is a valid reason for belief in the statement if every state- 

ment in its inlist is believed, and every statement in its =list is not 

believed. For present purposes, we can distinguish three kinds of justification 

in these terms: 

(1) A premise justification has an empty inlist and an empty &list; i....e., 

(SL()()). Thus, nothing else needs to be demonstrated, or not to be demonstrated, 

to ensure acceptance of a statement with such a justification. Observational data 

(or unquestioned general principles) might be treated in this way. For example, 

N- 1 Object has texture of type x (SLO 0 

is automatically regarded as IN. 

( 2 )  A monotonic justification has a non-empty inlist, but an empty &list. For 

example, 

N- 2 Object is a building (SL(0bject has texture of type x) ( ) )  

is a monotonic justification. Note that it corresponds to the example discussed 

in Section 2.4: This type of node simply states that if certain other facts are 
believed (e.g., texture is type x), then the relevant statement should be 

accepted (e.g., the object is a building). N-1's being IN, in conjunction with 

this justification for N-2, is sufficient to cause N-2 to be IN. 

(3) If only monotonic justifications exist, no statements can be retracted. 

Hence, they are appropriate only if all possible evidence is explicitly stated in 



the &lists corresponding to various possible conclusions. In other words, we 

must resolve not to accept any statement until we possess all the information 

regarding its truth or falsity that we ever intend to regard as relevant. In this 

example, N-2 would make sense only if texture was the sole clue relevant to class- 

ifying an object as a building. More typically, we cannot afford to be this 

conservative. We may wish to accept a statement provisionally, to act "as ifs' it 

were true, and to use it in subsequent reasoning, based on only a subset of the 

possible observations. The appropriate means for doing so is .via a non-monotonic 
justification, i.e., a support list whose outlist is non-empty. Statements with 

non-monotonic justifications are called assumptions. The inlist states the condi- 

tions (if any) under which it is desirable to assume the truth of the statement; 

the %list states the conditions under which the assumption would have to be 

rejected. Thus, to continue the example, a more appropriate version of N-2 might 

be : 

N-2' Object is a building (SL(0bject has texture of type x) 
(Object is far from road) ) 

In other words, if we know the texture of the object to be x, we can assume the 

object is a building as long as we have not proven that it is far from the road. 

Thus, N-1's being IN, in conjunction with this justification for N-2', is still 

sufficient to cause (provisional) acceptance of the statement that the object is a 

building. The assumption is appropriate even if we have as yet collected no data 

at all regarding the object's distance from a road. But suppose we now collect 

such data and as a result add the following premise to our system: 

N- 3 Object is far from road (SLO 0 )  

N-3's being IN is now sufficient to cause N-2' to go OUT. 

The latter is an extremely simple example of dependency-directed backtracking. 

Let us spell out the steps in a bit more detail. N-2' and N-3 being jointly IN 

is detected by the system as a contradiction. The system then sets up a CON- 

TRADICTION node with N-2' and N-3 in its inlist: 



N-4 CONTRADICTION (SL(N-2' N-3)()). 

N-4 states a "local constraint" governing the relationship of N-2' and N-3: they 

cannot both be IN. Note, however, that N-4 is IN only so long as N-2' and N-3 are 

IN. The system now searches for the set S of assumptions (i.e., statements with 

non-empty Wlists) which are responsible for the CONTRADICTION node N-4; in other 

words, S contains the assumptions whose being IN has caused N-2' and N-3 to be IN. 

The system then sets up a NOGOOD node as a permanently IN record of the inconsis- 

tency of S. This node has the form: 

Statement # NOGOOD S (CP (CONTRADICTION) (S )-( ) ) 

where CP is a conditional-proof type of justification. Essentially, the NOGOOD 

node is justified by the relations hi^ between S and the CONTRADICTION, indepen- 

dently of whether the CONTRADICTION happens to be IN or not. In our example, 

there is only one assumption responsible for N-4's being IN, and that is N-2' 

itself. Thus, we get the following: 

N- 5 NOGOOD N-2' (CP(N-4) (N-2') 0 ) .  

In this case, the CP justification is valid (and N-5 is IN) because N-4 is IN 

whenever N-2' is IN. 

The next step is crucial in more complex examples. The system selects a "culprit" 

C from the members of S, i.e., it identifies some one assumption among those col- 

lectively responsible for the problem and decides to deny that assumption. To do 

so, it further selects some member 0 of the &list of the culprit. It then sets 

up a support list justification for 0. This justification says, in effect, that 

if you want to keep all the other assumptions in S (except C), and if you have not 

proven any of the other grounds for retracting C, then you should believe 0. (The 

inlist of this justification contains all the assumptions in S, except C, together - 
with the NOGOOD node; the &list contains all the members of the =list of C ex- 



@$" cept 0.) The result is that 0 is (provisionally) treated as IN; C is retracted; '8 
and the CONTRADICTION node goes OUT. Of course, 0 is only an assumption; later 

@ .\ -, 
contradictions may lead to its retraction and to the use of some other member of 

the =list of C, or else to the restoration of C and the denial of some other as- 

sumption in S. 

Although in our example this process is trivial, it does illustrate another impor- 

tant aspect of the truth maintenance system. In our example, as noted, 

dependency-directed backtracking must select N-2' as the "culprit" for denial. 

Since N-3 is the only member of its &list, N-3 receives a new justification. It 

now appears as 

N-3' Object is far from road (SLo 0 )  (SUN-5) 0 )  . 

It appears that N-3' can be justified either as a premise (data) or an assumption 
required to resolve the inconsistency represented by N-5. This, however, is 

wrong. The second justification is circular, since it was N-3 that led to the in- 

consistency in the first place. Doyle's Truth Maintenance System guards against 

circular justifications of this sort, by designating certain justifications as 

"well-founded" and others as not. 

We now turn to a somewhat more detailed example. 

2.7.3 Example of informal non-monotonic reasoning. An image analyst is shown two 
images taken from a platform directly above the object of interest, a rectangular 

structure on the deck of a vessel. The images are taken at different times of 

day. The sun angles and the height of the platform above the vessel are known, 

and the analyst is tasked to measure the object and make some inferences about its 

structure. The images are shown below: 



Image 111 La:. . ,.*.-. r.3yAk"j : . . 
ect 

ortion of 
1 I ' Deck 

Image #2  
Ob j ect  

- - - - -  Portion of 

A question of part icular  in t e res t  i s  whether the dark "object" is  a hole i n  the 

deck through which the dark in te r io r  of the vesse l ' s  hold is seen, o r  a so l id  

s t ructure on or above the deck. 

The analyst might reason quickly as follows: 

"The object is uniform i n  reflectance, therefore,  probably planar. It cas ts  a 

shadow, therefore,  must be an opaque s tructure elevated above the deck. From the 

distance between the left-hand edge of the shadow and left-hand edge of the 

object,  I can measure the height of the object above the deck." 

"There's a problem with t h i s  simple model. The shadow i n  the second image is much 

longer than the object.  Therefore, e i the r , the  object i s  a planar structure a t -  
15 

tached t o  the deck a t  some angle, or i f  it a horizontal planar s t ructure it must 
n 

'c 
be supported by some other s t ructure,  invisible  to  me, tha t  contributes to  the 

shadow." The analyst might proceed to  sketch several configurations that  a re  con- 

s i s t e n t  with the data: 



Image \ *I 

/ Sun 

/ v l  / I 

First Second - Interpretation Interpretation 

The analyst has quickly noted and resolved two inconsistencies: First, the exist- 

ence of the shadow doesn't jibe with the theory that the dark object is an aper- 

ture in the deck, so this hypothesis is ruled out. Second, the size of the shadow 

in the second image doesn't fit the theory that the object is a horizontal plane 
/cep I d 4  

& suspended above the deck; this is ruled out and r- with the "leaning wall" 

and "planar support" hypotheses, as illustrated. 

2.7.4 Av~lication of a non-monotonic system. We will next illustrate how this 

argument would be treated in a non-monotonic reasoning system. We assume that ob- 

ject recognition and feature extraction have been performed, either by an analyst 

or by a machine, and that these data have been represented in computer-compatible 

form. The image-processing system or analyst will have recognized objects and 

shadows and will have measured the distances from object to shadow boundaries. A 

set of plausible hypotheses (flat object on surface; aperture in deck; tilted 

object) will have been formulated and recorded as statements. The resulting data 

set is as follows: 
\ 



Statement # Statement State Support Lis t  
IN OUT I n  Out 

1 Object i s  aperture i n  X 
deck. 

2 F la t  object lying f l a t  X 5,7 1 ,3 ,4  
on deck. 6 ,8,9 

F la t ,  horizontal object. 
-$ above deck. 

F la t  object,  t i l t e d  a t  
angle t o  deck. 

5 A t  sun angle el, object X 
is uniformly bright ,  casts  
no shadow. 

6 A t  sun angle el, object X 
is  uniformly bright ,  casts  
a shadow of dimension less  
than ob j ec t . 

A t  sun angle 02, object 
is  uniformly bright ,  casts  
no shadow. 

8 A t  sun angle 02, object X 
is  uniformly bright ,  casts  
a shadow smaller than object.  

9 A t  sun angle %, object X 
is  uniformly bright ,  cas ts  
a shadow larger than object.  

A s  i n  our e a r l i e r  discussion, a statement i s  I N  or OUT a t  any given time depending 

on whether or  not it i s  jus t i f ied  based on evidence currently available.  The jus- 

t i f i c a t i o n  for  a statement being I N  or  OUT i s  based i n  turn  on cer ta in  other 

statements being I N  o r  OUT. The support of a given statement i s  the se t  of s ta te-  

ments required to  be I N  or OUT fo r  tha t  statement to  be I N .  Thus, the statements 

and the jus t i f i ca t ion  relationships form a tangled network. The s e t  of I N  s ta te -  

ments grows and shrinks i n  a non-monotonic fashion a s  new evidence changes the 

s t a t e s  of part icular  statements, and as the ef fec ts  of these changes propagate 
1 



through the network . (The set of j us tif ications , however, grows mono tonically. ) 

For example, the support list of statement 1 is (SL(5,7)(2,3,4,6,8,9)). To see 

how the system deals with conflicts between data and observations, let us assume 

the analyst starts by assigning IN as the state of statement 1. The observation 

data states are: 

5,7 OUT (Object does cast a shadow) 

6 IN (At sun angle el, object casts a small shadow) 

8 OUT 
9 IN (At sun angle e2, object casts a large shadow) 

The non-monotonic system checks the network for consistency among the states and 

support sets, notes an inconsistency, and introduces a new conflict assertion: 

Statement # Statement State Support List 
IN OUT In Out 

10 CONTRADICTION X 1,6,9 5,7 

The system proceeds to resolve this conflict by changing statement states; o%ser- 

vation data is challenged only as a last resort. For efficiency, the system may 

attempt first to achieve consistency with a subset of the observation data, since 

this is potentially a large data base. In our example, the system works initially 

with the (5,6) observation data, and subsequently considers the (7,8,9) data. 

Initial consistency is achieved by setting statements 1 and 2 to OUT and statement 

3 to IN, retaining statement 4 in the OUT state. Statement 10, CONTRADICTION, 

reverts to the OUT state (although the system retains a permanent trace of this 

conflict "proof" for subsequent possible activation.) 

Since statements 7,8,9 are not being considered at this moment, statement 3 IN is 

consistent with the data (5 OUT, 6 IN). 

Next, the system broadens its scope to consider a larger piece of the data base. 



A new CONTRADICTION statement is generated: 

11 CONTRADICTION X 3,9 8 

To resolve this conflict 'the system considers new state settings. Resetting 

statement 1 to IN is disallowed by the trace of the previous conflict. The cor- 

rect solution setting statement 3 to OUT and statement 4 to IN achieves 

consistency. 

The scenario sketched above illustrates the truth maintenance feature to be found 

in deductive retrieval systems, such as DUCK (McDermott, 1983). Non-monotonic 

reasoning is very much, however, an active area of A1 research, with open ques- 

tions remaining both in feasibility and validity. 

2.7.5 Feasibility. Dependency directed backtracking is a species of discrete 

relaxation (like Walz filtering, as described in Cohen and Feigenbaum, 1982). It 

seeks a consistent allocation of truth values across a set of statements, by 

utilizing local consistency constraints between pairs of statements, rather than 

by exhaustive search through the space of all possibilities. Thus, a high level 

of computational efficiency can be achieved. 

To make this efficiency possible, however, in non-monotonic systems, the traces of 

proofs are retained, even though the premises utilized by the proof, and the 

statement that was proved, may (temporarily) be judged invalid or OUT. Therefore, 

if the premises become valid or IN at some later time, the work of rediscovering 

the proof need not be repeated. The justifications consume space in memory, and 

the tradeoff is therefore made between memory storage and the processing overhead 

of regenerating proofs on the fly. 

2.7.6 Face validity. Implementations of non-monotonic reasoning revise beliefs 

so as to arrive at a consistent overall system of beliefs in the face of a 

contradiction. But they provide only a very limited capability for deciding among 

alternative possible revisions. The selection of an assumption as the "culprit," 

and the selection of a member of its %list to be assumed as true, are both 



highly arbitrary. Some control information is implicit in the ordering of nodes 

in the =list of statement 5; i.e., if 5 is to be rejected, the system will then 

6 assume the truth of m e m b e r s u t h e  =list in the order shorn. But (a) 

this is insufficient to remove all ambiguities, and (b) it makes control informa- 

tion implicit rather than explicit, hence, difficult to evaluate or modify. 

2.7.7 Plausibility of instances: Conflicting evidence. An often voiced 

criticism of non-monotonic reasoning is that uncertainty calculi (e.g., Bayesian, 

Shaferian, or fuzzy) can do the same job better. In the example pf Section 2.7.4, 

for example, our initial state of belief, before consideration of either image, 

could be represented as a belief function assigning some support to statement 1 

and some support to (1,2,3,4}. The evidence represented by (5 OUT, 6 IN) could be 

construed as lending some support to node 3 and some to (3, 4). The second bit of 

evidence (7,8 OUT; 9 IN) could be construed as assigning exclusive support to node 

4. Combination by Dempster's rule leaves node 4 as the only viable hypothesis. 

The belief function analysis appears to be more general, since it accommodates 

sources of information which conflict to varying degrees, and provides a measure 

of degree of belief in various possible conclusions. 

Although we are convinced of the value of numerical representations of 

uncertainty, we will argue that this objection misses the mark in two ways. It 

overlooks an important role.of non-monotonic reasoning (1) in drawing implications 

for the validity of one argument or line of reasoning from another, even where 

they are independent, and (2) in reasoning about the application of the uncer- 

tainty calculus itself. 

The basic idea of (1) is the following: Suppose we have two independent lines of 

reasoning, A and B, with regard to the same sets of hypotheses. Each line of 

reasoning depends on certain data .and certain assumptions, as illustrated in 

Figure 2-8. In Argument A, the impact of Data 1 and Data 2 depends on the accept- 

ance of Assumption 1; for Argument B, the impact of Data 3 and Data 4 depends on 

Assumption 2. 

What happens when A and B support conflicting hypotheses? In a non-monotonic 





system, the set of assumptions that contributed to the contradiction are iden- 

tified and declared inconsistent (as a set). Then a selected member of this set 

is rejected, by producing a justification (itself an assumption) for a member of 

its &list. As a result, at least one of the two arguments fails (or has a dif- 

ferent conclusion), and consistency is restored. 

The key point here is that conflict between A and B causes the system to reach in- 

side each of the arguments. Conflict resolution is a process of reasoning about 

knowledge: what are the weakest links in each line of reasoning? where would 

revision accomplish the most? 

It will be worthwhile to illustrate this process by a modification of our example. 

Imagine (somewhat fancifully) that we are less sure about reported observations of 

large shadows than about small ones, due to possible large-scale non-uniformities 

in the reflectance of the deck. Then we make the following changes to the initial 

state of belief: 

Statement # Statement State Support List 
IN OUT In Out 

9' At sun angle e2, object X 
is uniformly bright, casts 
a shadow larger than object 

11 At sun angle e2, object is X 
uniformly bright, amears to 
cast a shadow larger than 
object 

Surface of deck has uniform X 
reflectance 

Surface of deck has non- 
uniform reflectance 

13 

X No justification 

We see that 9', unlike 9, is not a premise; it is inferred from 11 and 12--i.e., 

the appearance that the shadow is large (11) plus the assum~tion, in effect, that 

this appearance is not deceiving (12). Statement 12 is a "default assumption:" 

its acceptance depends only on the absence of evidence to the contrary. At the 



start of reasoning, 12 is declared IN, since statement 13, that the deck has non- 

uniform reflectance, has no justification. As a result, all inferences based on 

the two images proceed exactly as described above. 

Now suppose we receive some new, independent evidence. For example, an intel- 

ligence report from Agent Y, who is inside the country which owns the ship, says 

that plans were made to place a device Z on the deck at the precise spot in 

question--and we know that such a device would appear as a flat horizontal object 

supported above the deck. This evidence, if reliable, supports statement 3, and 

is inconsistent with the other hypotheses. We now add nodes corresponding to this 

evidence, and add a new justification for statement 3 to represent its potential 

impact : 

Statement # Statement 

3' Flat horizontal 
object 
above deck 

14 Device Z is present X 

State Support List a Support List b 
IN OUT In Out In Out 

15 Device Z is reported X 
present by Agent Y 

16 Agent Y is reliable X 17 

17 Agent Y is not 
reliable 

X No justification 

We also add 14 to the outlists of statements 1; 2, and 4. A premise, statement 

15, describes our new evidence. But, here too, we have explicitly represented an 

assumption (16) which is required to make the evidence useful. Since the 

reliability of Agent Y (16) is a default assumption, the system infers that device 

Z is in fact present as reported (14 IN). (14 IN) leads to (3' IN, 1,2,4 OUT), 

which is a contradiction of our previous conclusion. 

Dependency-directed backtracking will resolve the conflict by revising one of the 

assumptions that produced it. It may assume that the surface of the deck must, 



after all, have non-uniform reflectance, (12 OUT, 13 IN), hence, 3' is to be 

accepted. Or it may assume that Agent Y must be unreliable, (16 OUT, 17 IN), 

hence, 4 is to be accepted. As noted above, a clear inadequacy of the system 

described by Doyle (1979) is the lack of some measure of the firmness of an as- 

sumption upon which to base this choice. Nonetheless, the important point is that 

conflict of evidence leads to inferences regarding the acceptability of beliefs 

(12 and 16) which are internal to each of the conflicting arguments. 

Consider, on the other hand, how an uncertainty calculus such as Shafer's would 

handle this problem. We examined the issue of conflict resolution, in the context 

of belief function theory, in some detail in Section 2.5.6. There we found that, 

depending on the degree of conflict, and on the existence and degree of discount- 

ing for the two arguments, we could have: (a) an indeterminate result (if there 

is no non-empty intersection between possible meanings of the two arguments), (b) 

exclusive support for hypotheses in the intersection of meanings (if there is no 

discounting), or (c) strong support for each of the two conflicting conclusions). 

None of these alternatives examines the sources of the conflict and seeks insights 

regarding its causes. Adjustments of discount rates in the light of conflict are 

likely, moreover, to be invalid in the absence of some exploration of reasons for 

the adj us tment . 

Of course, a belief function analysis can examine the contents of two arguments. 
To do so, however, it must enormously complicate the frame T (see Section 2.5.5). 

In other words, the original set of hypotheses (1,2,3,4) must be replaced by a 

much larger set which also includes the assumptions: (1,2,3,4) x (12,13) x 

6 , 1 7  Then evidential support must be assessed, for each of the two conflict- 

ing arguments, on the subsets of this expanded set. The price we pay for this 

strategy, however, is enormous: in quantity of inputs and computational 

tractability, but also in the naturalness of inputs. It is not likely to be very 

clear, for example, what bearing our evidence for or against the reliability of 

Agent Y would have on our beliefs regarding the reflectance of the deck; and 

similarly, vice versa. The reason, of course, is that the link is highly indirect 

and is discovered only by means of the conflict in conclusions which the two sets 

of beliefs engender. The truth maintenance system represents this connection in a 



quite natural way. 

Nonetheless, non-monotonic systems as presently constituted are inadequate in a 

number of ways. Problems are chiefly attributable to their exactness, on two 

levels. For example, non-monotonic systems provide a way of reasoning with incom- 

plete information, i.e., by adopting assumptions, tracing their c'onsequences, and 

revising them if they lead to an inconsistency. But they provide no measure of 

the degree of incompleteness in the support for a belief, and no concept of degree 

of conflict. As we have already noted, a measure of this sort seems essential in 

selecting among alternative possible revisions. 

On a second level, the statements whose truth or falsity is adjudicated are them- 

selves exact. However, there is no reason why similar principles of qualitative 

reasoning might not be applied to probabilistic or imprecise constraints and data. 

The need for such a "meta-reasoning" capability is the chief conclusion of our 

comments in earlier discussions of Bayesian and Shaferian calculi. In our view, 

non-monotonic logic may have its most convincing application at a higher level, in 

controlling the application of an uncertainty calculus itself. Assumptions of 

more than one sort- -about the quality of uncertainty assessments, about the inde- 

pendence of evidential arguments, and about the validity of steps in an argument-- 

are inescapable in the application of such a calculus. Most of these assumptions 

are not easily represented in the language of the calculus itself. Hence, non- 

monotonic reasoning may be the appropriate tool for keeping track of assumptions 

and revising them when they lead to anomalous results. As such, it may be the key 

to a truly "intelligent" or flexible application of those models. It is to this 

possibility that we turn in Section 3.0. 

2.7.8 Summarv. Non-monotonic logic is a computationally efficient method for 

reasoning with incomplete information, i.e., for adopting assumptions and revising 

them in the face of conflicting data. Statements are associated not with numeri- 

cal indices of uncertainty, as in the other theories we have examined, but with 

reasons. Certain statements (called assumptions) may be accepted in the absense 

of positive support, as long as certain other beliefs have not been disproven. 

Non-monotonic logic provides a natural method for revising beliefs within indepen- 



dent lines of reasoning when they lead to conflicting conclusions. Unfortunately, 

validity is diminished by the arbitrariness of its procedures for selecting among 

alternative possible belief revisions. We argue that the most useful application 

of non-monotonic reasoning may be as a control process for the application of an 

uncertainty calculus. 



3.0 THE NON-MONOTONIC PROBABILIST: AN APPLICATION OF BELIEF FUNCTIONS, 
F'UZZY LOGIC, AND NON-MONOTONIC REASONING 

3.1 Contrast Between Probabilistic a d  Qualitative Approaches to Conflict 
Resolution 

The attempt to introduce non-"ad hoc" probabilistic reasoning into expert systems 

has led to a variety of dilemmas. Probabilistic analysis, as practiced by 

statisticians, typically requires extensive judgments regarding interdependencies 

among hypotheses and data, and regarding the appropriateness of various alterna- 

tive models. The application of such models to real problems is typically an 

iterative.process, in which the plausibility of the results confirms or discon- 

firms the validity of judgments and assumptions made in building the model. All 

these features seem to conflict with the modularity of knowledge representations 

associated with expert systems. In a recent paper, for example, Glenn Shafer 

(1984a) has concluded pessimistically 

... that the expert systems we see using probability in the near 
future are not likely to have the flexibility and judgmental' capa- 
city that we associate with genuine intelligence. Instead, these 
systems will continue to leave the work of genuine intelligence 
to their designers and users. Their designers will have to de- 
sign the forms of probability argument for the particular prob- 
lem, and their users will have to supply the probability judgments. 

The present work addresses this problem in the context of conflict resolution. 

Probabilistic and qualitative approaches to reasoning offer quite different con- 

ceptions of what it is for two lines of argument, or two pieces of evidence, to 

conflict. From the Bayesian point of view, for example, divergence can be 

regarded as stochastic; it is comparable to the chance occurrence of errors, or 

"noise," in a process of measurement. Extreme divergence of results is unlikely, 

but is in fact expected to occur a small percentage of the time. From the qualita- 

tive point of view, however, divergence is a result of faulty knowledge; that is, 

conflicting results are taken as evidence that one or more assumptions or forms of 

argument that led to the conflict are mistaken. 
\ 



These two conceptions of conflict lead to quite different rationales for the 

process of combinine evidence or lines of reasoning. From the Bayesian point of 

view, the process is akin to that in which independent errors in repeated measure- 

ments tend to cancel one another out. From the qualitative point of view, the ob- 

ject is to improve the overall truth of a system of beliefs--to explicitly iden- 

tify potentially erroneous steps in the argument and to change them. 

This contrast with qualitative approaches does not apply merely to Bayesian 

theory. In Shafer's probabilistic conception, for example, the divergence of two 

arguments is simply attributed to the fact that they are based on different, inde- 
obi e c ; t  

pendent bodies of evidence., The drseor of combining evidence is, in essenc u0 
tally support for the alternatives conclusions, not a true "reconciliation". 

Shortcomings in both probabilistic and qualitative points of view are, in part, 

complementary. An objection to both Bayesian and Shaferian systems of 

probability, for example, is that they take no formal account of the iterative 

process--of tentatively adopting a model and a set of assessments, testing its 

implications, and revising--which is essential to the efficient and valid applica- 

tion of such theories. Moreover, they provide no coherent criterion for the 

provisional "acceptance" of a conclusion as true. Use of conflict as a stimulus 

for the restructuring of probability models or revision of probabilistic inputs 

may lead to such a criterion. On the other hand, qualitative systems of 

reasoning, such as Doyle and McDermott's non-monotonic logic, do not accommodate 

degrees of belief or degrees of conflict, and suffer from an arbitrariness in the 

process of selecting beliefs for revision in the face of a conflict. Numerical 

indices of uncertainty may be of use both for communication with users and for 

purposes of control in reasoning. 

3.2 Functional Outline of a ~rovo'sed Svstem: Nan-Monotonic Probabilist 

These considerations suggest the design of a system that regards conflict as 

jointly knowledge-based and stochastic. It would reduce conflict by a process of 

non-monotonic reasoning prior to statistical aggregation by probabilistic rules; 

i.e., non-monotonic processes would operate on and modify the assumptions and 



judgments embodied in a rule-based belief function model. At the same time, 

however, the non-monotonic processes would be guided by measures of completeness 

of support provided by the belief function calculus. Each model--non-monotonic 

and probabilistic--thus in a sense embeds the other. 

The justification for such a system, and the motivation behind its basic 

functions, have been argued in Section 2.0. Our purpose in this subsection is to 

pull these threads together in a high-level conceptual outline of a Non-Monontonic 

Probabilist (NMP) System. Further details are given in Section 3.3, which dis- 

cusses the role of the system in human-computer interaction, and in Section 3.4, 

which discusses fuzzy measures required to implement the system's functions. Ap- 

pendix A shows how certain features of this system could be applied to illustra- 

tive problems of image understanding. 

3.2.1 Rule-based belief function module. The core of the probabilistic model is 

a set of production rules. The action components of the rules assign Shaferian 

support measures to subsets of hypotheses. For example, 

R.l If a region has texture of type x, 

R.2 If an intelligence agent reports 
presence of a building in a region, 

then 
S.l: Region is a field 
S. 2: Region is a forest 
S.3: Region is a building 
S.4: (S.l,S.2,S.3) 

then 

.98 

.01 
0 
.01 

S.l: Region is a field 
S.2: Region is a forest 
S.3: Region is a building 
S.4: (S.l,S.2,S.3) 



Current knowledge about the problem domain is maintained in a database, which in- 

cludes statements about subsets of hypotheses, such as S.l-S.4 above, together 

with their current degrees of belief. When the antecedent of a rule appears in 

the database, the rule is triggered, and the support it assigns is combined by 

Dempster's rule with the existing support for the relevant subsets of hypotheses. 

Support is attenuated if the antecedent of a rule is only partially established. 

In this model, inference may be either forward-chaining or backward-chaining; an 

image understanding system could involve either'or both. Note, however, that a 

simple forward-chaining model could capture many critical features of both 

"bottom-up" and "top-down" reasoning. In bottom-up processing, degrees of belief 

for labels of a region are assigned when image data from that region trigger a 

rule, such as R.1. above. Shaferian template matching, described in Section 

A.3.5., falls under this heading. In top-down processing, on the other hand, 

rules regarding the assignment of labels to a region may be triggered by ex- 

traneous knowledge, as in R.2. Section A.2.6. describes a different use of ex- 

traneous knowledge involving relations among regions. In that example, the class- 

ification of certain regions as roads reduces the support for classifying any dis- 

tant region as a building. 

These examples strongly suggest an iterative, forward-chaining processing strategy 

for image understanding. First, belief functions are computed for all regions 

based on (bottom-up) image data and non-relational extraneous knowledge. Then the 

belief functions established in this way are used to trigger a second set of rules 

involving relational extraneous knowledge. 

Where forward-chaining inference proves inadequate is in the use of the rule-base, 

together with partial results, to prioritize the need for new information. This 

will be an essential aspect of the non-monotonic processes to be described. We 

believe, therefore, that an effective image-understanding system will utilize 

backward, as well as forward-chaining inference. 

The use of belief functions (rather than, say, Bayesian probabilities) provides 

the advantages discussed in Section 2.5 above. There is a natural representation 



of incompleteness of evidence as the support assigned to the universal set (S.4 in 

the above example); this will play a critical role in the control of non-monotonic 

reasoning. And support need not be assigned arbitrarily when appropriate evidence 

is missing. In image analyses, as in medical diagnosis (Gordon and Shortliffe, 

1984), we might expect a hierarchical structure of support for hypotheses: e.g., 

one bit of evidence establishes that a region is a building; a second bit estab- 

lishes the kind of building it is; etc. Belief functions are a highly natural 

tool for capturing such a structure. As a final note, we remark that specialized 

belief function models of this sort may be required to ensure computational 

feasibility (Section 2 . 5 . 3  above). 

3.2.2. Non-monotonic reasoning as an embedding context. In the NMP system, both 

rules and statements are assumptions, whose acceptance or use depends on-the 

failure &Q disprove certain other beliefs (cf., Section 2.7 above). Those other 

beliefs are the reasons for the rule or the statement. Such beliefs include: 

(1) Model characteristics (e.g., linearity, normality, consonance, etc.) 
used in generating the support measures associated with a rule, 

(2) the representativeness of frequency samples or expert experiences used 
-. in generating such support measures, 

(3) the independence or non-independence of different items of evidence, 
and 

(4) the occurrence or non-occurrence of facts or events which could affect 
belief in a statement by triggering some rule, but for which there is 

\ (as yet) no direct evidence. 
\ c$) p a W . 4 ~ ~  L r*i*..+,$ - $ " ,wd 

(For discussion of these factors in the belief function context, see Section 

3.2.5.10 above.) Beliefs of types (I), (2), and (3) are among the suppositions 

required for application of a rule. Beliefs of type (4) are presupposed by the 

current assignment of degrees of belief to declarative statements. In addition, 

of course, belief in a statement depends on the validity of the rules applied in 

deriving it, hence, indirectly, on suppositions of types (I), (2), and (3). 

Measures of credibility for both rules and statements are mathematically derived 

from the degree of their dependence on suppositions of this type. For example, 



the "discount rate" for a rule's support function (in R.l above, this is the sup- 

port for the universal set, m((S.l, S.2, S.3)) = m(S.4) = .01) will depend on the 

nature of the suppositions in categories (I), (2), and (3).. This reflects the 

possibility that the evidence summarized in the rule is in fact irrelevant; e.g., 

because the set of photos used as a training set was from a different geographical 

or cultural area. 

The credibility of a statement, in turn, will be a joint function of its discount 

rate (computed by Dempster's rule from the support functions applied in deriving 

it) and the suppositions of type (4). Thus, if R.l and R.2 are both triggered 

with regard to a particular region, the resulting support function by Dempster's 

rule is: 

The discount rate, m(S.4), is reduced to .005. However, the credibility of the 

support assignments to S.l, S.2, and S.3 also depends on the existence or non- 

existence of other rules in the rule base (e.g., the rules concerning distance 

from roads) which, if they were to be triggered, would significantly change the 
support measures. 

S.l Region is a field 
S.2 Region is a forest 
S.3 Region is a building 
S.4 (S.2, S.2, S.3) 

A state of conflict exists when a significant degree of belief is assigned by 

statements in the data base both to a subset of hypotheses and to its complement. 

Conflict triggers a process of dependency-directed backtracking, in which one or 

of the suppositions listed above may be revised: e.g., the structure of a 

mode may be altered; the p e e d  relevance of frequency data or probabilistic 

expert assessments to the current problem may be adjusted; the problem may be 

reframed so as to merge dependent arguments; or the occurrence of relevant facts 

or events upon which beliefs depend may be hypothesized. Adaptive learning in 

a system could, therefore, involve revision of belief not only about the oc- 

m ~ . l ,  R.2 ( ' 1  

.49 

.015 

.49 

.005 



currence of external facts or events, but about the validity of inferential proce- 

dures in its own rule base. 

In our example, mRal, R.2(') appears to present a conflict; thus, the system will 

explore potential revisions in R.l and in R.2. In doing so, it will try to reject 

suppositions upon which R.l and R.2 depend. For example, (a) it may question the 

relevance of the training set used to derive R.l; (b) it may question the com- 

petence or trustworthiness of the agent in R.2; (c) it may try "r'eframing" the 

problem, e.g., the region may be partitioned into smaller regions or merged with 

other neighboring regions. (The latter might occur by adjustment of parameters in 

a low-level segmentation procedure.) Finally, (d) the system might look for 

evidence supporting (as yet unconfirmed) events or facts that would significantly 

change the assigned support function (e.g., discovery that the region is distant 

from a road would reduce support for S.3). 

3.2.3 Belief functions as a controlling context for non-monotonic reason in^. 
How will the system choose among these alternative tactics for conflict 

resolution? More fundamentally, since conflict within a belief function is not 

typically an all-or-nothing matter (like logical contradiction), how will the sys- 

tem determine when conflict exists? In the Non-Monotonic Probabilist, the control 

of dependency-directed backtracking is determined (a) by a domain-specific defini- 

tion of conflict for belief functions, and (b) by the relative standing, in terms 

of credibility, of statements, rules, and the beliefs upon which they depend. The 

actual mechanisms are implemented using a set of fuzzy measures described below in 

Section 3.4. 

Conflict is domain-specific (or even problem-specific) in several senses: (1) The 

t m e  of conflict which the system is designed to address can be specified 

explicitly, and easily modified. For example, conflict may be regarded as sig- 

nificant support for a hypothesis and its complement (as above); but it might also 

include, for example, the assignment of strong support to a single hypothesis 

based on two support functions neither of which assigns significant support to 

that hypothesis. (This case is illustrated in Section 2.5.11) (2) Conflict is a 



matter of degree; and the "significance" of any given degree of conflict is repre- 

sented by a single parameter which is easily modified. (3) Conflict resolution is 

not simply "triggered" when the significance of conflict exceeds some threshold. 

Conflict resolution is subject to a graded control process, in which the sig- 

nificance or seriousness of the conflict is continually compared with the 

credibility of the beliefs contributing to the conflict. Conflict resolution 

stops when the seriousness of the conflict drops below the degree of 

"revi~ability~ of the relevant suppositions. In effect, then, any diagnosis of 

"significant conflict" can be overruled by strong independent plausibility of the 

contributing beliefs. The result is a system of beliefs which, in an intuitive 

sense, maximizes global plausibility. 

The selection of beliefs for revision in the face of conflict is a non-random 

process. It is guided by measures which capture the extent to which critical 

evidence for a particular belief is at present incomplete or unreliable. Indepen- 

dent confirmation for hypothesized revisions is then sought either from image 

data, the store of extraneous knowledge, or the user. 

When a conflict occurs, the system locates chains of reasoning that (a) con- 

tributed strongly to the conflict and (b) have weak, or relatively unsupported, 

starting points. In our example, these are a variety of candidates. R.l is a 

strong contributer to the conflict, since its discount rate is quite low. The 

system would search among the reasons for R.l-- e.g., a list of purported 

similarities and dissimilarities between the current image and the training set - -  
for those which have the least evidential basis. For example, in constructing the 

support function of R.l, we may have supposed (without really knowing for sure) 

that weapons facility construction procedures in the target region resemble those 

in our country. If this belief were to be revised, the newly posited dis- 

similarity would inflate the discount rate for R.l's support function, and the 

conflict with R.2 would be decreased. Alternative chains of reasoning involving 

R.l and R.2 lead to other possible revisions, e.g., in the reliability of the 

agent referred to by R.2, or in the segmentation of the relevant region. The 

choice of a revision would depend on a measure that reflects the potential benefit 

in terms of conflict reduction, and the potential cost, in terms of evidential 



restraints on possible revisions. Whatever revision is chosen, additional infor- 

mation regarding the revision may then be sought: by more extended or more sensi- 

tive processing of the image, by a more inclusive search for relevant extraneous 

knowledge, or by directly querying the user of the system. 

A different sort of example involves the chain of reasoning that goes from the 

statement S.3 (that the region is a building) to its reasons. The validity of the 

support function assigned to S.3 (mR.1,R.2(')) presupposes that other potentially 

relevant rules have not been triggered. In particular, if the relevant region 

were found to be distant from all roads, support for S.3 would decline; yet it may 

be that no data has as yet been obtained regarding the presence or absence of 
roads in neighboring regions. One avenue for belief revision, then, is to posit 

the absence of roads in the vicinity. Through a backwards chaining inference, 

this posit could direct further processing of the image in the relevant regions, 

in a search for evidence of roads. 

As in "standard" non-monotonic reasoning, revisions in belief are retained by the 

system until new conflicts involving those beliefs are discovered. At that point, 

the revision will be undone--unless additional information has in the meantime 

provided an independent basis for its retention. 

3.3 Non-Monotonic Probabilist as an Interactive System 

In many applications, an image-understanding system will be required to function 

interactively with a human user. The appropriate allocation of effort between the 

analyst and the computer can, however, vary drastically as a function of such 

variables as time pressure, workload, the importance of the task, and the need for 

"judgment" not incorporated in the automated system. 

Under conditions of low time stress and with relatively high-level, unstructured 

tasks, the appropriate allocation mode might involve predominant human control of 

the problem-solving process. The computer's role (as explored in Cohen et al., 

1982) might be to monitor the user's behavior and to prompt when the user's @ 
tions are likely (in the computer's opinion) to be significantly suboptimal. The 



user would determine the degree of suboptimality that justifies a prompt. 

By contrast, under high time stress and workload or in relatively "mechanical", 

structured tasks, the appropriate allocation mode might involve a predominant role 

for the computer. In this case (explored in Chinnis, Cohen, and Bresnick, 1984) 

the computer might monitor its own problem-solving activity and prompt the human 

when conditions appear that suggest value in a potential human contribution. 

An important feature of the Non-Monotonic Probabilistic system is that it can 

provide, if desired, a framework for collabor,ative problem solving between the 

user and the system in either of these two modes. 

The system described in Section 3.2 already contains an implicit "executive" func- 

tion for human-computer task allocation under conditions of high workload. Con- 

trol may be shared between user and computer in the following ways: (a) Users 

may specify their own definition of the type and degree of conflict among items of 

evidence that will trigger belief revision. (b) Based on this user-defined 

objective, and on an assessment of limitations and conflict in its own knowledge, 

the system will direct user attention to areas where his contribution can be most 

valuable. Beliefs which are subject to revision are labeled according to whether 

or not users are a potential source of information. When an appropriately labeled 

belief is selected for possible revision by dependency-directed backtracking, the 

user will, if he desires, be queried. (c) Users may then adjust support assess- 

ments and add. and delete support list elements, to reflect their on-the-spot 

knowledge. 

The advantages of this framework in a high workload and highly uncertain task en- 

vironment are considerable: (i) Users will = be bothered by the need to provide 
inputs when default assumptions are adequate; (ii) when anomalies do occur, the 

system does take advantage of potential user contributions; (iii) the system 

reduces user workload by generating promising options (i.e., potential revisions 

which would restore consistency) for consideration by the user; (iv) imprecise 

linguistic inputs could be accepted; and (v) ultimate control over the objectives 

of the reasoning process, its outcome, and his own degree of participation is left 



in the hands of the user. 

For high-level tasks, where the human has a predominant role,, some fairly 

straightforward elaborations of the basic conflict resolution mechanism are 

required. The computer could develop hypotheses regarding the user's beliefs and 

assumptions and their degree of suboptimality by observing the user ' s performance 
(e.g., manual labeling of image regions) and working the problem itself in 

parallel. Discrepancies between user and computer solutions would be treated as 

conflicts, triggering a process of (hypothetical) belief revision. The computer 

would identify the least disruptive changes in its own beliefs required to make 

them consistent with the human's conclusions. The resulting set of beliefs is 

attributed, heuristically, to the human. If these beliefs exceed a certain 

criterion of implausibility (according to the computer), the user would be 

prompted. Moreover, the system would display the assumptions which it has in- 

ferred to be involved in the user's solution, and the reasons for their im- 

plausibility according to the computer model. The user may then weigh the 

computer's arguments against his own. The user himself will control the frequency 

with which he receives such advice, by determining the criterion of implausibility 

required to trigger a prompt. 

3.4 Fuzzv Measures 

Fuzzy variables have a variety of potential roles in this system: 

in the description of facts or events (e.g., "rough" or "smooth" 
textures); 

in the assessment of numerical measures of support (e.g., "about 
. 3 O W ) ;  and 

in the system's internal processes of reasoning. 

In this section, we focus on the third of these roles, briefly outlining a set of 

(tentative) measures corresponding to the concepts described in Section 3.2. 

In a certain sense (ah discussed in Section 2.6 above), these measures are ad hoc. 

3-1 1 



However, they provide an extremely flexible tool for duplicating, in a continuous 

rather than discrete fashion, some of the concepts used in "standard" non- 

monotonic reasoning. They enable us to avoid an elaborate calculus, like second- 

order probabilities, which would seem gratuitous, and indeed equally ad hoc, for 

this purpose. They provice a graded process of high-level control through a 

reasonably plausible and simple set of definitions. 

3.4.1 Conflict. A simple measure of degree of conflict in a belief function is 

\& the following. Let A be a subset of hypotheses and a its complement. 

I\ k d  f/ 

+d6$b5 (1) IJ conflict(Q) - 2 min[Bel(A) ,~el('il) ] . 
3 4 

% This can be justified in two ways. From the fuzzy logic point-of-view, we might 
t sf' v 

regard it as the membership function for the intersection of belief in A and 

belief in ?i, i .e. , a contradiction. Multiplication by two normalizes the measure, - 
so that maximum I.lconflict(Q)=l is achieved when Bel(A) = Bel(A) - .5. Secondly, 

note that is it equivalent to the following expression: 

I Be1 (A)  el (Ti) 1 

when we assume, without loss of generality, that   el   el el (x) . This expression 

intuitively captures the notion of conflict in a belief function: the first 

bracketed expression is the relative similarity of the degrees of belief in A and 

x; the larger this is, the greater the conflict. The second bracketed expression 

is the total committed belief; to the extent that the belief function is 

"discounted" by assigning support 'to the universal set {A,Z), we regard the con- 

& flict as reduced. In short, the maximum Bel(A) doesn't matter since increasing it 
5 J 

(with ~el(A) constant) has two opposing effects: it increases the difference be- 

tween Be1 (A) and   el (A) , but also increases the total committed belief. 

Conflict resolution is prompted, however, by "significant" conflict, and the 



degree of significance required may be a variable function of the problem domain. 

A simple, though somewhat ad hoc, way to accomplish this is to define 

where Y is a power to whichPconflict(Q) is raised. Increasingy has the effect 
I 

of requiring higher degrees of conflict to achieve "significance". 1 -Lk l s & ~ ~ g ~  
c'@V , n 

I 
p 3.4.2 Sumort lists. Each rule and each statement is associated with a set of l~w . d. 9-9) reasons, in the form of a support list. However, in place of a discrete class- ' / if ication ' (inlist vs . =list) we substitute a "fuzzy membership function, " i. e. , 

a continuum from in to out. Moreover, strictly speaking, it is the current 
~ o r t  assignment to a statement, rather than the statement itself, which has 

32 
reasons or which serves as a reason. We will de$ote assignment to K x  
statement A by underlining, A. 

A 
Location of a statement S on the support list continuum for a second statement or 

'L 
a rule R depends on only two..things: (a) the presence of S on the list of pas- 

'sible reasons for A or R, and (b) the amount of support for the universal set 

S , .  In particular, where S is a possible reason for A, 

where &I and out hereafter refer to the &list and ~ l i s t  membership functions 

respectively (not to the statement S's being accepted or believed as IN or OUT). 

Correspondingly, when a rule R is a possible reason for A ,  

where mR(') is the support function assigned by R. 



These measures capture a very simple intuition. They place the!"keasons 'for A 
11 

tl 
R) in an order corresponding to th2reliability or completeness df evidencrunder- 

reason. To the extent that confidence in A or use of R depends upon 

1 What determines the content of the list of possible reasons? For a statement A, 

it contains (a) the rules in the system which have a support assignment for A in 

the consequent, and (b) the statements which occur in the antecedents of those 

*@ 
;I-\@' 
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rules. The possible reasons for a rule are less well-defined. They may include a 

list of potential similarities (or absences of potential dissimilarities) between 

the target application of the system and the exemplars upon which it was trained. 

reasons with high pout, they rely on unproven (but not disproven) suppositions. - 
(We argue that this is inevitable in any probabilistic analysis.) 

They may also include specifications of model assumptions used to generate support 
[ .- p-%I . . 

assignments. Finally, they include asssZ-i-an& independence of the evidence 

summarized by the rule from evidence utilized in all other rules of the system. 

Equation (2) may be elaborated in two respects. First, it might be desirable 

(though a bit ad hoc) to fuzzify the membership of a statement S in the list of 

possible reasons, i.e., S may only "resemble" some member of that list S*. In 

that case, 

where sup (SnS*) = SU~(~~(U)&*(U) ) , with A referring to min. The latter is a 
U. 

measure of the intersection of two fuzzy sets S and S*; the outer min in (2') 

reflects the conjunctive requirement for Uout-A('). - 

A second elaboration of (2) ~ ~ ~ s i , ~ i n v o l v e s  the observa- 

tions (a) that a statement S can have no impact, as a reason, on another statement 

A unless there is a rule linking them (with S in the antecedent and a support as- 
signment for A in the consequent), and (b) that a rule R can have no impact on A 

without the (at least partial) satisfaction of its antecedent by a statement. 

Thus, we must take members of the support list for a statement A to be pairs of 



statements and rules (Si,Ri), rather than statements and rules separately. Ignor- 

ing the complications of (2'),, we get: 

3 . 4 . 3  Assum~tions. A statement or a rule is an assumption to the degree that its 

acceptance or use depends on what is possible, rather than on what is supported by 

evidence. The following is a simple measure of that concept: 

number of statement-$ule,p-a6s in the support list for A. 
.-/ 

the (fuzzy) proportion of A's reasons which are a, i.e., & 

;insupported by evidence. 

3.4.4. Foundations. One requirement of dependency- directed backtracking is the 
- .  

f ability to find statements or rules which have an impact, as reasons, on a given 

statement or rule. A statement-rule pair (S,R) in fact has an impact on the sup- 

port assignment to a statement A to the extent that S or its complement is 

believed (thus, triggering the corresponding rule) and to the extent that R as- 

signs a non-discounted support function. Other pairs of statements and rules, 

however, may have an indirect effect on A by having an impact on S or R. All 

these pairs are, to a degree, part of the "foundations" of A. We measure this as 

follows : 



where So - A. In effect, the min function says that the chain of impact Pinking 

(Sn,R,) to A via (Sn,l,~-l)...(S1,~)is only as strong as its weakest link. 

To what extent is a statement S by itself (or a rule R by itself) part of the 

foundations of A? Here, we get: 

( 5  lJ foundations - [ 'f oundations -A(SntR) 

i.e., Snls impact is equal to the impact of the most effective chain to which it 

belongs. Similarly, 

3.4.5 Suvvositions. Suppositions are assumvtions with an impact. More 

precisely, the statements and rules which A requires us to "suppose" are 
(a) in the foundations of A, and (b) assumptions in their own right. The degree 
to which a statement S (or a rule R) is a supposition of & is given by the 

following: 

3.4.6 Dependency-directed backtrackinq. There are a variety of ways that these 

measures, or other similar ones, might be used to direct backtracking and belief 

revision. Here we give one, quite tentative, approach. Suppose that Q = (A,Z) 
has a high degree of conflict. The strategy is simply to select the maximal sup- 

position for A as the "culprit" C, and then to "negate" C by revising the maximal 

a m e m b e r  of C's &list. Hore precisely, we select a rule or statement C such that 



Then we select a statement-kule pair (S,R) for revision such that 

Finally, 2 or R may be revised, depending on which has the least evidential 
ir 

support, i. e. , max[m(~ ,F) ,mR(C, C) ] . 

3.4.7 Conflict as the control over revision. No revisions in fact take place un- 

less the degree of conflict is serious enough to justify them. This involves a 

simple comparison between the measure of significance of the conflict and a 

measure of the "resistance" to revision for our best available candidate. Thus, if 

. . 

Ilsignif. conflict(Q) t l'in-C(S,R) - 9 

S or R may be revised; otherwise, not. - 

3.5 Conclusion 

How does NMP relate in general to currently existing A1 software tools? Tools for 

building expert systems now exist which provide for quantitative reasoning about 

uncertainty (e.g., EMYCIN). Other systems permit qualitative rea'soning about and 

revision of assumptions (e.g., DUCK). NMP is a superset of these capabilities. 

Our description of it has dwelled on its capability of combining aspects of both: 

i.e., qualitative reasoning about a quantitative model, and quantitative measures 

to guide that reasoning. But note that each extreme can be achieved in NMP itself 

as a special case. If no assumptions are associated with rules or statements, we 

get a pure system for probabilistic inference (like EMYCIN or PROSPECTOR, with a 

Shaferian belief function calculus). On the other hand, if all belief functions 

were to allocate full support between some single hypothesis and the universal 

set, we get a pure non-monotonic system (like DUCK). 

The problems with these extremes, as we pointed out in Section 3.1,are 



complementary. Pure probabil is t ic  systems never learn anything new about the i r  

probabil is t ic  be l ie fs  and assumptions from the experience of applying them. Pure 

non-monotonic systems do learn,  but they have an arbi t rar iness  and an all-or-none 

qual i ty  about the new bel ie fs  they acquire. Our argument, qui te  simply, i s  that 

both capabi l i t ies  are  needed, and tha t  sat isfactory systems w i l l ,  i n  general, 

require t h e i r  combination. 



4.0 SUMMARY AND PROSPECTS 

4.1 Requirement for a Non-Monotonic Probabilist 

The development of efficient and accurate devices for automated feature extrac- 

tion from photographic images has been hampered by a variety of methodological 

obstacles. Utilization of general knowledge--about physics, geometry, 

geography, and culture--is critical in the face of noisy, ambiguous, and incom- 

plete data. But the relevant expert system technologies are often difficult to 

integrate with bottom-up procedures that utilize very different modes of repre- 

sentation and reasoning. More significantly, both expert system and image 

processing technologies have depended on ad hoc devices for inference and for 

handlinguncertainty, with consequences that are in many cases seriously 

suboptimal . 

In imagery, and in virtually all problem domains. where expert system technology 

might be introduced, there is a need for explicit and valid quantitative model- 

ing of uncertainty; at the same time, there is a need for a metastructure of 

qualitative reasoning in which the assumptions utilized in the probability model 

are reassessed and revised in the course of the argument. These .are the dual 

requirements addressed by the Non-Monotonic Probabilist (NMP) described in Sec- 

tion 3.0 above. 

NMP will be a general-purpose A1 tool, like PROLOG, LOGLISP, OPS5, DUCK, or 

EMYCIN. Currently existing A1 system-building tools either neglect uncertainty 

altogether (PROLOG, LOGLISP, OPS5), utilize assumptions but provide no explicit 

probabilistic measures (DUCK), or incorporate ad hoc calculi with no provision 

for qualitative reasoning about their application (EMYCIN and related systems). 

NMP will be designed to fill this void. It will serve as an expert system 

building tool, which accommodates uncertainty both at the level of probabilistic 

reasoning and at the level of qualitative testing and revising of assumptions. 

At the same time, NMP's design can be tailored so that it is optimal for image 

understanding applications. NMP could be capable of embedding within powerful 

image processing configurations, to produce systems that perform specialized 

image understanding tasks. 



4.2 Main Results 

Sections 2.0 and 3.0 have established the requirement for a system such as NMP 

and developed its technical foundations. Here we will simply summarize the main 

arguments and describe the basic technical concepts that enter into the NMP 

high-level design. 

The NMP system (described in section 3.0) blends technology from Shaferian 

belief functions, non-monotonic reasoning, and fuzzy logic, as well as more 

traditional features of expert system technology. Shaferian belief functions 

(Section 2.5) have been chosen as the basic measure of uncertainty, rather than 

Bayesian probabilities, for several reasons: they do not require definiteness 

of inputs beyond what the evidence suggests; they provide an explicit repre- 

sentation of the quality of an inferential argument; and they permit "modular" 

probabilistic analyses based on only subsets of the evidence. Shafer's system 

permits a variety of useful specialized models for representing evidence. One 

of these special cases is (very nearly) Bayesian probability theory itself; 

Shaferian belief functions can represent chance as Bayesian probabilities do, 

but permit a simple assessment of the aualitv or reliability of those probabil- 

ities as well. 

Unfortunately, Bayesian theory is not exactly captured within Shafer's system; 

the latter does not permit recalibration of the reliability of an information 

source in the light of what that source says, or in the light of conflict or 

corroboration by another source. (Bayesian theory does this only at the cost of 

enormous complexity.) To correct this flaw, we argued that belief functions--as 

an inference mechanism within expert systems--should be supplemented by a 

process of qualitative reasoning. That process would keep track of assumptions 

involved in a belief function model (e.g., concerning the reliability of an in- 

formation source) and revise them when they lead to anomalies (e.g., conflict 

with other highly regarded information sources). 

The same conclusion was arrived at by consideration of two other features of 

Shafer's system: the requirement that different bodies of evidence be indepen- 

dent in order to be combined by Shaferian rules, and the lack of any simple 

mechanism for assessing steps of reasoning within an independent inferential 

4- 2 



argument. Once again, the solution we propose is a process of qualitative 

reasoning that tracks assumptions about the independence of two arguments or the 

internal structure of a reasoning process, and revises them when they contribute 

to anomalous results. 

In concrete applications, such as image processing, these are by no means idle 

concerns. With noisy and incomplete data, no single form of analysis is free of 

error; and each relies on different aspects of the data and/or makes different 

analytical assumptions. Conflicting results, therefore, may be obtained from 

the application of multiple operators to a pixel array, or from combining ex- 

traneous information and expectations with the outcome of a bottom-up analysis. 

In these cases, the appropriate course of action is to reexamine the factors un- 

derlying our evaluation of reliability for the conflicting sources. In 

addition, their assumed independence might be questioned, for example, by revis- 

ing the segmentation of the image. Alternatively, new analyses might be in- 

itiated to confirm the presence of patterns for which there is as yet no 

support, but which could account for the anomaly. 

We argue that no application of a probabilistic framework is complete in itself. 

Whether Bayesian or Shaferian, assumptions of various types are always lurking 

in the background. Conflict among diverse analyses is what forces them into the 

open. To the extent that assumptions are explicitly tracked and reevaluated, 

conflict is a prompt for increasing the validity of our beliefs, rather than an 

occasion for ignoring part of the data or meaningless statistical compromise. 

The Non-Monotonic Probabilist implements these requirements by providing a su- 

perstructure of non-monotonic reasoning around the application of a belief func- 

tion model. Non-monotonic logic (Section 2.7) is a method of reasoning with in- 

complete information, in which assumptions may be adopted and subsequently 

revised when they lead to contradictory results. The traditional approach, 

however, has been exact both in the statements to which it applies and in its 

own control mechanisms. As a result, it fails to capture the important intui- 

tive notion that support for hypotheses may be graded; and the selection among 

alternative equally consistent belief revisions is highly arbitrary. The NMP 

system advances beyond this, by applying non-monotonic logic to the application 

of an uncertainty calculus, and by utilizing measures derived from that calculus 

to direct the process of belief revision itself. 



In the specification of measures suitable for the control of non-monotonic 

reasoning in NMP, fuzzy logic has been a valuable tool. It provides a precise 

calculus for vague or imprecise concepts (Section 2.6). It thus makes possible 

the redefinition, in continuous form, of concepts which occur discretely in 

traditional non-monotonic systems. In NMP, for example, "conflictn is a matter 

of degree, and so is the status of a statement or rule as an "assumption". As a 

result, NMP incorporates a graded control process for belief revision, in which 

assumptions are subject to retraction only so long as their resistence to revi- 

sion is outweighed by the strength of the conflict. 

An important additional feature of NMP is that it can provide a framework for 

collaborative problem solving between a user and the system. In a high volume 

image interpretation task, users will be free for other tasks as long as 

automatic processing based on default assumptions is adequate. But when 

anomalies appear, the user's potential contribution may be solicited. The user 

himself will control the degree of conflict that triggers a system prompt. 

4.3 Next Steps 

As noted above, NMP can be implemented as a general-purpose tool for construct- 

ing expert systems, and in addition, may be embedded it within an image- 

processing environment. That environment might contain a currently existing 

system that performs pixel-level operations such as filtering and smoothing, and 

which provides a preliminary segmentation and labeling of the image. NMP would 

serve as a higher-level tool for combining bottom-up results with general 

knowledge and intelligence information, and for resolving conflict. It would 

influence the operations of the lower-level processor by directing the resegmen- 

tation of the image, the recalibration of knowledge sources, and/or the im- 

plementation of a more sensitive search for specified patterns. And it would 

solicit the inputs of a human analyst when the degree and nature of the 

conflict, as specified by the user himself, call for it. 

A variety of technical issues need to be addressed in the course of implementing 

NMP: 



Refinement and verification of fuzzy measures and algorithms for 
control of non-monotonic reasoning. 

Final design of basic system architecture: e.g., the mix of forward- 
chaining and backward chaining inference, control over sequences of 
iterative processing, and possible use of a blackboard to represent 
multiple levels of analysis. 

Specification of rules for combining dependent items of evidence 
within an independent inferential argument, based on Bayesian and/or 
fuzzy logic principles. 

Development of input routines permitting fuzzy specification of lin- 
guistic and numerical facts (e.g., "rough texture," "about 30% 
probability"). These may include fuzzy descriptions of interdepen- 
dencies among items of evidence and hypotheses (e.g., "A strongly 
corroborates B"), and of degrees of permissable conflict among lines 
of reasoning. 

Design of outputs, consisting of displays of labels for image 
regions, together with uncertainty measures and explanations where 
appropriate. 

Successful accomplishment of these goals would will yield a product of potential 

importance to organizations involved in image analysis and image understanding 

both in the Army and inside and outside of government. More generally, it would 

advance the state-of-the-art of expert system inferencing and provide a new, 

highly effective tool to support expert system technology. 





APPENDIX A 

A.0 APPLICATION OF ALTERNATIVE INFERENCE THEORIES 
TO PROBLEMS OF IMAGE UNDERSTANDING 

A.l Introduction 

In this section we show how different inference theories may be applied to repre- 

sentative problems in image understanding. Our goal is both to extend the evalua- 

tion process of Section 2.0 through concrete examples, and to suggest some new 

ways that .some standard problems may be attacked. We start, in Section A.2 with a 

discussion of how prior context information can be combined with data derived from 

the pixels. We show how a Bayesian approach, a fuzzy approach, and a Shaferian 

approach differ in their handling of the same problem. The same kind of-arguments 

are used in Section A.3, where we discuss template matching, and in Section A.4, 

on relaxation and scene labeling. 

A.2 Extraneous Information 

A.2.1 Introduction--- problem context. In this section, we shall show how dif- 

ferent theories of belief may be applied to a specific example. The problem we 

have chosen, as suggested by ETL, is in the area of feature extraction from aerial 

photographs. This is a very complex problem area, as is evidenced by the enormous 

literature on the subject (see e.g., Rosenfeld, 1983), or the large effort devoted 

to this, and closely related topics, by DARPA over the last twenty years. In 

spite of this effort, there appear to have been few attempts to construct an ex- 

pert system (in the strict A1 sense) to effect automatic feature identification 

from aerial photographs, let alone to use alternative inference schemes within 

such an expert system. One such system we have discovered in the literature 

(NEWSIP: Cambier et al., 1983) uses the inference scheme adopted by the PROSPEC- 

TOR expert system (Duda et al., 1977), which employs a mixture of ideas from prob- 

ability theory and fuzzy set theory. NEWSIP is not designed, however, to deal 

specifically with the problem of forming a consensus of the evidence contained in 



the image with exogenous information about the geographical area being 

photographed. 

A . 2 . 2  exam~le. In order to illustrate both how inferences may be drawn from 

several different sources of information within an expert system how different 

theories of belief modification may be used in doing so, we have constructed the 

following inference task. 

Task: An aerial photograph is available of a known area of countryside. It 
is known that a single road crosses the area, and that hither to there has 
been no evidence of any building in the area. The task is to determine if a 
building has been erected anywhere. 

. . 

The normal way to handle this problem is to use edge and corner detectors, or tex- 

ture measures, to segment the image into areas which are then classified into one 

of several possible categories. Any region classified in this way as a 'building' 

should be tentatively identified as such. There are now many sophisticated algo- 

rithms available to carry out this process automatically (see, for example, 

Crombie et al., 1982). 

These methods do not, however, provide an explicit framework for combining infor- 

mation derived from the photograph with information from other sources. We shall 

suppose that we also have available the following information: 

In the area represented by the photograph, buildings are usually 
erected near roads. 

m Buildings are not generally erected on boggy ground. 

e Some information exists on how boggy the ground is for each point on 
the photograph. 

Our task now is to construct part of an expert system, which will combine this in- 

formation with that produced by the photograph to determine if a building exists 



at any point. In the next four sections we describ'e in detail how that might be 

achieved, using four different inference theories. 

A . 2 . 3  Deterministic inference. We shall assume that we have available a state- 

of-the-art segmentation algorithm which provides, for any pixel in the image, a 

set of classification probabilities, (pi). For each possible classification 

category, i, pi is the probability that the pixel is indeed correctly classified 

as belonging to category i (or, more precisely, that the area of land correspond- 

ing to the pixel in question belongs to category i). What is of most interest to 

us is pg, the probability that the true categorization should be 'building.' 

(Note, at this stage, that we shall assume that the segmentation algorithm in- 

volves appropriate relaxation procedures which relate the classificatio~probabil- 

ities at a pixel to those at neighboring pixels.) 

As with the other inference schemes that we shall discuss below, there are several 

possible ways to carry out a deterministic inference.* The following seems a 

reasonable scheme, however. 

We must first convert the somewhat inexact information presented above into 

precise statements. Somehow, the information on bogginess must be converted into 

an assessment of whether a particular location can, or cannot, support a building. 

No degrees of partial truth will be allowed here. The truth value of: 

A1: the ground cannot support a building 

will be either 0, false, or 1, true, for each pixel. 

*We mean, by the title 'deterministic inference,' a scheme which not only gives an 
unambiguous answer to the question whether a building does or does not exist at a 
point, but also one which uses the clearcut implications of standard logic. 



Similarly, the distance from the road at which a building becomes impossible must 

be determined, so that a truth value of 0 or 1 can be associated, for each pixel, 

with: 

A2: the point is too distant from the road for a building to be present. 

The inference engine will now consist of the following rule: 

IF ((A1 is not true) and (A2 is not true) and (pB>1/2)) 
THEN (a building is present) 
ELSE (a building is not present). 

Writing H for the hypothesis 'a building is present,' this can be computed as 

where (H) is the truth value of the hypothesis H and 8(pB>1/2)=1 if and only if 

pB>1/2. In this framework €)(not H) - 1-B(H). This completes the construction of 

a procedure which will give an unambiguous answer on whether H is true or not. 

A.2.4 Probabilistic inference. An obvious drawback to the deterministic in- 

ference scheme above is that it forces a somewhat arbitrary classification for 

locations in terms of their distance from the road, and their bogginess. It is 

more natural to think of distance and bogginess as being factors which might make 

a categorization of a pixel as 'building' more or less likely, rather than simply 

ruling some places out of consideration. A framework for doing this is provided 

by Bayesian updating. 

The probability of H, in the light not only of the pixel data which led to pB, but 

also the distance from the road, d, and bogginess of the ground, b, may be 

written, using Bayes' theorem, as 



where D is all the relevant data provided by the photograph, fl is the probability 

density on b and d given D and the knowledge that H holds, and f2 is the same den- 

sity marginalized over (H, not-H). A similar relation holds for ;, the hypothe~is 

that a building is not present. On dividing one relation by the other, we get 

that the posterior odds on H, 

p B 
where OB - -, 

l-pg 

the prior odds on a building being present based on the pixel data alone. Now 

knowledge of the pixel data'D will not change our opinion of how likely any par- 

ticular values of b and d are, once we know whether H holds or not. For example, 

if we were told that a building was present at a particular location, and asked 
our opinions on what b or d might be, then the availability of pixel information 

should not change that view, since it could only do so by affecting opinions about 

whether H held or not, about which no doubt existed. It follows that fl should 

not depend on D. 

We thus obtain the formula 

where L is the likelihood ratio for (b,d) in relation to the hypothesis H. 



In the event that our views.about b and d are independent, in the probabilistic 

sense, then we can write fl(b,dl ' )  as the product of two densities gl(blS) and 

g2(dl ' ) ,  thus deriving 

gl(b lH) g2 (d I H) 
where Ll(b;H) = and L2(d;H) = 

gl(b l fi) g2(dlE) 

The imprecise statement that 'Buildings are not generally erected on boggy ground' 

can now be represented in the likelihood ratio L1. If b0gginess.b is measured on 

a (0,l) scale with 0 meaning 'not boggy at all,' and 1 measuring 'very boggy,' 

then the density gl will be of the form 

The exact form would be determined by elicitation from experts. These curves are 

reflecting the fact that if. a building is present, low bogginess is much more 

likely than high; whereas if a building is not present, the chance of any par- 

ticular level of bogginess will just equal the general distribution of bogginess 

on land of the type analyzed (this distribution need not be flat as in our 

example). Similar curves for the distance measures would be elicited. 

The result of this analysis will be to modify the initial classification probabil- 

ity pg, according to formula A.l above. The method of doing it, by multiplying 

the odds on H by the likelihood ratio L, captures extraneous information about the 

image under discussion. The effect will be to increase the odds on H for sites 



with low bogginess and near the road, and to decrease the odds elsewhere. 

This probabilistic analysis ends, therefore, with a revised probability that the 

pixel and its surrounding area should be classified as 'building.' If a defini- 

tive answer is required at this stage, a classification could be adopted based on 

the deduced probability and on the relative costs of classifying a non-building as 

"buildingn or a building as "non-buildingn. 

A.2.5 Fuzzv inference. Since its inception in 1965, the calculus of fuzzy sets 

has been used in many different ways to represent imprecision. Zadeh (1983) has 

provided a good argument for a particular way in which the calculus could be used 

in the management of uncertainty in expert systems, and we follow his approach 

here. Zadeh sees a 'serious shortcoming of [existing expert systems in] that they 

are not capable of coming to grips with the pervasive fuzziness of information in 

the knowledge base, and, as a result, are mostly ad hoc in nature.' Zadeh's 

stress on the imprecision of the knowledge base (rather than its uncertainty) is 

certainly relevant to the example we are considering in this chapter. The state- 

ment 'buildings are not generally erected on boggy ground' is clearly imprecise, 

and in the previous two inferential methods, it had to be made precise before it 

could be included in the analysis. Fuzzy inference allows this imprecision to 

persist through the analysis. Zadeh also points out that implication may be 

imprecise. He handles this by his generalized modus ponens, which we can illus- 

trate with the following example. 

The proposition: 

If a person is tall then he is heavy, 

is represented by a fuzzy relation on variables u and v, describing height and 

weight respectively. If pH(v) is a fuzzy set describing the meaning of 'heavy', 

and pT(u) a fuzzy set describing what is meant by 'tall,' then 



is the membership of the pair (u,v) in the set of (u,v) consistent with (if a per- 

son is tall, he is heavy). 

This definition may seem somewhat arbitrary, but Zadeh supports it by its consis- 

tency with a definition found in Lukasiewicz's logic (see Zadeh, 1983, p. 208). 

He also calls it a conditional possibility distribution on v given u. To use this 

implication to say something about the heaviness of a person, given some fuzzy 

statement about his height (e.g., that he is "very tall"), we use 

) 

i.e., to find the degree to which a value v could describe the person's weight, we 

find the most possible height consistent with his being "very tallw (expressed by 

FrT') and with the rule that tall people are heavy, and use the height possibility 

there as the weight possibility measure. 

To apply this to the present example, we will need to extend the notions. Instead 

of a.single variable u, we will have two variables: b, the bogginess at a par- 

ticular site, and d, its distance from the road; instead of v, we will have p, the 

probability that a building is present. The appropriate equation for 

P(G+%)~D' (P) , the possibility distribution over probabilities that a building is 

present, which we abbreviate as p~ 1 E(') , is 

where FIG(b,d) is the possibility distribution for 'the ground is boggy and the 

location is far from the road,' and Pp(p) is the possibility distribution for 

'very unlikely.' pD1(b,d) is the representation of the information we have in a 

special case. 



Of course, if we have cris~ information about b,d (namely that they are equal to 

bo, do, SO that p(bo,do) - 1, v(bl,dl) = 0, elsewhere), 

then 

This makes a lot of sense: the possibility of a particular probability being true 

depends in this case only on the imprecision of the implication. 

Suppose, by way of example, that we define a membership function for "very 

unlikely" as follows: 

vp(p) = 1, for p s 0.05 - .  

p-0.05 - 1- for 0.05 5 p 0.1 
0.05' 

- 0, for p 2 0.1 

This gives: 
VG for p O.1(1--) 

2 

P 
= 3-vG-- for 0.1(1- 5 p 6 0.1 

0.05 2 

for 0.1 6 p 

Thus, if llG = 1, that is, the ground is clearly boggy and distant from the road, 

then a building is very unlikely (VHIE(p) = Up(p)). If, on the other hand 

= 0, the ground is clearly not (boggy and distant from the road) then 

~HIE(P) = 1, for all p: our evidence does not exclude probabilities. 

This extraneous information needs to be combined with evidence from the pixels. 

Let us suppose that this evidence can be expressed as another membership function 

p ~ ~ ~ ~ ( p ) ,  for the possibility of a probability p that a building is present. Then 

combining these two sources of information we get 



This will have the effect of reducing the possibilities for probabilities which 

have low possibility, from the extraneous information, but leaving the others 

unchanged. 

The output of this fuzzy analysis would not be a clearcut answer to the question 

whether a building is present, nor even a modified probability that it is present, 

as in the Bayesian case. Rather, it will be a fuzzy probability. This could be 

used in several ways; we could try linguistic interpretation, producing an output 

such as 'it is not very likely that a building is present;' we could attempt some 

sort of fuzzy maximum likelihood analysis; or we could construct a procedure to 

produce a fuzzy truth value for the hypothesis H. Different theoretical arguments 

could be produced to support each of these, but we recommend experimental use of a 

method such as this to explore the practical implications of the different schemes. 

A.2.6 Dempster-Shafer inference. Dempster-Shafer theory is concerned with the 

combination of evidence, and the strength of support that it is proper to have in 

any subset of the set of hypotheses. In our example we have three pieces of 

evidence, the distance of a location from the road, the bogginess of the ground, 

and the evidence from the pixels, D. We shall start by seeing how to represent 

belief about H in the light of information on bogginess and distance, and how to 

combine these pieces of evidence. 

We construct support functions md(H), md(B) , md(H and 8) , representing the support 
given by distance from the road to the hypothesis, its negation a d  the union of 

these two hypotheses. In Shafer's theory, the total support allocated to each 

element of the power set of the set of hypotheses (i.e. each subset of the set of 

hypotheses) must sum to unity. In this case, since there are only two hypotheses - 
(H and 8) , the power set has just 3 elements (H, k and (H and H) ) , and this 
requirement gives 



md(H) + md(k) + md(H and g).- 1. 

The statement that buildings are usually near roads does not imply that any 

knowledge about d supports H; it is merely that large distance supports E. So let 

us assign md(H)=O, md(H and ii)-1-md(E), and md(Q by a curve of the following type: 

md(fi) can be interpreted as the probability that a distance d implies that is 

true. It can, in principle, be elicted from an expert. 

In a similar way we can construct a support measure %(') based on the evidence of 

bogginess. Once again it will be very reasonable to ascribe mb(H)=O, - 
mb (H and H)=l -%(H)  and m,,(H) by an empirical curve of the type above. 

To combine evidence, Shafer recommends the use of Dempster's rule, which may be 

stated as follows. If ml('), m2(') are the support functions for two different 

pieces of information, then for any element x in the power set of the set of 

hypotheses, the support for x in the light of the two pieces of information is 

where 8 is the null set. 



Using this rule, we see that the support function given both b and d is 

mbd(H) ' 0 

mbd(i) - Illb (H)md(H) + %(B) (l-md(n) ) + ( 1 )  ( 8  = mb (ii)+md(ii) - mb(R)md(6) 
mbd(H and n) - [I-mb(R)] [I-md(k)]. 
We must now combine this support function with a support function deriving from 

the photographic image. If pB is the probability of classification as a building, 

derived from the segmentation algorithm, as in A.2.4 above, then it is reasonable 

to assign the following support function given the pixel information D. 

mD(H) ' 

mD(H) - a (l-pg) 
mD(H and H) = b-a. 

This reflects the insight that the credibility of the segmentation algorithm may 

not be-total; some of the weight of support (in fact, 1-a) should be allocated to 

the complete set of hypotheses, H and fi. 

Using Dempster's rule again, we get 

mbdD(H and 8) = 

l-apB [% (fi)+md(g) -mb (E)md(li) 1 



As with the fuzzy version of t h i s  problem, there is no agreed procedure now for 

determining what to do with th i s  support function. We are thinking of using these 

computations i n  an automatic feature extraction system, however, and so they must 

lead t o  action implications. One approach is  para l le l  to  the Bayesian one, with 

the introduction of a region of indeterminacy i n  which no answer i s  provided. 

Thus, a region is  c lass i f ied  as a building i f  mbdD(H) exceeds some threshold Y 

and as a non-building i f  rnbdD(fi) exceeds a threshold 1 - Y, whereY i s  determined 

by the re la t ive  costs of mislabeling a building or a non-building. In some cases, 

neither threshold w i l l  be crossed. An al ternat ive approach, which does always - 
give an answer, i s  t o  normalize the support for  H and H ,  i. e . , p(H) - m(H) and 

m(~)+m(fi) 
- 

p(H) - 1-p(H) , before test ing against Y . This might be appropriate where the sys- 

tem i s  to suggest possible buildings for  subsequent checking by a human 

interpreter .  

A . 3  Template Matchins 

A.3.1 Introduction. A common problem i n  analyzing ae r i a l  photographs is search- 

ing for  a part icular  object,  such as a building, i n  a s e t  of photographs. One way 

to  handle t h i s  i s  through template matchinq, where portions of the photograph are 

compared with one, o r  more, templates, each giving a representation of possible 

objects. The a r t  of template matching is t o  construct an algorithm that  computes 

a measure of f i t  i n  such a way that  the object i s  properly identif ied when the 

measure of f i t  is  good. This idea has been studied i n  the f i e l d  of computer v i -  

sion for  many years (see, for example, Cheng e t  a l . ,  1968).  I t  can be applied 

ei ther  a t  the level  of raw pixel data or a t  a higher level  i n  which features or 

relat ional  s t ructures extracted from an image are matched with a stored pattern. 

There are problems associated with template matching a t  the pixel level.  F i r s t ,  

the appearance of the object may well depend on the illumination, which may be 

unknown precisely. A pa r t i a l  solution is  t o  normalize both the image and the 

template, by taking deviations from the mean a t  each point,  before comparing. But 

i n  addition, the s ize  and orientation of the object may well not be known i n  



advance, so a great number of possible templates may need to be used in the 

search; and in certain cases, such as the search for a building, intrinsic 

qualities such as shape and surface reflectance may also be unknown. 

On the other hand, even at the pixel level, template matching is very useful asa 

filtering technique, e.g., in heightening edges and corners (see Ballard and 

Brown, 1982). Moreover, some variant of it is usually required to identify the 

features that are used in a higher-order matching of relational structures. It 

is, therecore, a good problem for beginning our investigation of the application 

of belief theories to "bottom up" feature recognition in aerial photographs. In 

this section, we will first describe the standard approach to template matching, 

and then go on to show how Bayesian statistics, fuzzy set theory, and Shafer's 

belief function theory could be used, both to validate an ad hoc approach, and to 

give reasons for varying the standard approach in certain circumstances. 

A.3.2 Standard template matching. Suppose we have an aerial photograph digitized 

so that it can be represented as a set (g(i,j)) of pixel gray levels, where 

i-1, ..., M and j-1, ..., N index the pixels in the photograph. Let t(k,l), 

k=-m,-m-kl, ..., 0, ..., m-1,m; 1--n,-n+l, . . . ,  0, . . . ,  n-l,n, be a template, that is, a 
set of gray levels for the ideal object. If the template is centered at (iO,jO); 

then for (k,l) within the template, the difference in gray level at (k,l) is 

t(k,l)-g(iO+k,jO+l). 

Clearly the template matches very well if this difference is very small in ab- 

solute terms for all (k,l) within the template (i.e. for kc[-m,m], I&[-n,n]). We 

need a single measure of goodness-of-fit, for any center point iO,jO, to assess 

how well the template fits at that point. An obvious measure, much used in fit- 

ting problems, is the sum of the squared differences, 



Note tha t  t h i s  is  only defined i f  ( i O , j O )  i s  suff icient ly f a r  away from the bound- 

ary of the photograph for  a l l  the points t o  be within range; tha t  is  

m < i0 < M-m, n < jO 2 N-n. 

The standard algorithm for  template matching now seeks ( i O , j O )  to  minimize th i s .  

Now we can write 

The f i r s t  term here i s  independent of ( i O , j o )  and so does not a f fec t  the-best  

choice of ( i O , j o ) .  In  some cases, the l a s t  term 

does not change much with ( i O , j o )  e i ther .  I f  th i s  i s  the case, then the bes t  

( i O ,  j O) i s  obtained by maximizing 

the correlation of the template with the data. C(iO,jo)  i s ,  i n  f a c t ,  the resu l t  

of a f i n i t e  f i l t e r  applied t o  the image, and so in  t h i s  case it is possible to 

view template matching as a special case of f i l t e r i n g .  This is somewhat 

contrived, since G is  not often constant enough to  be neglected. Nonetheless, 

t h i s  is  one jus t i f ica t ion  for  the selection of important classes of f i l t e r s ,  such 

as  edge and corner detectors,  and the developments which we sha l l  give i n  the next 

sections can be extended to the choice of such detectors.  



A.3.3 Bavesian template matching 

A.3.3.1 Probability updating. The goodness-of-fit measure D(iO,jo) adopted in 

the last section was chosen in a rather arbitrary way. What is at root of inter- 

est to us is the probability that the data around the pixel (iO,jo) is really a 

noisy representation of the template. In other words, we can establish the 

hypothesis 

where e(iO, jO;k,l) is an error term. 

Then, if p(iO, jo) is our prior probability that H(iO, j o) holds (i. e. , that the ob- 
ject is in fact centered at (iO,jo)), Bayes' Theorem gives us 

where f ( (g(i , j ) ) 1 H(iO, j O) ) is the multivariate density for the (2m+1) (2n+l) values 
of g(i,j) within the template around (iO,jO), given that H(iO,jo) holds. We have 

assumed that one instance of the object is to be found somewhere in the image, so 

that the set of hypotheses (H(i,j)) are mutually exclusive and exhaustive. In 

general, this will not be the case, and this will lead us to modify the 

denominator on the right hand side of the equation above. The conclusions of this 

analysis will not change, however, and so, to avoid inelegant algebra, we will 

work on the simpler case. 

A.3.3.2 Using loss functions. We could, at this stage, take the posterior 

probability, p (iO,jO), as our measure of goodness-of-fit, and identify the object - - '7T - - 
at (i, j ) where pn(i, j) = max pn(i, j) . Alternatively, we can consider this as a 

decision problem, recognizing that what matters is the cost of identifying the ob- 



jec t  t o  be a t  ( i l , j l ) ,  when it is ,  i n  f a c t ,  a t  ( i 2 , j 2 ) .  Let t h i s  cost be 

L ( ( i l , j l ) , ( i 2 , j 2 ) ) .  Then the expected cost of making the decision ( i l , j l )  i s  

The best choice of position i s  a t  i*,j*, where (regarding L ( ( i l , j l ) , ( i 2 , j 2 ) )  as a 

posi t ive measure of cost) 

( i * , )  min c ( i l , j l ) .  
i l , j l  

Note tha t ,  i n  the special case tha t  L( ( i l ,  j 1), ( i 2 ,  j 2 )  ) = 0 i f  i l=j l ,  i2=j  

- 1 elsewhere 

- - 
I n  t h i s  case, where a l l  errors  are  equally cost ly,  i*=i, j*==j; the problem reduces 

t o  maximizing the posterior probabili ty on H ( i , j ) .  

Other loss  functions w i l l  give different  procedures, however. For example, suppose 

i . e . ,  the misplacing becomes dramatically more important, the fur ther  away the ob- 

j e c t  i s  placed from i t s  t rue position. Then 

2 L(i*,j*) = min [ 1 pn( i2 ,  j2) ( ( i l - i2)2+( j l - j2)  11 
i l , j l  i 2 J 2  

and i*, j*  are  given, to  the nearest integer ,  by 



In this case, it is best to choose not the most likely location, but an average 

location, weighted according to probabilities. 

A.3.3.3 Recovering the standard algorithm, and some modifications. To carry out 

the analysis in the previous section, we have, of course, to compute p (i,j), and 
7.r 

this involves the multivariate density f((g(i,j))(H(i,j)), which we have not yet 

discussed. In one special case, we can derive the simple formula given in Section 

A.3.2 above which is used in standard template matching. 

Suppose ~(i,j;k,l) has zero mean, is normally distributed, with a variance 2 

which is independent of (k,l), and that all the error terms are independent. 

If, further, p (i , j ) is independent of (i , j ) (i . e . our prior opinion is that the 
object is equally likely to be anywhere), then maximizing pT(i,j) is equivalent to 

minimizing D(i, j) . 

So we conclude that if: 

a) the loss involved in misplacing the object is constant, 

b) we have a uniform prior distribution on location, 



c) the noise on the image is normally distributed, unbiased, and 
has constant variance, 

d) the noise on the image is uncorrelated, 

we recover the standard algorithm - minimize D. 

We have already seen, in Section A.3.3.2 above, that if a) does not hold, a dif- 

ferent procedure results. The same is true if b), c) or d) are relaxed. 

A.3.3.4 Using prior information. Suppose that we have prior belief that some 

lcations are more likely than others for the object, but that conditions a), c) 

and d) above still hold. Then we should identify the object at (i,j), where (15  
maximizes over (i, j ) 

As would be expected, this more or less rules out locations which are extremely 

unlikely (where p(i,j) is near zero); more significantly, it shows precisely how 

the sum of squares should be offset to take account of prior opinion. 

A.3.3.5 Systematic error. . It is possible that there could be physical reasons 

for the error to have a systematic bias, but one that varies over the image. In 

other words, we could take 

E(~(i,j;k,l)) = @(i,j;k,l), 

(thus changing part of condition c) in Section A.3.3.3). Keeping the other condi- 

tions constant, this leads us to want to minimize 



This provides another modification of the standard algorithm. We could also, of 

course, vary condition d), that the noise is uncorrelated to yield yet another 

modification of the standard algorithm. 

A.3.3.6 Summary. It should be stressed that the problem we have. looked at in 

this section is somewhat special. We have assumed that the object is to be found 
at one, and only one location in the image, and that any failure of the template 

to match is caused by noise. We have excluded the possibility that more than one, 

or zero, matches exist. The analysis could have been presented for the more 

general case, but at a cost of clarity in argument. 

What we have shown, however, is how Bayesian Decision Theory may guide the choice 

of a template matching algorithm, taking into account: 

(i) the possibly variable cost of a wrong identification, 

(ii) the inclusion of prior probabilities on location, 

(iii) the effect of correlated noise, 

(iv) the effect of systematic bias. 

A . 3 . 4  Fuzzv template matching. The theory of fuzzy sets provides an alternative 

way of representing beliefs within a model. L.A. Zadeh, the originator of the 

concept of the fuzzy set, stresses that fuzzy sets should be used to handle 

imprecision, or what is possible, while probability theory should be used to 

handle uncertainty (see, for example, Zadeh, 1981, p. 70). While there are those 

who argue that because of imprecision, people are uncertain, and so where informa- 

tion is imprecise, it can be handled through probability theory, it is clear that 

fuzzy set theory is not a strict alternative to probability; it is, in a sense, a 

broader theory, saying less than probability theory, but still in keeping with the 

input information. For example, some values of a variable could be highly 

possible, but very improbable. 



The goal of fuzzy template matching, then, should be to ask to what extent a par- 

ticular template fits the observed data; the question will be, "How possible is it 

that what we are observing fits the template?" This question has been previously 

addressed by Kandel (1982). As is often the case in applications of fuzzy set 

theory, there are generally many different ways in which the calculus of the 

theory may be applied to a problem. We shall give two approaches, both of which 

differ markedly from Kandel's development. 

We can first concentrate on the imprecision of our answer to the matching 

question. When a photo-interpreter analyzes a photograph, he is likely to respond 

initially with a statement such as: "There could be a building of the type I am 

looking for just there." This is an imprecise statement, of the kind produced by 

a fuzzy analysis. When such an analysis yields a result that the possibility of a 

data-set being derived from a given template is, say, 0.8, one interprets this 

numerical result by a statement such as that above. In the first instance, let us 

suppose that the template t(k,l) is precisely defined, but that the imprecision in 

our answer derives from the fact that the data image is, in essence, an imprecise 

representation of the template. 

One way of looking at this imprecision is on a pixel-by-pixel basis. Comparing a 

pixel in the data with the corresponding pixel in the template, we can ask, "How 

possible is it that the gray level in the data is consistent with the gray level 

in the template?" We can express this as a membership function 

pkl(g(i+k,j+l),t(k,l)) using the notation developed in the last section. The con- 

struction of this function we shall leave for a moment, but it clearly should 

depend both on the pixel gray level, g(i+k,j+l) and on the template gray level, 

t(k,l). We now argue that the degree to which the template fits the data, 

I-IF(i,j) is given by 



This is the rule recommended by fuzzy set theory for finding the possibility for 

the conjunction of events. We can summarize it by the proverb that a chain is as 

strong as its weakest link; or observe that, if it is quite imvossible for one 

pixel in the template to be represented by a particular gray level in the data 

(Vkl = 0), then indeed it is imvossible for the template to match, no matter how 

good the fit is at other pixels. At least in this extreme case, the rule above 

makes a lot of sense. If, however, it is possible for data gray level to 

result from any template gray level at each pixel, then Vkl = 1 for each pixel, 

and the rule above tells us nothing at all. It is in this sense that fuzzy set 

theory is bland. 

It might be reasonable to suppose that the possibility of a match at a pixel could 

be given by a function of the form 

Vkl(g,t) ' 1- a(g-t) 2 

So if the match was very good (g-t), the representation would be totally possible; 

but if the match was as bad as it could be (say, g-0 and t-1, supposing gray 

levels to be measured on a [0,1] scale), then the degree of possibility would be 

reduced to 1- a. 

With this formula we would get 

VF(i, j) = min 1- a(g(i+k, j+l)-t(k,l)) 
k, 1 

Having defined the possibility of a match centered on pixel (i,j) by this formula, 

we could choose the best match as the point where FrF(i,j) is biggest. But this 

would, to some extent, be contrary to the spirit of fuzzy set theory, where the 

goal is not to come up with a definitive, clear cut answer, but rather to lead to 

imprecise, yet informative statements about the problem. If installed in an 

automatic system, one could set a level of possibility (say 0.9) above which loca- 



tions could be identified for further study either by human experts,. or a more 

complex expert system. 

The second way of using fuzzy set theory in this context is to recognize that the 

template itself should be imprecise. We are not looking for an exact image in the 

photograph, but rather for one that is something like some sort of norm. So we 

could specify in advance, for every possible set of gray levels in the image, the 

extent to which that could be the object we are looking for. This could be 

specified by a membership function 

pT(t(-m,-n),t(-m+l,-n), ..., t(+m,-n);t(-m,-n+l), ..., t(+m,-n+l); . . . ;  
t(-m,+n), . . . ,  t(+m,+n)) = say. 

Setting aside for the moment the difficulty of how to specify a (2m+1)(2n+l) 

dimensional membership function (even for m=n=l this is a 9-dimensional function), 

we now see how simple it is to compute the possibility is that the data centered 

at (i,j) represents the object. 

Writing g(i,j) for the vector whose components are g(i-m,j-n), g(i-m+l,j-n), ..., 
g(i+m,j+n), we just need to compute 

to get the number we require. 

Construction of l l T  in the first place will be no simple task, however. One pos- 

sibility would be to get an expert to rate a large number of images either ver- 

bally or numerically. When shown a template-sized image, the expert would respond 

with how possible it is that what he is seeing represents the object we are look- 

ing for; he would either give a membership number, or a verbal response, such as 

'highly possible,' 'impossible,' etc., which would then be given a numerical 

interpretation. After a large number of responses, the membership function 

would be computed by interpolation (possibly linear). Such a method would be cap- 



turing the expertise of a human expert within the computer'system--one of the 

original emphases in expert system research. Notice that this method would have a 

considerable advantage over other methods in that different orientations, sizes 

and shapes for the building, as well as different levels of illumination could be 

handled effectively. A problem might be that sharp dips or peaks which should be 

present in the multi-dimensional membership function might not be created by a 

method based on linear interpolation. The alternative method of constructing l-IT 
by making plausible arguments from first principles may be feasible in certain 

circumstances, but its feasibility is likely to depend on the size of the template 

and the nature of the object being sought. 

We have seen then how fuzzy set theory may be used as a calculus for imprecise 

reasoning in template matching in two distinct ways. Both ways should be applied 

to real data to test their efficiency. 

A . 3 . 5  Shaferian tem~late matching. Shafer's theory is designed to provide a 

method of combining information from distinct sources in the light of what is 

known about the reliability of those sources. The most obvious way to apply this 

theory to the template matching problem, then, is to consider the pixel gray 

levels in the image as being separate data sources, each of which may support the 

hypothesis that the template matches. This is similar to the case of uncorrelated 

noise in the Bayesian analysis; we are assuming that if the hypothesis is true 

(the template fits), then the only reason that the individual gray levels in the 

pixels are different from those in the template is that some random error in the 

optical image representation has occurred and that these errors are independent. 

The concept of independence in Shafer's theory is still being developed, but it is 

clear that what we need to assume is that it is appropriate to combine evidence 

using Dempster's rule. 

Let us change the notation slightly for convenience of exposition. Label the 

pixels in the template from 1 to N, rather than with the two indices i and j as 

before. If ti is the gray level in the template at the ith pixel', and gi that in 

the image for a particular positioning of the template, then our sources of 



evidence are in pairs (ti,gi). If H is the hypothesis that the template fits, 

then it seems sensible to ascribe a set of support functions by relations of the 

type 

mi (HI fl(ti,gi) 

mi (5 f2(ti,gi) 

mi(H or E) = fj(ti,gi) 

3 
for some functions f. ( '  , ' )  satisfying iClfj (t, g) = 1. The precise form of these 

J 
functions would depend on what is known about the optical blurring produced when 

an image is distorted. It might be, for example, that if t and g areboth at an 

extreme of the range of gray levels, then strong support is provided for H, while - 
if t and g are far enough apart, support is given to H, and if either of them is 

central while the other is extreme, we can give support to neither (thus giving 

our support to (H or 8)) .  Suitable functions displaying these properties are the 

following: 

The combination of these N separate support functions is effected by the repeated 

application of Dempster's rule. We need some more notation to express this rule 

here. Let ci be a variable name for the hypothesis supported by mi( ' ) ; that is 

ci E ( ~ , f i ,  (H or H) ) . Then let S1 be the set of (cl, . . . , c ~ )  whose intersection is - 
H, S2 the set whose intersection is H, S3 the set whose intersection is (H or H). 
and S4 the set whose intersection is the null set. 

With these definitions, we can apply Dempster's rule repeatedly, to get the fol- 

lowing support functions for the hypotheses: 



To understand the implications of these expressions, we have computed them for 15 

hypothetical example cases when N = 5, that is, a five-pixel template. The 

results are expressed in the table below. 



Table A-1; Final Support Functions for a Five-Pixel Template 

5 

Case tl gl t2 g2 t3 g3 t4 g4 t5 g5 m(H) m(B) m(H or 8) .Z ( ti-gi)2 
it 1 

In the f i r s t  10 cases, the pixel gray levels i n  both the template and image have 

been chosen a t  random. A s  may be observed, i n  none of these cases are the gray 

levels close to each other as is  evidenced by the moderate values of the sum of 

squared differences, which we have computed i n  the l a s t  column of the table.  Un- 

surprisingly therefore, l i t t l e  support is  given to  H i n  these cases. The only 

case where m(H) is  moderately high, case 8 ,  corresponds t o  a case where one of the 

pixels matches very closely, and a t  an extreme value ( the f i f t h )  while the others 

yield quite inconclusive evidence (the values of m(H or z) for  the four other 

pixels are 0.71, 0.37, 0 . 6 5 ,  0.67); 

Cases 11 to  15 are arranged to be highly correlated, as can be seen from the very 

small values of the sum of squared differences. In three out of these f ive cases, 

as we might expect, very high support i s  given to H ,  and in every case v i r tua l ly  - 
no support i s  given to  H. Case 11 is interest ing i n  t h a t ,  despite the high 



correlation, the uncommitted support is still 0.69. This derives. from the inter- 

mediate values of the gray levels; we constructed our support function so that 

support for H is only high if t and g are close and at an extreme end of the range. 

Once the support functions for the template matching at a particular position have 

been calculated, we must decide what to do next. One procedure would be to choose 

the location which maximizes Shafer's plausibility function, which in this case is 

equal to m(H) + m(H or H). Alternatively we could use the fact that the probabil- 

ity of H is bounded by m(H) and 1-m(H) in this case, and carry out a loss function 

computation as in the Bayesian analysis of Section A.3.3.2. Since the probability 

of H would lie in a range, the expected loss would also lie in a range. A further 

heuristic would be needed (such as minimax loss) to derive a definite conclusion. 

We do not pretend that the functions we have used in this analysis are a proper 

reflection of the best available understanding of the physics of the template 

matching problem; nor do we believe that the neglect of the relationship between 

the information connecting pixel data is likely to lead to the best possible 

analysis; we do believe, however, that a belief function analysis can give in- 

sights which simple filtering may not be able to echo. 

A.3.6 Summarv. As we mentioned in the introduction to this chapter, template 

matching at the pixel level is subject to problems owing to the imprecision in 

possible templates, and our uncertainty over how optical conditions might affect 

the photographic image of the object. We have outlined above how the procedures 

of Bayesian decision theory, fuzzy set theory, and belief function theory might be 

applied to this problem to improve the performance of an automatic procedure for 

searching for a particular object in photographs. 

A.4 Relaxation and Scene Labeling 

A.4.1 The problem. A common need in interpreting aerial images 'is to combine 

tentative identifications for small regions of the image with more general infor- 

mation about the possible relationships of one region to other neighboring 



regions. An example of this problem, at the pixel level, is how to relate a 

categorization for each pixel, (i.e., as field, road, water, etc.), to the class- 

ifications of neighboring pixels, to ensure reasonable consistency. The seminal 

paper by Rosenfeld et al. (1976) suggested a method for doing this, which has come 

to be termed "probabilistic relaxation." A considerable literature has built up 

on this technique (where it is often described as "standard"), and there is also 

much experience now of using it in practice (see, for example, Peleg, 1980; Bal- 

lard and Brown, 1982; Crombie et al., 1982; Haralick, 1983; and Kittler, 1983). 

As Haralick (1983) has pointed out, however, "probabilistic relaxation has been a 

mechanism whose theory has not been well understood." It was developed to attempt 

modification of crude probabilistic estimates of the labeling (or categorization) 

of each basic unit, in the light of information at neighboring units. As Haralick 

(1983) suggests, however, there are alternative ways of achieving this goal, par- 

ticularly if one sets the problem in a larger context than low-level "pixel- 

pushing" (to use a phrase of Haralick's (private communication)). 

In this chapter, we shall present a Bayesian formulation of the problem much as 

Haralick (1983) does; but we shall show how a slightly different formulation can 

work on the scene labeling problem first suggested in Rosenfeld's 1976 paper. We 

shall generalize this as an example of conflict resolution when different kinds of 

basic labeling algorithms are available. Then we discuss Shafer's account of 

Rosenfeld's problem, and show how his theory may be combined with the Bayesian 

one. Finally, we discuss Rosenfeld's own application of fuzzy set theory to this 

problem, and how it might be modified. 

A.4.2 Bayesian analvsis. Suppose we wish to label n objects with a set of labels 

L : = ,  , m  This could either be the pixel labeling problem, or, at a 
J 

higher level of image understanding, scene labeling once a segmentation algorithm 

has been applied to identify elemental regions of the image. For each of the n 

objects separately, data Di is available on which to base the choice of label for 

that object. Moreover, we have prior information about which sets of labelings 

are more likely than others which we assume can be expressed as a prior probabil- 

ity distribution 



p ( l )  - Pr[ labe l  of the i t h  object is l i ,  i-1, . . . ,  n ] .  

This w i l l  be zero fo r  labeling combinations, 1, t h a t  a r e  impossible; unlike the 

assumption made by Haralick (1983, p.422), we observe t h a t  some labelings 1 with 

non-zero probabili ty may be more l ike ly  than others ,  and t h i s  w i l l  be determined 

by our p r io r  knowledge of the kinds of s e t s  of objects which we may exDect t o  find 

i n  an image of the kind we are  looking a t .  We w i l l  discuss how t o  specify our 

p r io r  d is t r ibut ion  i n  the example of the next section. The quantity of in t e re s t  

t o  us is  what chance should be associated with each labeling 1 ,  i n  the l i g h t  of 

the data s e t  (Di: i = l ,  ..., n ) .  We use Bayes' formula t o  express t h i s  quantity as 

Now we follow Haralick, and suggest tha t  since for  any object the data Di w i l l  

depend only on the t rue  labeling of tha t  object ,  we can express 

For example, i n  the scene labeling problem, the data Di might be a texture vector 

which should discriminate between water, fo res t s ,  buildings,  e t c .  The chance of 

get t ing a par t icu lar  texture vector from an object which i s  r e a l l y  a f i e l d  should 

not depend ( i t  can be plausibly argued) on whether the neighboring regions are  

buildings,  fo res t s  or lakes,  or on the texture vectors obtained from neighboring 

regions. 

Using these equations, we get 



Now we see that  our r e su l t  depends only on p ( l ) ,  and P r [ D i l l i ] .  We have discussed 

the f i r s t  of these above. The second could be assessed direct ly,  as Haralick 

(1983) implicitly assumes, and we suggest tha t  th is  may be the most satisfactory 

approach. One of our purposes here,  however, i s  to show how a Bayesian approach 

d i f fe r s  from the non-linear relaxation method of Rosenfeld e t  a l .  (1976) .  The in- 

puts i n  that  process are not the conditional probabil i t ies  on the data given the 

label ,  but the inverse conditional probabil i t ies ,  P r [ l i l D i ] .  I f  we are to be 

coherent, it is not possible to  specify these probabili t ies independently of p ( l ) ,  

our prior  opinion on labels ,  since 

Pr[Di] w i l l  not need t o  be assessed i n  our subsequent analysis; a l l  we need i s  t o  

assure ourselves tha t  a s e t  of probabil i t ies  Pr[Di] ( o r  a dis tr ibut ion,  i f  the 

data are  continuous) exists  which allows a particular assessment of Pr[ l i ]  t o  be 

consistent with the algorithm fo r  finding P r [ l i ( D i ] .  This w i l l  be the case so 

long as  the m-vector Pr[ l i=Ak] ,  k=l, ..., m, is  i n  the convex h u l l  of the vector 

Pr[li=Ak Dl, k-1, ..., m ,  for a l l  D which a re  possible. This i s  unlikely to be much 

of a r e s t r i c t ion ,  and can be checked in  a working algorithm. We shal l  continue 

our analysis assuming that  Pr[lilDi] and Pr [ l i ]  can be separately specified. 

Now given that  we can take the s t a t i s t i c a l  interaction between the label and the 

data t o  be localized, we have 



and inserting this in the formula above, we get 

C where K is a normalization factor which ensures lp(LI(Di)) = 1, i.e., tliat we are - 
really dealing with a probability distribution over possible labelings I. Notice 
that in this formulation we do not have to assess probabilities of getting the 

data (Di) either conditional on the labeling, or marginal over labelings. This 

assessment task, which,could be very difficult in the case of continuous multi- 

dimensional variables, such as texture vectors, has been replaced by the ap- 

parently more tractible problem of assessing conditionals on labels given the 

data, for each object independently. (We note that the advantage in doing it this 

way may be more apparent than real, however.) 

A second apparent advantage of this formulation is that is separates (a) assess- 

ment of the probability of each li considering only the corresponding Di, from (b) 

assessment of the impact of interdependencies among the set of li on the probabil- 

ity of 1. Note that the ratio on the right hand side, between p(L) and the 

product of the Pr[li] is a measure of the degree to which non-independence among 

the li supports or detracts from the likelihood of a particular set of labels, 2. 
To the extent that the ratio exceeds (falls below) 1.0, the li (do not) "belong 

together" and p(LJ(Di)) is increased (decreased). 

We suggest that this scheme- is a more satisfactory way of handling the input in- 

formation which Rosenfeld uses in his nonlinear probabilistic relaxation method 

than the procedures of that method itself. This is not to say that probabilistic 



relaxation should not be used, since as a numerical method it can clearly produce 

sensible practical results. Rather, we should interpret the computations of prob- 

abilistic relaxation either as Haralick (1983) does, as a process of sequentially 

including more and more information; or, as Hummel and Zucker (1983) do, as not 

being probabilistic at all. With the latter interpretation, we can think of 

relaxation as being a sensible heuristic technique for deriving consistent 

labelings, or even as a non-probabilistic method for generating probabilities, to 

be contrasted with the more intelligible probabilistic approach, given by the for- 

mula above. 

A.4.3 Rosenfeld's exam~le. To illustrate the difference between our suggested 

method, and non-linear relaxation, we shall apply it to the example that is used 

in Rosenfeld et al. (1976). A triangle is identified in an image, and the scene 

interpreter has to make a three-dimensional interpretation of this triangle on the 

basis of information about each of the three lines. Each line can be labeled with 
3 one of four labels, which we shall call Al, A*, A3, and A4, and of the 4 -64 pos- 

sible labelings, only eight are possible, as listed in the table below. The 

reader is referred to Rosenfeld et al. (1976) for a precise meaning of these 

labels and the eight interpretations of the triangle. 

Table A-2: The Eight Possible Labelings 

Prior information is that each of these labelings is equally likely; this being 

so, p(l(k)) = 1/8, for each k. Moreover, we must use this information to give the 

prior marginals for each label on each side. For side 1, this gives 

~(l~==1~)-3/8; ~(1~-$)=3/8; ~ ( 1 ~ -  X3)=1/8; g1(l~=A~)=1/8. (For example, p(ll= 2) = 

A(8) 

A4 

A2 

12 

L(7) 

A2 

A2 

14 

L(6) 

A2 

A4 
12 

L(4) 

A1 

A 1 

A 3 

L(3) 

11 

X3 
11 

A(5) 

A3 

A1 

A1 

L(2) 

12 

I2 

12 

Labeling of side: 

1 

2 

3 

1 

A1 

11 



p(1(2)) + p(l(6)) + p(1(7). ) But because of the symmetry in the prior 

information, we find the marginals to have the same values for sides 2 and 3 as 

they have for side 1, We can now compute the second factor in braces in the ex- 

pression for the posterior distribution, p(1I (Di)), given at the end of the last 

section, i.e., the interpendence ratio discussed in the last section. This is the 

joint distribution for the labeling input, divided by the product of the marginals: 

Interdependence 
Ratio 

The lower ratios for ~ ( l )  and 1(2) reflect the fact that the labels they involve 
( A 1  and X2) are more frequent in the possible labelings than A3 or A,,+; thus, for 

example, the cooccurrence of All s in ~('1 may more due to chance (rather than 

interdependence) than the occurrence of X3, XI, and X1 in 1(5) a 

In order to make a comparison between our method and that of Rosenfeld, we have 

computed the posterior probabilities by our formula using these ratios, for each 

of the eight examples of input probabilities suggested by Rosenfeld, as given in 

Table A - 3 .  



Table A-3: Input Identification Probabilities 

Table A-4 below contains the results of the computations, giving the posterior 

probability of each.of the possible interpretations being correct, based on our 

Bayesian formula (B), and on Rosenfeld's non-linear relaxation method (R). 

Table A-4: Posterior Probabilities 

p(13 1 ~ ~ )  

13:A1 l 2  l3  h 
0.25 0.25 0.25 0.25 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.3 0.2 0;3 0.2 

0.2 0.2 0.4 0.2 

~ ( 1 ~  ID2) 

12:A1 12 A3 Ah 
0.25 0.25 0.25 0.25 

0.5 0 0.5 0 

0.4 0 0.6 0 

0.3 0 0.7 0 

0.3 0 0.7 0 

0.3 0 0.7 0 

0.3 0.2 0.3 0.2 

0.25 0.25 0.25 0.25 

Case 

A 

B 

C 

D 

E 

F 

G 

H 

We have represented the probabilities in Table A-4 as fractions rather than 

decimals in order for the reader to see probability ratios more easily. 

~ ( 1 ~  I D ,  
l l = : A 1  X2 A3 A4 

0.25 0.25 0.25 0.25 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.5 0 0.5 0 

0.3 0 0.7 0 

0.2 0 0.8 0 

0.3 0.2 0.3 0.2 

0.3 0.2 0.3 0.2 

H 
B R 

3/59 0 
2/59 0 
9/59 0 

18/59 1 
9/59 0 
6/59 0 
6/59 0 
6/59 0 

G 
B R 

27/350 1 
8 / 3 0  0 

81/350 0 
81/350 0 
81/350 0 
24/350 0 
24/350 0 
24/350 0 

F 
B R 

1/23 0 
0 0 

7/23 0 
3/23 0 

12/23 1 
0 0 
0 0 
0 0 

E 
B R  

1/18 1 
0 0 

7/18 0 
3/18 0 
7/18 0 

0 0 
0 0 
0 0 

Case : A 
Labeling B  R 

B 
B R  

1/10 1 
0 0 

3/10 0 
3/10 0 
3/10 0 

0 0 
0 0 
0 0 

L(') 
1 ( ( )  
~ ( 3 )  

~ ( ~ 1  
~ ( 7 )  
L ( ~ )  

1/20 118 
1/20 1/8  
3/20 1/8 
3/20 1/8 
3/20 118 
3/20 1/8 
3/20 1/8 
3/20 1/8 

C 
B R  

2/23 1 
0 0 

9/23 0 
6/23 0 
6/23 0 

0 0 
0 0 
0 0 

D 
B R  

1/14 0 
0 0 

7 1 
3/14 0 
3/14 0 

0 0 
0 0 
0 0 



Notice that in cases D, F and H, the relaxation result is to pick out the most 

likely labeling; what is more interesting are cases B, C, E and G where a labeling 

which is not the most likely is chosen (in case E it is only 1/7 as likely). The 

results of the Bayesian algorithm in case A  may seem surprising; since the data 

gives each label to be equally likely for each side, and each interpretation to be 

equally likely, would it not seem more reasonable to use the relaxation result, 

that each labeling should be equally likely, posterior to getting the data? This 

inference is false, however, because the labels are not distributed uniformly in 
the possible labelings; if the data suggest that a side is just as likely to have 

(1) (3) 1(4) and L(~), over 1 , label X3 as XI for example, this favors labelings 1 , - 
since it must give more weight to the few appearances of labelX3. 

A . 4 . 4  An alternative Bavesian analvsis. An important observation can be made 

regarding the Bayesian analysis in the last section, namely that the meaning of 

the input conditional probabilities, p(liJDi), may in some cases be unclear. To 

illustrate this point, and also to illuminate the triangle example, we shall now 

construct a simple example of a labeling problem and discuss the issue in the con- 

text of that problem. 

Suppose that a room contains a large number of urns, of two types, A  and B. Type 

A urns contain 50% black balls and 50% white balls, while type B urns contain 80% 

black balls and 20% white balls. A  probabilistic labeling procedure (analogous to 

the line labeling algorithm for the previous example) consists of taking a random 

sample of size n from any urn, with replacement. This will give the following 

probabilities for getting r black and n-r white balls from the urn. 



So the algorithm yields, in the general notation Pr[Dilli], and not Pr[li(Di]. As 

we mentioned previously, it would be much more straightforward to do a Bayesian 

analysis supposing that Pr[Di(li] were the numbers produced by the line labeling 

algorithm in the triangle case; indeed Haralick's analysis of the general case 

does make this assumption. Let us suppose, however, that we must deal with 

Pr[li(Di]. 

Suppose, in our simple example, we are now presented with a pair of urns, and we 

are asked for a labeling of the pair. We have, from Bayes' Theorem, and using an 

obvious notation, 

with similar expressions for the other labeling pairs (A1,B2), (B1,A2) and 

(B1,B2). The analysis of Section A.4.2 now gives 

But now we must ask how Pr[Allrl] is computed. Clearly in the triangle example it 

should be determined by the very formula that led to its inclusion in the expres- 

sion above, namely 

Substitution of (A.4) in the previous equation leads to the equivalent, in this 

context, of Haralick's equation, (A.2). If, of course, Pr[A1] is subjectively 

assessed, then there is no reason why we should not think of Pr[Al(rl] as also 

being subjectively assessed. But even if this is the case, it is clear that its 



assessment must be made in awareness of the relationship (A.4) above which must 

hold. In summary then, the identification of the input numbers in the examples of 

Section A.4.3 as conditional probabilities of labels given data is appropriate 

only in the absence of an understanding of the data generation process comparable 

to the understanding we have in the urn sampling example; i.e., if we clearly un- 

derstand how often a given true label will produce a given set of data IDi, we 

should use equation (A.2) rather than equation (A.3). 

Let us suppose, then, that we have such an understanding. We can offer an alter- 

native Bayesian interpretation.of the triangle example of the last section, which 

utilizes Rosenfeld's data, if the numbers in Table A-3 are taken, not as probabil- 

ities of the labels given the data, but as the relative sizes of the probabilities 

of data given the labels. For example, we might have, in case A;. 

With this revised interpretation, we can recompute the posterior probabilities 

using equation (A.2). The table below gives the results of this calculation, 

again with Rosenfeld's solutions for comparison. 

Table A-4': Posterior Probabilities--Revised Interpretation 

H 
B R  

3/25 
2/25 
3/25 
6/25 
3/25 
2/25 
4/25 
2/25 

G 
B R 

0 
0 
0 
1 
0 
0 
0 
0 

F 
B R 

27/140 
8/140 
27/140 
27/140 
27/140 
8/140 
8/140 
8/140 

3/25 
0 

7/25 
3/25 
12/25 

0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 

E 
B R  

0 
0 
0 
0 
1 
0 
0 
0 

3/20 
0 

7/20 
3/20 
7/20 

0 
0 
0 

case: 1 A 
Labeling B R 

1 
0 
0 
0 
0 
0 
0 
0 

P I  
i(3) 
i(4) 
i(5) 
F6) 
i(7) 
i(8) - 

c 
B R  

B 
B R  

D 
B R  

2/9 
0 

3/9 
2/9 
2/9 
0 
0 
0 

1/4 
0 

1/4 
1/4 
1/4 
0 
0 
0 

3/16 
0 

7/16 
3/16 
3/16 

0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 

1/8 
118 
1/8 
1/8 
1/8 
118 
118 
118 

0 
0 
1 
0 
0 
0 
0 
0 

1/8 
118 
1/8 
1/8 
1/8 
118 
118 
118 



Once again there are marked differences from the Rosenfeld analysis. 

Further evaluation of the Bayesian inference schemes we have developed above will 

depend on their application to real scene labeling problems, as an alternative to 

relaxation labeling, to determine if empirically useful results can be obtained. 

A.4.5 Bavesian analysis of conflict from more than one labeling, algorithm. In 

some cases more than one probabilistic classifier is available to give input prob- 

abilities for the labeling of each object in the light of data, Pr[liJDi] or 

Pr[Di(li]. We can think of these as being different because they are based on 

different data, Di and Dil, say. This is not unreasonable, if the methods are 

based on different ways of handling the fundamental inputs of image analysis, 

namely the gray levels at the pixels. We shall consider an alternative 

interpretation, namely that the methods have different reliabilities, in a later 

section. 

We are now interested in computing the posterior probability on 1 given the two 
data sources, {Di) and (Dif). This is given by 

Now once a labeling 1 has become known, the chance of getting particular data 
(Dif ) will not depend on {Di). Hence, we may write 



We could leave matters there, and simply input values of Pr[{Di)JL] and 

Pr[(Di1(1]. But to follow our comparison with Rosenfeld's analysis, we could 

adopt the first Bayesian interpretation (of Section A.4.2) to get 

where K' is another normalizing constant. This expression is symmetric in the two 

data sources, as we would expect. 

To see how this would affect the computations, suppose the first data source 

yields the identification probabilities given by entry A in Table A-3, but that 

the second data source yields the identification probabilities of case B in that 

table. In this case, the posterior probabilities for the 8 possible labelings, 

1(1) 1(8) are, respectively 1/28 (1,0,9,9,9,0,0,0) . As we would expect, this - , - - . , -  
gives an interpretation which is different from A and B. Like B, it gives zero 

probability to four of the labelings, since one of the methods has shown them to 

be impossible; it also suggests ~ ( l )  is less likely than either independent data . 

source would suggest; here the second method, B,is confirming the small change in- 

dicated by A, thus reducing it. 

A.4.6 Shafer's a~uroach to the triangle identification problem. In a discussion 

of how to apply his belief theory to the problem of combining dependent evidence 

Shafer (1984b) touches upon Rosenfeld's scene labeling problem. Shafer's 

criticism of Rosenfeld's method, as an argument for the proper selection of frames 

when combining evidence, is of less interest to us than his recommendation of how 

the problem should be analyzed. 

He suggests that the data which give probabilistic labelings for each side of the 

triangle should lead to-the construction of three independent belief functions 

over the frame consisting of the 64 labeling combinations. The first three of 

these are derived from the pixel data for each side; the fourth comes from the 



prior information regarding which interpretations are possible. The pixel infor- 

mation corresponds to case B of Table A-4 above. Table A-5 below gives Shafer's 

allocation of support; the notation is self-explanatory, and we only quote the 

subsets of the set of hypotheses which are given non-zero support. 

Table A-5: Shafer's Four Support Functions 

The notation (Ai) is short for (A1,A2,X3,X4), the union of the hypotheses that 
each of the four labels is correct. 

We now combine these four support functions, using Dempster's rule, to get 

with zero support to all other combinations of hypotheses. 

Note that the suggestion of this analysis is that we should give equal support to 

the labelings 1 , - 1(3) , - I . ( ~ ) ,  and &(5) ; this is in sharp contrast to the results 

of the first Bayesian analysis of Section A.4.3, where the posterior probabilities 

were 1/10, 3/10, 3/10, 3/10. The distinction is caused by the handling of prior 

belief about label X 3 .  In the first Bayesian analysis, recognition that we would 

expect A3 to be only 1/3 as likely as A1 on any side, instead of just as likely, 



as the data suggest, leads us to conclude that labelings containing X3 are more 
likely (in fact, three times as likely) as which does not contain 13. 

The Bayesian analysis would be recovered if different support functions for ml, 

m2, and m3 were used. If we were to think of the support for the labels given the 

data as relative to the underlying support for the labels, based on m4, then we 

might take 

with similar assignments for m2 and m3. Using Dempster's rule on these, we 

recover the Bayesian results. An important point to make here is that the meanins 

of Shafer's support functions is very significant. 

Alternatively, and perhaps more acceptably, we can compare Shafer's analysis with 

the second Bayesian interpretation above. In that case, Shafer's support function 

of Table A-5  leads to results which are consistent with column B of Table A-4'. 

We conclude that Shafer's approach has nothing to offer over a Bayesian theory 

when applied in this way to this problem. But there are ways in which it can 

provide greater insight, as we shall describe in the next section. 

A.4.7 Conflict between two or more evidence mechanisms. Let us now suppose, as 

we did in Section A.4.4, that in making local assessments of the appropriateness 

of a label for each object separately, we have two competing inference procedures. 

Instead of imagining, however, that each of these procedures produces probabil- 

ities that the label of each object should be a particular label, let us suppose 

that we specify support functions ml('), m2(') on the set of all subsets of 

labelings. 

Thus it might be that the data either point unambiguously to label hl, with prob- 

ability a, say; or, with probability 6, the data point to ( $ \ )  , but fail to 
distinguish between them; or, with probability 1-a-13 do not tell us anything. 



This would lead to  the following support function: 

m((All)-a; m(IX2, A3))=B; m((A1,A2,. . . , ,))-l-a-B 

and m(C)=O fo r  C being any other subset of the s e t  of labels .  A s  we pointed out 

above, the probabil i t ies  could be thought of as re l a t ive  to the underlying 

probabil i t ies .  

I f  two different  methods were available f o r  labeling on the bas is  of low-level 

data about each object,  and these labelings were i n  conf l ic t ,  we can now see how 

to  use Shafer's theory to  combine t h i s  evidence, and pr ior  evidence, to  illuminate 

the labeling problem. Specifically,  suppose each object can be addressed by two 

different  inference procedures, but that  these are applied to  each object 

separately. Application t o  the i t h  object w i l l  lead t o  support functions 

mij (.  . . ; (A1, . . . ,Am) ; . . . ; x i . .  . ; {Al,. . . , A m )  ; . . . ) f o r  j-1,2 

where x is  any subset of the s e t  of labels and it is i n  the i t h  position i n  the 

l i s t  of arguments. This notation implies t h a t ,  while the frame f o r  the support 

function actual ly has (2m-l)n elements (there are 2 m - 1  possible s e t s  of labels  for 

each of the n objects) ,  the inference procedure operating on the i t h  object does 

not have anything to  say about the other n-1 objects,  and so the support function 

fo r  the i t h  object a l locates  posi t ive measure only t o  the universal se t  of labels 

(A1, . . . ,Am) for  a l l  objects except the i t h .  Dempster's rule is  now applied to  the 

2n support functions thus prescribed, to  produce a combined support function 

mD('); t h i s  is  then, i n  i ts  turn,  combined with the pr ior  support function mp(') ,  

again by Dempster's ru le ,  t o  give a f ina l  support function for  subsets of the  se t  

of a l l  labeling n-tuples.  

To i l l u s t r a t e  t h i s  rather  complex description, l e t  us return t o  Rosenfeld's tr i-  

angle example. Suppose tha t  the s i x  support functions i n  Table A - 6  are obtained 

by application of two d i s t inc t  l i n e  labeling algorithms to the three sides of the 

t r iangle.  



Here we have abbreviated the notation. The labels in a support function mij just 

refer to the ith object; mij gives exclusive support to the complete set 

{ X1,X2yX3yX4) for objects other than the ith. Let us demonstrate how Dempster's 

rule is now used. First let us construct ml 12(') by combining the first two 
a 

belief functions in table A-6, again using the abbreviated notation. 

The numerator of this expression is the sum of products of support functions for 

subsets whose intersection is exactly A1; the demonimator differs from one by a 

similar sum over subsets with a null intersection. 

Using similar methods, we derive the following support functions. 

Table A-7: A First Application of Dempster's Rule 





The next step of combining these support functions into a single support function 

over the labeling triplets for the triangle will give support to 90 different 

elements. Rather than compute all these, let us introduce the prior support func- 

tion at this stage. 

Let us first take mp(') to be the simple support function suggested by Shafer in 

his work on this example giving equal support to the eight possible labelings. 

This allocates no support to anything other than single labeling triplets (rather 

than sets of labels for one or.more of the sides) and, as a result of joining this 

with the support functions in Table A - 7 ,  the combined support function will be of 

the same type. The calculations using Dempster's rule on the four support 

functions, give: 

Because of the special structure of this support function, these are, in fact, 

probabilties for each of the four labelings, and may now be used with a loss 

function, as suggested by Haralick, 1983, to make a labeling decision. 

It will be more interesting, however, to investigate the implications of Shafer's 

theory when the input support functions give positive support to some combination 

of simple hypotheses. In particular, suppose mp(') gives support of 1 to the set 

of labelings ((~,A1,~1),(~2,~2,~2),(\,X3,A1),(A1,A1,A3),(A3,A1,X1),(A2,A4~A2), 

( A2, $, A4) , ( A4, A2, A2) ) . Thus, instead of supposing, with the Bayesians , that each 
of the labelings ~ ( l ) ,  . . . ,- 1(8) is equally likely, we just give all our support to 
the set of all 8 labelings. This highlights the distinction between the Shaferian 

and Bayesian representations of lack of knowledge. It is now a tedious, but 

straightforward matter to compute the final support function, and the associated 

belief and plausibility functions of the sets of hypotheses (labels). 



Table A-8: Computed Belief Functions 

We have not included in the label sets any set of labels which includes a label 
3 triplet not in the allowable four (11, 13, 1' or 1'). It is clea'r that 1 has the 

strongest support of any simple labeling; moreover, one sensible procedure for 

making a conclusion from an analysis of this kind is to adopt the simple labeling 

with the maximum plausibility. Once again, this is 13 in this case. 

Plausibility 

0.1311 

0.8924 

0.0132 

0.0261 

0.9934 

0.1367 

0.1301 

0.9042 

0.0380 

0.9127 

1.0000 

0.1367 

0.9934 

0.9234 

1.0000 

This analysis does not give us a probability for a hypothesis, but it does lead to 

(approximate) bounds on that probability, given by Bel(') and PI('). Using these 

bounds in a loss function calculation might still given an unequivocal labeling 

decision, or, more likely, will lead to indeterminacy. This may well be the 

proper odtput of the labeling procedure, since it corresponds to the inherent in- 

Belief 

0.0766 

0.8633 

0.0066 

0 

0.9620 

0.0873 

0.0958 

0.8699 

0.0066 

0.8633 

0.9739 

0.1076 

0.9868 

0.8699 

1.0000 

Label Set 

l1 - 
1 - 
l4 - 
l5 - 
1 3  (1 ,1 1 
1 4  (1 ,1 1 
1 5  (1 ,L 1 
3 4 (1 ,1 1 
4 5 (1 ,1 1 
3 5 (1 ,1 1 
1 3 4  (1 ,1 ,l 1 
1 4 5  (l ,1 ,L 1 
1 3  5 (1 ,I ,1 1 
3 4 5  (1 ,I ,I 1 
1 3 4 5  (l 2 1  ,l ,I 1 

Support 

0.0766 

0.8633 

0.0066 

0 

0.0221 

0.0041 

0.0192 

0 

0 

0 

0.0012 

0.0011 

0.0056 

0 

0.0002 



determinacy in the input information. 

We have seen how Shafer's theory may be applied to handle the object labeling 

problem. It can be a more sensible way of representing what the data tells us, 

and we recommend the construction of a labeling program, and low-level labeling 

algorithms, which are consistent with this philosophy. 

A.4.8 Fuzzy labeling. In this section we examine the potential of fuzzy set 

theory for the scene labeling problem. We will first describe in outline the use 

suggested by Rosenfeld et al. (1976), and give a critique of that use. Then we 

shall suggest an alternative way that fuzzy measures can illuminate the scene 

labeling problem. 

Rosenfeld et al. start by presuming the existence of an object labeling algorithm 

which is able to produce for each object i, and each label, 1 k, a number IJ i(Xk) 
between 0 and 1. This defines the degree to which it is possible to label object 

i with label Ak. They also define a number Yij(Ak,X1) as the degree to which 

label Xk for object i is compatible with label X1 for object j ; this number is 
presumed to derive from some discussion of physically possible relationships be- 

tween objects. As before, in our discussions of the object labeling problem, we 

see that the task is to combine two types of information, namely, intrinsic infor- 

mation derived from each object about appropriate labels for that object, and more 

global information about the compatibilities of different combinations of labels 

for the different objects. In this case, this information is given by Ili(') and 

Y ( - , ) , respectively. 

Then a procedure has to be defined to operate on these input numbers to produce a 

combined opinion about appropriate labelings for the set of objects. Rosenfeld et 

al. do this in two ways. They are not explicit, but appear to compute, for any 

labeling 11,12, ..., In, the expression 



This represents the degree to which the labeling is compatible both with the data 

a t  each object and with the relationships between objects.  One could then choose 

the labeling, 1, for  which th i s  expression is largest .  

A s  an al ternat ive,  they suggest tha t  a sequence of membership functions should be 

derived using the relationship 

This is a kind of relaxation, jus t i f i ed  in tu i t ive ly .  The expression in the inner 

square brackets i s  the degree t o  which labels li, 1. for  objects i and j are 
J 

possible. The expression i n  the outer brackets is  the degree t o  which li and 1.* 
J 

are possible, where 1-* is the most plausible label fo r  object j consistent with 
J 

label  li for  object i. Finally, the overall  poss ib i l i ty  of the label  li fo r  ob- 

j ec t  i is  the l e a s t  of these degrees of possibi l i ty  over a l l  other objects j .  

Rosenfeld e t  a l .  report tha t  the behavior of th i s  l a t t e r  algorithm i s  unsatisfac- 

tory when applied to r ea l  labeling problems, since degrees of possibi l i ty  may 

decrease, but never increase, by using i t .  

A s  an al ternat ive to Rosenfeld e t  a l . ' s  appro.ach, consider the following, which 

i s ,  i n  essence, a generalization of the i r  f i r s t  method. Suppose tha t  instead of 

representing our knowledge about the consistency of labelings by relationships be- 

tween pairs  of objects,  we look a t  the whole s e t  of objects a t  once. Thus, in-  

stead of Y ( ' , ' ) ,  we specify $(11,12, . . . ,  1,) t o  be the extent to  which the labels 

11, ..., 1, for  the objects 1, ..., n ,  are possible. We then compute the overall  pos- 

s i b i l i t y  of a labeling to be 

(A.  5) 



and we could then adopt the labeling for which this measure is biggest. In the 

case that 

this reverts to Rosenfeld et al.'s first method. Our method allows greater 

generality than theirs, however, since we can ask for more general information 

than the compatibility of pairs: it may be, for example, that label 1 for object 

1 is compatible with label 3 for object 6 only if object 7 has label 2; this in- 

formation cannot be represented in the function Y(','). 

As an example of our approach, consider once again the triangle labeling-'problem. 

Suppose that for some image of a triangle, we have the following possibilities: 

Table A-9: Input Possibilities (1) 

This says that for side 1 labels X1 and X 3  are very possible while labels X2 and 
X4 are well-nigh impossible, and so on. Further suppose that the following values 

8 of @ are given for the labelings 1' to 1 , respectively, using the notation of 
Table A-2. 

with zero possibility for all other labelings. Then the values of (A.5) for the 

eight labelings are, respectively, 



Thus the most possible labeling i s  L3. Notice tha t  even i f  a l l  of the eight  
k labelings were thought to  be to ta l ly  possible ( $ ( l  )=I ,  k-1, . . . ,  8'), we would get 

from applying (A.5), a barely noticeable difference. 

The dependence of the output of t h i s  algorithm on the smallest numbers around is 

in tu i t ive ly  unsatisfactory. Part  of the problem may be interpretat ion of the  pos- 

s i b i l i t i e s  as probabil i t ies .  I n  f a c t ,  as Zadeh points out ,  generally speaking 

poss ib i l i t i e s  w i l l  be bigger than probabil i t ies .  A l abe l  may be very possible, 

but improbable. A highly probable label  w i l l  not be almost impossible. ' That 

being so,  it may be tha t  more plausible input poss ib i l i t i e s  may be as below: 

Table A-10: Input Poss ib i l i t ies  (2) 

I f  we combine t h i s  with the t o t a l  poss ib i l i ty  (@=I) of the eight labelings 
8 l l , .  . . ,I , using (A.5), we get ,  respectively, - 

This is  not very informative; it excludes three possible labelings 
2 6 8 (1 , I and 1 ) on the grounds tha t  label  A 2  fo r  s ide 3 i s  not possible,  and 

leaves us with the information tha t  four labelings remain to ta l ly  possible. We 

suspect tha t  t h i s  phenomenon i s  endemic i n  uses of fuzzy s e t  theory in  t h i s  way. 

We conclude, therefore,  as Rosenfeld e t  a l .  did,  tha t  using fuzzy logic on the 

scene labeling problem is  not l ike ly  to  be very useful.  





REFERENCES 

Adams, J.B. Probabilistic reasoning and certainty factors. In Buchanan, B.G., 
and Shortliffe, E.H. (Eds.), Rule-based expert svstems: The MYCIN experiments 
of the Stanford Heuristic Programming Proiect, Reading, MA: Addison-Wesley Pub- -- 
lishing Co., 1984, 263-272. 

Ballard, D.H., and Brown, C.M. Computer vision. Prentice-Hall, 1982. 

Brown, R.V., and Lindley, D.V. Improving judgment by reconciling incoherence. 
Theorv & Decision, 1982, 2, 113-132. 

Buchanan, B.G., Barstow, D., Bechtel, R., Bennett, J., Clancey, W., Kulikowski, 
C., Mitchell, T., and Waterman, D.A. Constructing an expert system. In Hayes- 
Roth, F., Waterman, D.A., and Lenat, D.B. (Eds.), Building expert systems. Val. 
I. Reading, MA: Addison-Wesley Publishing Co., Inc., 1983. - 

Buchanan, B.G., and Duda, R.O. Principles of rule-based expert systems (Report 
No. STAN-CS-82-926). Stanford, CA: Stanford University, Aguust 1982. 

Buchanan, B.G., and Shortliffe, E.H. Rule-based expert svstems. Addison- 
Wesley, 1984. 

Cambier, J.L., Reid, W.J., Barth, S., and Barrett, S.A. Advanced   at tern recoa- 
nition (Technical Report 83-1). PAR Technology Corporation, May 1983. (NTIS 
AD A132339) 

Cheng, A.C., Ledley, R.S., Pollock, D.K., and Rosenfeld, A. (Eds.). Pictorial 
pattern recognition. Washington, D.C.: Thompson Book Co., 1969. 

Chinnis, J.O., Jr., Cohen, M.S., and Bresnick, T.A. Human and computer task al- 
location in air-defense svstems (Technical Report 84-2). Falls Church, VA: 
Decision Science Consortium, Inc., August 1984. 

 ohe en, L. J. The probable the provable. Oxford, England: Clarendon Press, 
1977. 

 ohe en, L.J. Can human irrationality be experimentally demonstrated? The Be- 
havioral & Brain Sciences, 1981, 4(3), 317-330. 

Cohen, M.S. Status of the rationality assumption in psychology. Behavioral 
& Brain Sciences, 1981, 4(3). -- 

Cohen, M.S., Bromage, R.C., Chinnis, J.O., Jr., Payne, J.W., and Ulvila, J.W. A 
personalized and prescriptive attack planning decision aid (Technical Report 8 2 -  
4). Falls Church, VA: Decision Science Consortium, Inc., July 1982. 

Cohen, M.S., Mavor, A,, and Kidd, J. Research on the elicitation of expert 
knowledve (Proposal). Falls Church, VA: Decision Science Consortium, Inc., 
March 1984. 

Cohen, P.R., and Feigenbaum, E.A. (Eds.) handbook of artificial 
intelli~ence, Stanford, CA: HeurisTech Press, 1982, Vol. 111. 

Crombie, M.A., Rand, R.S., and Friend, N. &I analvsis of the max-min texture 
measure (Report No. ETL-2080). Fort Belvoir, VA: U.S. Army Corps of Engineers, 
Engineer Topographic Laboratories, January 1982. 



de Dombal, F.T. Surgical diagnosis assisted by computer. Proceedings of the 
Roval Society, 1973, V-184, 433-440. 

de Finetti, B. Foresight: Its logical laws, its subjective sources. English 
translation in H.E. Kybert, Jr., and H.E. Smokler (Eds.), Studies in subiective 
probabilitv. New York: Wiley, 1964. (Original: 1937) 

DeGroot, M.H. Comment (On Lindley's paradox). Journal of the American Statis- 
tical Association, June 1982, z(378), 336-339. 

Doyle, J. A truth maintenance system. Artificial Intelli~ence, 1979, =(3), 
231-272. 

Dubois, D., and Prade, H. Fuzzv logics and the generalized modus porens 
revisited (Working Paper). Toulouse, France: Laboratoire Langages et Systemes 
Informatiques, Universite Paul Sabatier, 1984. 

Duda, R., Gaschnig, J., ,and Hart, P. Model design in the PROSPECTOR consultant 
system for mineral exploration. In D. Michie (Ed.), Expert svstems in the 
microelectronic u, Edinburgh University Press, 1979, 153-167. 

Edwards, W. (Ed.). Revisions of opinions by men and man-machine systems. IEEE 
Transactions on Human Factors in Electronics, 1966, Z(1). 

Engelman, C., Berg, C.H., and Bischoff, M. KNOBS: An experimental knowledge 
based tactical air mission planning system and a rule based aircraft identifica- 
tion simulation facility. Proc. 6th Int. Joint Conf. on A.I., Tokyo, 1979, 247-  
249. 

Feigenbaum, E.A., and McCorduck, P. The fifth generation. Reading, MA: 
Addison-Wesley Publishing Co., 1983. 

Freeling, A.N.S. Fuzzy sets and decision analysis. IEEE Transactions on 
Systems, Man and Cybernetics, 1980, SMC-10, 341-354. 

Freeling, A.N.S., and Sahlin, N. Combining evidence. In P. Gardenfors, B. 
Hansson, and N. Sahlin (Eds.), Evidentiarv value: Philosophical. iudicial, and 
psvchological aspects of a theory. Lund, Sweden: C.W.K. Gleerups, 1983. 

Glymour, C. Theorv and evidence. Princeton, NJ: Princeton University Press, 
1980. 

Gordon, J., and Shortliffe, E.H; The Dempster-Shafer theory of evidence. In 
Buchanan, B.G., and Shortliffe, E.H. (Eds.), Rule-based expert svstems: The 
MYCIN experiments of the Stanford Heuristic Programming Project, 1984, 272-295. 

Haralick, R.M. Decision making in context. IEEE Transactions on Pattern 
Analvsis Machine Intelligence, 1983, PAMI-5, 417-428. 

Hayes-Roth, F., Waterman, D.A., and Lenat, D.B. Building expert svstems. 
Reading, MA: Addison-Wesley Publishing Co., Inc., 1983. 

Hummel, R.A., and Zucker, S.W. On the foundations of relaxation labelling 
processes. IEEE Transactions on Pattern Analysis Machine Intelligence, 
1983, PAMI-5, 267-287. 



Kahneman, D., Slovic, P., and Tversky, A. (Eds.) Judment under uncertainty: 
Heuristics biases. New York: Cambridge University Press, 1982. 

Kandel, A. Fuzzv techniaues in pattern recognition. Wiley, 1982. 

Kim, J.H. CONVINCE: A conversational inference consolidation engine (Doctoral 
Dissertation). Los Angeles, CA: University of California, 1983. 

Kittler, J. Image processing for remote sensing. Philoso~hical Transactions of 
the Roval Society of London, 1983, A309, 323-369. - 
Levi, I. Consonance, dissonance and evidentiary mechanisms. In Gardenfors, P., 
Hansson, B., and Sahlin, N. (Eds.) Evidentiarv value: Philosovhical. judicial 
and ps~cholo~ical aspects of a theorv, Lund, Sweden: C.W.K. Gleerups, 1983. - 
Lindley, D.V. Scoring rules and the inevitability of probability. Interna- 
tional $tatistical Review, 1982, 50, 1-26. 

Lindley, D.V., Tversky, A., and Brown, R.V. On the reconciliation of probabil- 
ity assessments. Journal of the Roval Statistical Societv, 1979, A-142, 146-180. 

Lindsay, R., Buchanan, B.G., Feigenbaum, E.A. and Lederberg, J. Avvlications of 
artificial intellieence for organi3 chemistry: DENDRAL. NY: McGrav Hill, 1980. -d 

Lowrance, J.D., and Garvey, T. Evidential reasoning: &n implementation for 
multisensor inte~ration (Technical Note 307). SRI International, December 1983. 

Mamdani, E.H., and Gaines, B.R. Fuzzy reasoning and its avvlications. London: 
Academic Press, 1981. 

McCarthy, J. Circumscription--A form of non-monotonic reasoning. Artificial 
Intelligence, 1980, 13(1,2), 27-39. 

McDermott, D. Duck: A lisv-based deductive svstem. McLean, VA: Smart Systems 
Technology, May 1983. 

McDermott, D., and Doyle, J. Non-monotonic Logic I. Artificial Intelli~ence, 
1980, l3, 41-72. 

Pearl, J. Distributed Bayesian belief maintenance. Proceedings of the Second 
National Conference on Artificial Intellieence. Los Altos, CA: William 
Kaufmann, Inc., 1982. 

Peleg, S. A new probabilistic relaxation scheme. IEEE Transactions on Pattern 
Analvsis Machine Intellieence, 1980, PAMI-2, 362-369. 

Quine, W.V. Two dogmas of empiricism. In Quine, W.V., From a logical'point of 
view. New York: Harper & Row, Inc., 1953. 

Reiter, R. A logic for default reasoning. Artificial Intelligence, 1980, 13, 
81-132. 

Rosenfeld, A. Picture processing: A review. Comvuter vision, gravhics, 
image processins, 1983, 22(3), 339-387. 

Rosenfeld, A. Image analysis: Problems, progress and prospects. Pattern 
Recormition, 1984, U(l), 3-12. 



Rosenfeld, A., Hummel, R.A., and Zucker, S.W. Scene labelling by relaxation 
operations. IEEE Transactions on Systems, Man and Cybernetics, 1976;SMC-6, 
420-433. 

Schum, D.A. A review of a case against Blaise Pascal and his heirs. Michigan 
Law Review, Jan-Mar, 1979, n(3), 446-484. 

Schum, D.A. Current developments in research on cascaded inference processes. 
Chapter 10 of T.S. Wallsten (Ed.), Cognitive Drocess in choice & decision 
behavior. Hillsdale, NJ: Lawrence Erlbaum Associates, 1980. 

Schum, D.A. Sorting out the effects of witness sensitivity and response 
criterion placement upon the inferential value of testimonial evidence. Or- 
panizational Behavior and Human ~erfo&ance, 1981, 2. 

Schum, D.A. and Martin, A.W. Probabilistic o~inion revision on the basis of 
evidence trtal: A Baconian or a Pascalian ~rocess? (Report 80-02). 
Houston, TX: Rice University, 1980. 

hafer, G. theory_ of evidence. Princeton, NJ: Princeton 
University 

Shafer, G. Jeffrey's rule of conditioning. Phil, of Sci., 1981, 48, 337-362. 

Shafer, G. Lindley's paradox. Journal of the American Statistical Association, 
June 1978, 77(378), 325-351. 

Shafer, G. Probabilitv iudment & artificial intelligence exDert svstems. 
Lawrence, KS: University of Kansas, School of Business, December 1984. (a) 

Shafer, G. problem of de~endent evidence (Working Paper No. 164). Kansas: 
University of Kansas, School of Business, 1984. (b) 

Shafer, G. Belief functions possibility measures. Lawrence, KS: Univer- 
.. sity of Kansas, School of Business, in press. 

Shafer, G., and Tversky, A. Weighing evidence: The design and com~arison of 
probability thought experiments. Stanford, CA: Stanford University, June 1983. 

Shimony, A. Scientific inference. In Colodny, R.G. (Ed.), nature & func- 
tion of scientific theories. Pittsburgh, PA:- .University of Pittsburgh Press, -- 
1970. 

Shortliffe, E.H. Com~uter based medical consultation: MYCIN. Elsevier, 1976. 

Slovic , P . , and Tversky , ~ . d W h o  accepts Savage' s axiom? Behavioral Science, 
1974, l9, 368-373. 

Stallman, R.M., and Sussman, G.J. Problem solving about electrical circuits. 
In Proceedings of the Fifth International Joint Conference on Artificial 
Intellieence, August 22-25, 1977, Cambridge, MA, pp. 299-304. 

Watson, S.R., Weiss, J.J., and Donell, M.L. Fuzzy decision analysis. IEEE 
Transactions of Svstems, Man and Cvbernetics, 1979, SMC-9, 1-9. 

Williams, P.M. On a new theory of epistemic probability. British Journal 
for the Philoso~hv of Science, 1978, 2, 375-387. -- 



Yu, V.L., Fagan, L.M., Bennett, S.W., Clancey, W.J., Scott, A.C., Hannigan, 
J.F., Buchanan, B.G., and Cohen, S.M. An evaluation of MYCIN's advice. In 
Buchanan, B.G., and Shortliffe, E.H. (Eds.), Rule-based expert systems: 
MYCIN experiments of the Stanford Heuristic Programming - Proiect, Reading, MA: 
Addison-Wesley Publishing Co., 1984, 589-599. 

Zadeh, L.A. Fuzzy sets. Inf. and Contr., 1965, 8 ,  338-353. 

Zadeh, L.A. The concept of a linguistic variable and its application to ap- 
proximate reasoning. Information Science, 1975, 8 ,  199-249; 301-357; 9,  43-80. 

Zadeh, L.A. Fuzzy probabilities and their role in decision analvsis (Technical 
Report). Berkeley, CA: University of California, Computer Science Division, 
1981. 

Zadeh, L.A. Possibility theory and soft data analysis. 1n Cobb, L. , and 
~hrall,'~.~. (Eds.), Mathematical frontiers of the social and ~olicy sciences. 
AAAS: Washington, 1981, 69-'129. 

\ 

Zadeh, L.A. The role of fuzzy logic in the management of uncertainty in expert 
systems. Fuzzv Sets and Systems, 1983, 11, 199-227. 

Zadeh, L.A. Making computers think like people. IEEE S~ectrurn, August 1984. (a) 

Zadeh, L.A. Review of Shafer's A Mathematical Theory of Evidence. AI Magazine, 
1984(b), 5(3), 81-83. 





 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset -6.82, 89.99 Width 52.60 Height 482.14 points
     Mask co-ordinates: Horizontal, vertical offset -0.97, 580.89 Width 9.74 Height 123.70 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         CurrentPage
         1
              

       CurrentAVDoc
          

     -6.8181 89.9856 52.5971 482.1402 -0.974 580.892 9.7402 123.7006 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     168
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



