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1.0 INTRODUCTION

ecent years expert systems have been designed to replicate human reasoning in
increasing sphere of inference and decision-making tasks (Hayes-Roth et al.,
£3: Buchanan and Duda, 1982). Expert systems have now been developed for medi-
al diagnosis and treatment (e.g., Shortliffe, 1976), geological exploration

~ {(e.g., Duda et al., 1979), chemical snslysis (Lindsay et al., 1980), military

planning (Engelman et al., 1979), and other areacs of specialized human skill.

In other areas, however, such as imapge enalysis, the infiltration of expert system
technigques has been relatively slow., Ome reason, at least, 1s that predominantly
mathematical or statiztical methods appear to be appropriate for such tasks as
filtering or pattern matching against pixel data, The result haz been & fajilure
thus far to integrate satisfactorily such "bottom up® metheds with requirements
that promise te be more adequately met by expert system technology: e.g., the in-
corperation of intelligence information or explicit general knowledge in the
process of image analysis and image understanding, and the reselutiom of conflicts

between alternative sources of evidence or snalysis (cf., Rosenfeld, 198s&).

The cbjective of our research has been to address this problem onm both s theoreti-

cal and a practical plane. Our theoretical goals were:

* to explere the feasibility of developing improved mechanisms for ex-
pert system inference, and

» to provide a better gemeral understanding of inference mechanisms for
expert system applications.

In our subsequent effort, we have (a) developed a heuristic framework for the
evaluation, selectieon, and/or design of inference methods in expert systems; (b)
critically serutinized, within that framework, a variety of alternative schemes
for handling uncertsinty--those associated with Bayes, Shafer, Zadeh, and non-
monotonde logie; and (o) ildentified shortecemings and recommended modifications er
extensions of those technologies. & major thrust of this part of our work is that

requirements exist within expert system technolopgy itself which will {or should)
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drive it toward a closer accommodation with mathematical or statistical metheds;
and, conversely, that the intelligent and flexible automation of probablistic
methods will require techmigues eof gualitative reasconing traditionslly asscciated
with artificial intelligence. This work is reported In Section 2.0 below,.

Cn the practical side, we have developed the high-level conceptual design of a new
inference mechanism, incorporating and extending many of the findings of our
theoretical work. This system, the Non-Monotomic Probabilist (FMF), utilizes
Shaferian belief functions, fuzzy measures, and non-monotonic reasoning--where
different concepts of uncertainty call for them. Probabilistic inference i{s em-
bedded within a framework of qualitative reasoning which is im turn controlled by
measures of the credibility of inferemtial argument. "Fuzzifving™ these measures,
in tutn, ensures a simple but graded process of high-level comtrol. Our work on
this sy¥stem has established the feasibility of a flexible and "intelligent”

deployment of probabilistic methodes in image understanding. This work is reported
in Section 3.0 below,

To bridge the gap between theory and practice, we have developed and

compared specific applications of Baveslan, Shaferian, and fuzzy methods to three
representative problems in the field of image analysis: the incorporation of
general knowledge or intellipence Information, filtering and template matching,

and "probabilistic relaxation.” A descriptiom of this work is contained in Appen-
dix A,

Finally, Section 4.0 susmarizes the main line of argument leading te the develop-
ment of FMP and describes the prospective applicaction of a system like RMP.
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2.0, INFERENCE METHODS FOR EXFERT SYSTEMS

In typical expert systems appliecations, the highest available standard of reason-
ing in the relevant area of knowledge is expert practice icself, rather than a
formal theory, algorithm, or search techmique. As a result, much of the effort in
expert eyatems development congists in the extraction of relevant knowledge from
humsan experts for translatien into machine-usable form. A second consequence,
whose importance iz only now being fully understeed, is the need to represent
uncertainty, te implement processes of inexact ressoning, and to incorporate some
form of “ﬁzt&knnwiadgt“: i.e., knowledge about the strengths and weaknesses of
the eystem's own knowledge base.

& wariety of alternative frameworks now exist for representing and reasoning about
uncertainty. Among the most prominent are Bayesian probability theory, belief
functions (Shafer, 1976), and fuzzy set or possibility theory (Zadeh, 1965, 1972).
There is also considerable interest in non-numerical methods of inexact reasoning,
such as non-monotonic logic (Doyle, 1979). Uncertsinty caleuli of these types can
contribute to a variety of expert system fumctions; for ewxample: (1) to combine
different items of evidence or lines or reasoning in drawing & conelusien; (2) te
control the allocation of computational resources ameng different lines of reason-
ing or knowledge resources; (3) to generate requests for additienal data or judg-
ments from users; (4} to halt computations when acceptable results are ebrtained;
and (3} to explain to users how a conclusion was arrived at and what its
ceredibility is.

The selection of a framework for accomplishing these functions will zlso hawve an
impact on knowledge acquisition. The choice of such a framework will help struc-
ture the dialogue between knowledge engineer and domain expert, determining what
questions are asked and how they are answered (cf., Shafer and Tversky, 1983).
This process is seldom (if ewver) the literal "transfer" of informatliom, or rules,
from expert to system. Much of the relevant knowledge is {(as yet) unverbalized
and only implicit in expert asctiom and inmtuition. The wvalue of frameworks for

representing uncertainty must be assessed in part, therefore, by the way they in-
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fluence the quality and quanticy of the information an expert provides (Cohen,
Mevor, and Kidd, 1984),

Unfortunacely, there has as vet been little systematic research on the impeect of
alternactive inference frameworks either on knowledge acquisition or on expert esys-
tem functioning. Imn part, this can be attributed te the pragmatic urgemey of get-
ting systems up and running. In part, it may be due to & bias against numeriecal
methods in the artificial intelligence tradition (as noted by Shafer, 19Bi4a),
Finally, howewver, it may be due te & set of resl methodological obastacles. Far
example:

(1) Alternative frameworks for uncertainty differ in the degree to which ap-
propriate normative justifications have been achieved; they differ also in the
demands they impose on the expert for assessments, 1n the computational burden
they impose on the system, and in the ease with which they represent distinctioms
and yield conclusions which are natural to a particular expert or user.
Evaluation, in short, must be multidimensional. But it is by no means clear how

tradeoffs asmong these competing conslderations should be resolwed.

(2) The theories themselves are in a process of evolution. To some extent, the
success of an application depends on the ingenuity of the developer as much as on
the intrinsic worth or potential of the theory.

{3) Alternative frameworks often appear te differ in the concept, or kind, of um-
certainty which they attempt to capture (e.g., chance, imprecision, or complete-
ness of evidence). On the other hand, defenders of each theory tend to regard the
other theories, in some instanceg, as specisl cases of their own, and in other in-
stances as invalid. Thus, it iz zeldom clear whether these theories are best
regarded as competitors or as alternative tools with different, but complementary

functions .

These three methodolegical challenges will be a recurring focus of Section 2.0.
In Section 2.1 we amplify the notion that different comcepts of uncertainty may be
imvelved in expert ressoning, and in Section 2.2 we lay out a provisional multi-



dimensional framework for evaluating slternative theories of inferemce and pin-
pointing areas in need of improvement. All this is by way of prelude te an ex-
amination of alternative systems of uncertainty in Sections 2.3 through 2.7.

2.1 Concepts of Uncertainty

How many different "kinds" of uncertsinty or inexactness are there? The answer
will depend on what theery {or theories) of uncertsinty we wltimately choose to
accept. Such a theory might derive & wvariety of spparently distinet motionz from
& single underlying principle. Honetheless, on a more superficial plane, humans
do seem to possess separate bodies of intuition, and abilities to make relartively
independent judgments, concerning different sorts of uncertainty. These appear,
morecver, te have different implications and roles in expert system design.
Briefly delineating them will clarify what it is a theory of uncertainty could or
ghould explain. We will distinguish amomg thres notions:

" chance or uncertainty about the facts
" imcompletenesse or gquality of evidence
L imprecision or vagueness
2.1.1 Chapce ¥g. imprecisiop. The imprecision with which facts are specified is

not the same a8 uncertainty sbout what the facts are. For example, the data
provided by a digitized aerial photograph, consisting of a set of numbers repre-
gsenting gray levels at #ach pixel, are a precise set of data, but neise in the im-
aging process may make us uncertain what the "true" levels ought te be. Data such
as "there is a long straight feature in the upper left of the phote" are
imprecise, but emtail no uncertainty. Similarly, an inference rule such asz “if
there Is a rectangular object, then it is elcher a bullding or a field® is both an

imprecise and an uncertain rule.

2.1.2 Chance vs, incompleteness. Uncertalncy aboutr the facts iz not the same as
incompleteness of evidence. ~Consider the rule:

Rl. If % is rectangular, it is a building with probability .9 or a field
with probebility .1.
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This statement produces & high degree of certainty that = is a building, but it
represents only & small portion of the obtainsble evidence (viz., shape) which
might bear on that question. Consider, on the other hand, the following rule:

R2. 1If x is rectangular and far from a road, it i= a building with
probability .5 or a field with probabilicy .5.

Thizs statement covers moreé of the available evidence (i.e., shape and distance
from a road), but yields a lower degree of certainty about the facts at issue.

2.1.3 Ipprecisiopn ws. incompletenegss. Finally, imprecisiom and incompleteness of
evidence are distinct. In the example above, Rl was imprecise, since x could be
rectangular (and also perhaps a field or a building) to varying degrees. What if
we obtein all possible data relevant to classifying x as a rectangle {(i.e., & mew
set of very exact measurements of x"s angles and sides)? WIll we finally know for
sure that ®x 1s or is not a rectangle? HNe (unless ®x turns out te be a perfect
rectangle), since the imprecision in this example was the result of cur abllicy to
strecch the use of the term "rectangle", i.e., our willingness to tolerate a
degree of deviation from perfection, not our lack of knowledge. Judgments of
imprecision, in this sense, are more akin to judgments of similarity (e.g., of x
te the "typical®™ rectangular cbject) than te judgments of the gquality of evidence.

Ve conclude that there is at least a plausible case for distinguishing three no-
tions of uncertainty. The remaining questions (to which we turn in later
sections) are: (1) To what extent and in what way are each of these notions
relevant to expert system design? (2} Can any of these concepts be successfully
or naturally reduced to any of the others? (3) How successfully is each notion
captured by current theories of uncertainty?

2.2 ﬁmtuwﬁﬂiw

2.2.1 VWhy a framework? Our discussion of strengths and weaknesses of alternative

theories will largely be structured within the framework shown in Figures 2-1 and
2-2. The purposes of the framework are heuristic:
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. to clarify our understanding of the features invelved in such an
evaluation, their relationships, and the tradecffs that must be
resolved in the actual design of a system;

- to suggest directions for the modification of current methods, the
development of new methods, or the synthesis of current methods, that
remedy specifie shortcomings while retaining existing advantages; and

. to serve (perhaps) as the eventual basis of a knowledge engineering
tool for the design of inference methods in specific applications.

2.2.2 Copponents of evaluation. As shown in Figure 2-1, evaluative ecriteria fall
under two main headings: walidlty and feasibility (corresponding roughly teo
benefits and costs)., Under each of these are twe subcategories which include fac-
tore relating to representation and reasening, respectively, Thus, feasibility
breaks down into the quantity of inputs required by the representation of uncer-
tainty and the computational tractability of the reasoning process. WValidity
breaks down into the walidity of the semantic representation and the valldity eof
the precess of inference or reascning. "Concept of uncertainty” is an impeortant
conditioning parameter; i.e., the performance of a given theory of uncertainty on
the various criteria included under wvalidity will depend on the type of uncer-
tainty which is appropriate to the application at hand.

Under validity, inference and semantics are further broken down into sets of more
gpeclfic eriteria, as shown in Figure 2Z-2. Each of these sets is a mix of formal
and informal factors, i.e., criteris which seem purely mathematical or behavioral,
on the one hand, and those which have a more cognitive or pragmatiec aspect, on the
other. Thus, under gemantics, we indicate the desirability of an explicit be-
havieral specification for the required imputs. For example, if I assign a<prob-
ability of .9 that ® Is a building, then according te Bavesian theory, I would be
indifferent between a bet whose outcome depended on x's being a building and a bet
onn drawing & red ball from an urn containing 90 red and 10 black balls. As we
shall sgee later im this section, alternative wiews of uncertainty have not had as
mach success in providing behavioral specifications for their inputs as has
Bayesian probabilicy theory. On the other hand, we also indicate under semantics
the desirability that inputs take a form that is, in some sense, natural for the
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axpert to provide. The unnaturalness of Bayesian inputs for mamy applicsatiens has

been a strong selling point for theories attempting to supplant Bavesian probabil-
ity theory,

Similarly, under inference, we include not only the existemce of an axiomatic
derivation, but also the face wvalidity of the theory's basic postulates or rules,
the plavsibility of conclusions drawn by use of the theory in specific

applications, and the successful achievement of goals by persons or systems which
uge the theory.

2.2.3 What is validitv? The evaluation of inference frameworks in terms of
"validity" has an inevitable air of circularity, since defenders of various siter-
native theories typically regard different sets of criteria as relevant: Thus, we
had better comment on the concept of walidity which is reflected in our choice of
criteria. For example, Bayeslans write as though only behsvieral specification
and axiomatic derivation mattered (e.g, Lindley, 19B2), while defenders of alrer-
native views tend to focus exclusively on the more cognitive or pragmatic criteria
{e.g. Shafer, 19El). At the other extreme from the Bayesians, L. J. Cohen (1981}
argues that only the conformity of a theory with asctual instances of unaided human
reasoning counts toward its validicy (see commentary by M. 5. Cohen, 198l). Thus,
the range of ceriteria under validity can be regarded as defining a "political™
spectrum from conservative to reform. (The non-Bayesians may regard themselwves as
the reformers since they oppose the "prevailing®™ Bayesian position on pragmatic
grounds, but in a more meaningful sense the Bayesians are the reformers, since

they advocate that many habitual ways of thinking be rejected as cognitive
illusions.}

Our own position iz that all the criteria are important. Our argument is simply
that no deep or principled distinction can be made among them, An axiomatic
derivation lends credibility to a theory to the degree that the axioms themselves,
and the assumptions in the derivation, are found to be plausible, dt:iflhlt. or
applicable (cf., Shimomy, 1970). This is only a difference in degree from the
case where a theory lacks such a derivation, but where its basic postulates them-
selves have face validity or plausibilicy. Similarly, since accepting a theory
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entails acceptamce of imferential conclusions drawnm with its aid, there iz no
reasonn why the intrinsic plausibility of those conclusions, in specific instances,
should not count for or against the plausibility of the theory. Finally, since we
do not regard our intuitioms regarding plausibility as infallible, we must allow
actua]l succese in using a framework to achieve our goals as &n additional, though
highly imperfect, indication of the overall plausibility of that framework.
(Intuitiens of plausibility in general may be the product of an evolutionary past
comprising zguhg series of actual successes and fallures.,) In sum, we regard sll
the eriteria listed under validity as tools for enhancing the overall plausibility
of our system of beliefs and, ultimately, our success in action. Ho one of them
has a pri*illgéd status, and no ome can be wholly ignored for other than arbitrary

or ad hoc reasons.

2.2.4 Implicatiops for knowledge ggg;gﬂﬂzing.' There are two important corol-
laries of thisz view for the procesz of knowledge engineering. First, the cus-
tomary distinetion between replicating expert knowledge and devising an analytie,
prescriptive, or statistical model canmot be regarded a5 a sharp one. Adoption of
a particular inference framework is a process of "bootstrapping®: prier intui-
tions and judgments (at the level of axioms, postulates, and/or specifie
inferences) determine the imitial degign of an inference mechanism; the output of
that mechanism then may lead te the reconsideration and revision of previous in-
tuitions and judgments with which it deesz not agree, or to redesign of the
mechanism, PBuilders of expert systems have tended to put more welght on
"ecapturing” an expert's pre-existing intuitions about specific instances than on
the selection of inference schemes with globally plausible properties (i.e.,
axioms or postulates) which might lead to some revision in those intuitioms.
Fote, however, that im other contexts, knowledge engineers do not hesitate to im-
pose constraints on the format in which experts are asked to report-theilr
knowledge (cf,, rule-based elicitation methods, such as EMYCIN; alse the descrip-
tion of Hii's methods in Feigenbaum and MeCorduck, 1983; Buchanan et al., 1983).
By formulating his knowledge within these constraints, the expert himself may
achieve new insights. We would argue that constraints imposed by theories of in-
ference should be regarded in a similar light. (Cohen, HMaver, and Kidd, 1983,
containg further discussion of this point.)
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Some guidance, however, ecan be provided to the knowledge enginesr in his initial
selection of an inference framework, The dizcuszion inm Sectiom 2.1 suggested that
intuitions about uncertainty fall into three relatively separable sets, cor-
responding to different concepts of uncertainty, Thus, a proposed theery of un-
certainty camnot be evaluated in the abstract; we pust consider itz plausibility
with respect to the appropriate set of intuitions. This suggests the following
approach to a methodology of knowledge engineering:

- prior determination (through use of an evaluation framework such as
the one described above) of inference mechanisms which are well-suited
for specific concepte of uncertainty,

- determinatien on the spot, for various componente in & specifie
application, of the concept or concepts of uncertainty that are
relevant,

Judgments relating components of a specific expert svstem application to differenc
concepts of uncertainty would thus serve as a mediating link between that applica-
tion and the initial selection or design of an inference mechanism. Note that
determination of the relevant concept of uncertainty in a specific spplication
may, im part at least, be a funetion of explicitly identifiable features of the
applieation: for example, the generic problem ctype (e.g., diagnosis, estimation,
clagsification, monitoring, or cholce of actions) and generic interactive func-
vions (e.g., interpretations of user queries and dats inputs, display of conclu-
sions and explanations to users, alerting with regard to real time events,
requests for user judgments or data, and incorporation of user owverrides or revi-
gions into the knowledge base). Thus, general guidelines linking problem types
and interactive functions to concepts of uncertainty might eventually be dewvised,

2.3 Currept Status of Methods for Handling Ungertajptw

If ewpert systems are to replicate the performance of experts in cognitive tasks,
in almest all cases some method must be found that matches the human sbility to
carry out inexact reasoning. In the remalnder of Section 2.0, we exanine a
variety of calculi to that end. We will focus far less on the detalls of the
theories than (a) on their strengths and weaknesses in the warious categeries ouc-
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lined in Seetion 2.2, and (b) on potential modifications, amplifications or syn- £
theses to redress weaknesses., After briefly discussing MYCIN, we shall move on to
Bayesian probabilities (Sectien 2.4), belief functions (Sectiom 2.3}, fuzzy sets
(Section 2.8), and non-monctonic logic (Sectiom 2.7}, The major positive con-
tribution of this review is that numerical caleuli will not adequately capture the
human ability to intelligently and flexibly manipulate uncertalnties unless they
are embedded in a higher-order svstem of qualitative reasoning. This thesis ;
provides an essential basis for the new system of reasoning to be proposed in E¢¢H
tion 3.0. & less tuﬁhnical.dEEcriptiun of the warious theories themselves may be
found in Cohen et al., 1984,

2.3.1. MICIN. The developers of MYCIN, by far the most familiar and influential
expert system, recognized the need for an uncertainty calculus and proceeded to
invent their own (Shortliffe, 1976, Chap. 4). Based on Shortliffe’s calculus of
certainty factors, MYCIN has had a certain degree of pragmatic success.
Unfortunately, its developers as well as others have recognized an increasing num-

ber of difficulties, especially In the area of validity (Buchanan and Shortliffe,
1984) .

Feasibility: BShortliffe"s caleulus has been demonstrably successful in this area,
The required mumber of inputs is kept to a minimum, since complex judgments of
evidential interdependencies and prior probabilities are not elicited. Inference
rules are computationally consistent with a highly modular, rule-based, backwards
chaining architecture.

Validity: Semantiecs: An original goal of MYCIN was to provide a format for ex-
pert inputs with a natural interpretation, as the degree to which a bit of
evidence "confirms™ a conclusion. However, no behavioral specification for cer-
tainty facters has been offered. Moreover, even on an informal level, it is un-
clear whether experts can have a sufficient grasp of the meaning of the numbers
they are asked to assess. For example, certainty factors confound different
senses of uncertainty, as well as confounding uncertainty and the importance of
the hypothesis under comsideration.
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Axiomatic derivation: MYCIK lacks any deep normative justification. Adams (1%76)
has shown, moreover, that MYCIN cannot be plausibly regarded as an approximation
to Bayesian methods, as Shortliffe had originally supposed.

Face validity: Humerous postulates or procedures in certainty factor theory ap-
pear ad hec, implausible, or inconsistent. These include its disregard for
interdependencies, its disregard for pricr probabilities, the arbitrary cutoff on
the certainty of the antecedent required to trigger & rule, and the inconsistent

simultaneous use of the MIN operater and multiple rules to capture & disjunction
of evidence,

Flausibility of instances: MHYCIN has had some success in empirical tests which
compared its performance, in prescribing therapy, with that of experts (lu et al.,
1979). In some cases, however, MYCIN's conclusions do not match intuitiens. Ac-
cording te Buchanan and Sheortliffe, with concurring evidence, results converge too
rapidly en certainty even when the evidence is very weak. In an earlier version
of the calculus, a very small amount of conflicting evidence could overwhelm a

large amount of concurring evidemce,

What concepts of uncertalnty does MYCIN address? It makes no provision for im-
preciseness of user inputs; for example, there 1s no measure of the degree to
which the user's description of the data matches the antecedent of a rule., As for
the chance of a hypothesis being true and the quality of evidence supporting the
estimate of that chance, MYCIN is ambiguous. Certainty factors could be construed
a5 representing either one (Buchanan and Shortliffe, 19384, Chap. 10), contributing
ne doubt to the semantle confuslon of experts asked to provide these numbers, In
light of the problems with walidicy indicated above, it cannct be concluded that
MYGIN gives an adequate account of either of those concepts.

2.3.2 0Other developments. Another well-known system, FROSPECTOR, incorporates
e¢lements of a Bayesian calculus, but deviates significantly from it in important
respects, i.e., the treatment of AND and OR by MIN and MAX operators, and the con-
catenation of inferences across a series of rules (Duda et al, 197%). In the past

two or three years, there has been a growing sense of dissatisfaction among
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developers of such systems with the ad hoc nature of the inference mechaniems thus
far attempted, and an increasing interest in presumably more rigorous
alternatives, For example, Gordon and Shortliffe (1984) have proposed that the
next step for MYCIN is to replace certainty faccors with Shafer's theory of belief
functions. Some preliminary applications of belief functions (e.g., Lowrance and
Garvey, 1983) have been proposed, and fuzzy logic now has a number of applications
(eited in Zadeh, 198&4a).

Unfortunately, such new departures may encounter difficulties comparable te those
which faced MYCIN, unless careful consideration is given to conditions of walidity

involved in representing the appropriate concepts of uncertainty.
2.4 Bayesian Probsbilities

2.4,1 Using probability theory for inexact ressoning. Probabilicy theory has be-
come central to modern sclentifie eulture. As sueh, it iz the obvious ealeulus to
consider for handling inexactpess in expert systems. Ite supporters in this role
date back to the early werk on probabilistie informatien processing {(see Edwards,
1966) and earlier; more recent contributers have been de Dombgl (1973}, in the
field of medical decision making, and Schum (19E0) in the intelligence field,

The applicatioen of probabilistic reasoning to rule-based expert systems is
complex, but it can be illustrated with a simple example. Part of an expert svs-
tem for image analysis could be a scene labeller, based on texture vectors. A

rule in a system resembling PROSFECTOR might be:

IF (TEXTURE IS OF TYPE X)
THER (OBJECT IS A BUILDIRG) (LR = 2.3},

where lR.quantifits the impact of the evidence (the texture) on the hypothesis

(that the object is a building). IR is a likelihood ratic, i.e., the probability
of finding a texture of type X given that the object is a building divided by the
probability of that texture glven that it is not a building. Satisfaction of the
antecedent of this rule would lead to & process of Bavesian updating, in which the
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impact of the new evidence is combined with the prior odds of the hypothesis being
true, Suppose H is the hypothesis that the objeet is a building. Then Bayes®
Theorem gives, in odds-likelihood form,

where D is the dats that the texture is of type X, |!|_'L'u|i-1-.l_'.f.zr the hypothesiz that
some other interpretation for che object is appropriate. To carry out a si
enalysis of this kind, three assessments are required, namely Pr[D|H], Pr[ﬂigzi
end Pr[H], i.e., the likelihoods and the prior probabilicy.

Information for understanding aerial photographs may come not only from .the image
itself, but also from other facts that are known about the world. 5o the prior
belief about H might itself be derived from a preobabilistic amalysis. Suppose,
for example, that our view of how likely an object is to be a building is affected
by the existemce of intelligence reports of some recent construction activi n
the area. Call the existence of constructionm activities A, and its ahsanézﬁ

Then we might write
Pr[H] = Pr(H|A]Pr[A] + Pr[HrI]PrfI].

Our estimation of the reliability of the reports is captured in Pr[A], and we can
now think sbout how likely H is in the light of A or A separately.

Work on Bayesian approaches to inference has advanced from a simple one-step ap-
plication of Bayes' rule to the elaboration in recent research of rather complex
structures capable of capturing & wide diversity of human inference tasks and
prescriptive intuitions {(e.g.. Schum, L97%, 1981). Bavesian technigues, feor
exemple, are able to accommodate & number of different ways that items of evidence
can be related to one another with respect to a hypothesis (Schum and Martin,
1980): e.g., they may be contradictory (reporting and denying the same event),
corroboratively redundant (reporting the same event), cumulatively redundant

{reporting different events which reduce one another's evidentisl impact), or non-



redundant (reporting different evemts which emhance or do not change one another's
evidential impact). In other, more complex cases of interdependence, Bayesism
technigues capture the evidential Iimpact of biases in an information source or
non-independence of information source sensitivity with respect to what is being

obgerved.

Az might be expected, evaluation of Bayesian theory leads te results that largely
are the reverse of those for MYCIN; it ranks high in validity, but lew in
feasibility.

2.4.2 Ft‘tibllity1 Quantity of inputs. When one attempts to use Bayesian prob-
ability theory on real inference problems, one quickly becomes aware of the com-
plexity of the task. This complexity led Sheortliffe (apparently) te construct his
caleulus of certainty factors as an alternative (see Shortliffe, 1976, Section
2.2), Schum (1980, p. 207) ends his advocacy of the Bayesian approach with a
negative note: "...now we have other problems. I believe nobody realized how
many ingredients there would be and how complex the judgments about these in-
gredients would be even in apparently simple cases."™ In all but the most trivial
cases, a proper Bayesian analysis requires a great many conditiomal probabilities
to be assessed. Schum presents the analysis of a fairly simple legal trial in-
volving 7 pieces of evidence (Salmon's pills) and shows that at least 27 probabil-
ity judgments sre needed, even 1f all reasonable independence conditioms hold. As
well as requiring a very large number of probabllity assegsments, the relations
between them are diffiecult te organize, and the coherence of the total set of
assessments is often difficult to determine.

Twe important lines of defense for Bayesians are (a) that simplifying assumptions
can &lways be made, e.g., equal prior probabilities, conditional independence of
events; and (b) that variables which one does not care to deal with may be
"integrated out,” i.e., the resulting probabilities are regarded as marginal
("averages") with respect to possible values of the ignored variables. Thus, a
Bavezian model may be created which ig az zimple 23 one likes.
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Infortunately, however, the situation is not quite as clear cut as this.
"Simplifying assumptions® must Iin some sense be judpments (e.g., that priors are
roughly equal, that events are conditionally independenc). Otherwise, one
sacrifices the walidity of the Bavesian approach. As one Bayesian (Lindley, 1984)
has put it, the Bayesian argument shows you the things you have to think about;
so, think about them. From the Bayesian point of view, an argument which omits
these factors is simply spurieus. In the case of "integrating out" certain
variables, no formal problem presents itself, since from a theoretical point of
view the results with and without such variables should be the zame. In actual
fact, however, the difference in plausibilicy of the overall analysls can be very
great (as we zhall note below, Section 2.4.5). Thus, although the reguired number
of assessments may in fact be reduced by either of these means, the difficulcy of
the judgments required to do so may be considerable, Schum speaks ¢f_:h¢m as
"exquisitely subtle”.

& quite different approach, which we shall explore in greater detail below, is to
regard simplifying strategles as assumptions whose waliditcy is tested implicitly
through thelr use in reasoning. I the outcome of using such assumptions is
plausible, the burden of explicicly judging their wvalidicy is avoided.

A related tactic 1s to accept the Bayesian framework as, in principle, the correct
way to handle uncertainty, and divert our research interests to approximations
that are as close as possible to the Bayesian norm. Indeed, Shortliffe (1976, p.
164 originally saw certainty factors as a device in this direction. Shortliffe,
however, did mot explicitly derive his theory as a special case of the more
general Beyesisn model. Adams (1976) showed that assumptions necessary to derive
Shortliffe's postulates in some cases do not exist, and in other cases are far
more restrictive and implausible than the usual assusptions of equal priors and
conditional independence. We shall return to this topic in the discussion of
Shafer's theory (Beectiom 2.5).

2.4.3 Computational tractability. There is no known, computationally tractable

methed for propegating uncertainties consistently through an arbitrary Bayesian
network. Restrictions of scme sort on the kind of model that is utilized are
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nacessary. The only question (as in the previous discussion of Inputs)} is whether
the restrictions will be plausible {(i.e., define & meaningful, useful speclal case
of Bayesian modeling) or gd hoc. PROSPECTOR adopted the latter approach. Hore
recently, Pearl (1982) and Eim (19B83) have explored the former. They show that
independence assumptions make sense, and probabilities can be propagated by simple
local computations, if the inferential network has (a) a causal interpretation,
and (b) the form of a Chow tree (i.e., it lacks undirected cycles).

Unfortunately, nmot all real problems will fit this special structure.

If wvalidity iz not to be sacrificed, computational tractability for & Bavesian
system can be purchased only in special cases; and even then, only at the cost of
complex and subtle judgments regarding interdependence among items of knowledge
and the overall structure of the inferential argument. As we shall see, the
sgituation is quite similar for Shaferian belief functions. For this reason,
Shafer (19B8&4a) has recently argued, the introduction of probability into expert
systems appears to be incomsistent with the modularity of knowledge repre-

sentations that up to now has been the most salient characteristic of such systems.

In Section 3.0 we shall return to someé of these gquestions. We will propose shat a
careful use of qualitative reasoning, superimposed upon a probabilistic system,
may reduce the regquirement for experts {or users) to address issues of interdepen-
dence and model structure explicitly, and make such assessments easier when they

are required, without undo compromise of walidity.

2.4.4 Validity: Axiomatic derivation. Bayesian probability theory has a
preeminent, though perhaps not conclusive, claim to validity among current
proposals for the handling of uncertaimty. De Fimetti (1937/1964) showed that un-
less your beliefs conform to the rules of probability, a clever opponent could
make you the victim of a "Duteh book," 1.e., a set of gambles you would accept,
but in which you lose regardless of the outcome of an uncertain state of affairs.
Hore recently, Lindley (1962) has given a new derivation. Suppose that people are
going to measure the uncertainty of events by some method, and we wish to kmow how
good they are at doing so. If we devise a scoring system of any sort--as along as

{a) the score iz a jolnt funmction of the uncertainty measure and the event's tTuth
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or falsity, and (b) scores are additive across different events--then no matter
what events actually occur, the best achievable score will always go to a form of
Bayesian probability. Lindley concludes that "only probability i= a sensible
deseription of uncertainty.”

A common objection to this sort of demonstration is that we are pnot in fact always
{or usually) faced with & malicious adversary or, indeed, with a scoring system.
But the point is not that we are, or should somehow presume that we are, always
subjected to such pecullar circumstances, Ewven 1f we pewver encounter these
conditiens, other things being equal, a system which has the property of working
well in them 1= more desirable (in all circumstances) than one which does net. In
cerms of Section 3.3, it is plausible than an adequate svstem of uncertainty would

guard against a Dutch book. It is plausible that such a system would scere high
if we ever chose to score it.

The more fundamental objection, in our view, is that while probability theory has
been shovn unigquely to possess a desireble property, but has not been shown to be
uniquely justified. Other systems of uncertainty may have desirable properties
that probability theery lacks. (In partieular, alternative theories might deal
more adegquately with different kinds of uncertainty, such az incompletenszss of
evidence or imprecision., In this regard, note that De Finettl's and Lindley's ar-
guments do not apply te systems which provide more than a single measure of uncer-

tainty fer each event, such as the upper and lower measures in Shafer's theory, or
fuzzy prebabilities in Zadeh's.)

Honethelege, it seems incontrovertible to ue that the existence of foundatiomal

argpuments such as those described iz a strong plus for Bayesian theory.

2.4.5%  Plausibility of instances. As noted, the thrust of Bayesian analysis is
to improve, rather than to replicate ordinary thinking. Bayesians argue that if
one's ordinary intuitiens are probabilistically incoherent, they ought to be
changed, We might expect, nevertheless, that these revisions of belief would
typically lead to judgments that are regarded as more plausible after reflection.
In other words, the plausibility of the axioms should cutweigh the initial
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plausibility of an incoherent set of judgments. In some cases, this seems true,
e.g., mogt people who understand an explanation of the "gambler's fallacy™ seem to
accept that it iz a fallacy; in other cases, perhaps, it is mot true (e.g., Slovie
and Tversky, 1974).

Thare ig another issue here which is, we feel, more important, Ewven if rewvised
rthence, coherent) beliefs are more plausible than unrevised, incoherent ones, all
the credit camnot go to Bayesian theory. The reason is, that the selection of a
specific revision is not uniquely determined by the requirement of coherence.
Consider, again, the example sbove of inferring the chance of H, i.e., that a par-
ticular nﬂjant iz & building, based on intelligence reports of construction
activity, A. Bayesian theery tells us only that our assessment of Pr[H] should be
the same as Pr[H|A]Pr[A] + Pr[H|A]Pr[A], which is based on our assessments of
Pr(H|&], Pr[Al, and Pr[HjA]. The theory provides no guidance in the case where
the two are not equal, Coherence by itself does not dictate that the result of an
analysis is to be preferred to a direct judgment. We might choose te revise one
or more of the assessments in the analysis, rather tham te revise Pr[H].

Thiz problem, which we may call the ipcompleteness of Bavesian theory, is exacer-
bated by the fact that in any problem there is more than one pessible form of
analysis, Many advocates and many critics of the Bavesian approach seem to imply
that there is only one way a probabilistic analysis could be carried out and only
one possible conclusion. To see that this is not the case, we return to the ex-
ample of inferring H. Let B be intelligence information that a strong pressure
group exists within the country our photograph represents, for the erection of
barracks in that gemeral area. Instead of, or in addition to, conditioning our
agsessment on A, as above, we could condition om B, namely

Pr(H] - Pr[H|B)Pr[B] + Pr[H|B]|Pr[B].
Yet again, we could condition jointly on A and B:

Pr([H] = Pr[H|AB]Pr[AB] + Pr[H|AB]Pr[AB] + Pr[H[AB)Pr[AB] + Pr[H|AB]Pr[AE].
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Still more choices are open te us: for example, we could assess Pr[AB] direetly,
and/or further analyze it as Pr[A|B]Pr(B], and/or as Pr[B|A]Pr[A].

The Bayesian theoretical attitude is straightforward, namely that it does not mat-
ter which of these forms of analysis we perform or which answer we select, since

coherent probability assessors should derive the same number whichever method they
choese, Theory, however, is of yge because we are not ordinarily coherent in our
assessments. An analvsis may well give us a different estimate of Pr[H] than if

we directly judged it; otherwise, we wouldn't bother with the analysis. Moreover,
different analyses may well give us different answers; otherwise, we would have no

cause for regarding some anslyses as "better® than others.

An important assumption of Bayesian theory is that all analyses (by the same
person) are based on the same evidence; they do not differ in the knowledge they
draw upons, We would argue that this is, psychologically, not true, Different
ways of formulating the same problem may well tap different internal stores of
information. What is missing from the Bayesian framework is some notion of the

guality of prebability imputs, i.e., the amount of knowledge or completeness of
evidence that underlies them, Several peints can be made:

. Revision of probability judgments should be guided by a judgment of
their qualicy, i.e., the amount of knowledge they represent.

. More than one analysis may be of value, if they bring differemnt
knowledge to bear on a problem (cf., Brown and Lindley, 1%E82).

» The application of Bayesian theory to a problem is not necessarily a
linear process in which inputs are provided and comclusions computed,
It is (or oftem should be) an iterative process, in which comparison
of conclusions arrived at by different methods leads to revisions of
inputs and assumptions, until overall consistency is achieved,

In ordinary statistical problem solving, perhaps, judgments of gquality may safely
remain implicit. But a major limitation in the automation of Bayesian theory
within expert systems is the lack of an explicit measure of completeness of
avidence, and & mechsnism for its use in the revision of probabilicy estimates.
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This will be a major focus in our discussion of Shafer, in Seetion 2.5, and in the
new developments to be described in Sectiom 3.0.

2.4.6 Sesmantics: Behavioral specificatien. Bavesian theory provides a elear be-
havieral interpretation of probsbilities in terms of preferences among bets., We
can know what someone's probabilistic beliefs are by observing their actions under
specified conditions. By contrast, a common complaint by Bayesians regarding
other theories is the difficulty of knowing what the basic measures mean.

There are three different, but related, misunderstandings of this "operational
definitiaﬁ-“ First, ecritics point out that betting may be an avkward and in some
cases an Impossible method for eliciting probabilities., It is often easier to ask
for direct wverbal judgments. There is a standard answer to this point by sophis-
ticated Bavesians: HMeaning need not be eguated with evidence. Bavesians can use
any method they like for estimating your probabilities, if there is a reasonable
expectation that the result will match, or at least approximate, what they would
have gotten had they used the betting paradigm.

Thizs response hides & more subtle misunderstanding. It is stil]l assumed that we
can, at least in prineciple, always know what a person’s probabilities are, simply
by resting his preferences among bets, Since the operational definition specifies
a situation where he must make a choice, it Iz implied that any perszon "has" prob-
abilities waiting to be uncovered or "elicited™. 1Is Bavesianism thus inevitable?
This conception seems to be contradicted by the incoherence we typically find in
people's unaided judgments, and which is amply documented in the experimental
psychology literature (e.g., Kahneman, Slovie, and Tversky, 1982).

The szophisticated Bayesian was right, we suggest, in distinguishing meaning and
evidence. But--sophisticated as he is--he has not absorbed the full implications
ef that distinctiom. Although he permits other kinds of evidence, he is still
equating meaning with a particular cbservable operation. The problem, as pointed
out by Quine (1953) and others in a more general eritique of positiviem, is that
the selection of thisz rather than some other component of the theory as a
"definition® is arbitrary. To return to our earlier example, suppose we equate
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Pr[(H] for a person X with X's betting behavior in regard to H. Then we determine
in the same way his value for Pr[H|A]. Pr[Hfﬁ], and Pr[aA]. Finally, we compute &
new probabilicy of H, Pr'[H], from the latter three values. Why shouldn't we
define X's probability for H in terms of this operation, i.e., a&s Pr'[H]7 Ome
reply is that this operation requires & theoretical assumption wiz., that X is
coherent, to justify the computation of Pr'[H] from Pr[H|A]., Pr[H[A], and Pr[a].
But the sarlier "operational definmition”™ goyld be regarded as theoretical, too,
since it iz a theoretical hypothesls (i.e., that X acts so as to maximize subjec-
tively expected utility) that enables us to derive X's probability for H from his
preferences among gambles involving H. Conversely, we could regard the definition

in terms of Pr'[H] as purely "behavioral™, by lgnoring the thecoretical hypotheses
implicit in our calculations.

It is far more natural to regard all these potential "definitions® simply as
theoretical predictiens, How then, without definitions, do we assess the prob-
abilities and utilities required to derive the predictions? The answer is that
testing a theory is, inevitably, a bootstapping cperation, in which we use the
theory, as if it were true, to estimate values for an interrelated set of
parameters, then test for consistency of the results. If the results are
consistent, the theory is confirmed; if mot, it is disconfirmed. (For a gemeral
discussion see Glymore, 1930.) To the extent that people are probabilisticselly
incoherent, therefore, probability theory 1s discenfirmed, and they cannot be
regarded as "having" probabilities at all,

Have we overlooked the difference between descriptive and prescriptive theories?
Perhaps "operational definitions® make sense for probabilities because they form
part of a prescriptive theory. Om the contrary, we suggest that there is a strong
and important parallel between theory testing, as we just described it, and
prescriptive analysis (as we saw it in Section 2.4.3)., Just as in desecriptive
science, we assume the prescriptive theory to be true, use it to perferm a set of
interrelated analyses, and them test them for consistency. However, if we find
inconsistency among alternative prescriptive analyses, or between sn analysis and
direct judgment, we do not (necessarily) drop the prescriptive theory, we may
choose to revise the values in one or mere analyses so as to make then consiscent,
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In so doing, we copstruct rather than discover or confirm a probability model for
cur beliefs,

The analogy between descriptive and prescriptive processes may be carried a step
further by recalling our observationas in Section 2.2.3. If the inconsistency of
our judgments with respect to probability theory is great enough, and if
coherence-producing revisions seem implausible, we may indeed decide to reject

o

probability theery as a proper prescriptive guide,

What thwn_is left of the Bayesian claim that operatiomal definitions are required
for clarity of concepts? The third and final misunderstanding we wish to address
is the notion that because "operationsl definitions" are arbitrary, and do mot
guarantee the applicability or even the relevance of a prescriptive theory, that
behaviorgl specification is of no use., In fact, it is guite critical: without
it, there ils oo link, or else no clear link, between the prescriptive theory and
action., With it, the prescriptive process described above, in which a eocherent
get of judgments is arrived at through successive [terations, also produces a
clear zet of Implications for action. In expert system applications, such im-
plications are typically the reason for developing the system., Moreover, such
specifications may play a clarifying rele for the decision maker in the process of
iteratively arriving at an appropriate set of judgments. (We return to this point
in Sectien 2.5.11 below.) The existence of such specifications must, therefore,
be counted as a plus for the Bavesian theory.

2.4.7 Naturalness of inputs. Behavioral specification is not sufficient to
guarantee the usefulness of an inferemce framework. A common objection to
Bayesian theory urged by proponents of alternative views, is that the inputs it
requires exceed, in various ways, the capabilities of the decision makers it is
designed to aid, Two complaints of this type must, however, be carefully
distinguished:

Ioprecision: Bayesiams assume that experts are capable of quantifying their un-
certainties and wvalues to an arbitrary degree of precision. But this is true of
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no other known process of measurement, Experts may simply not knmow, to the
required exactitude, what their belliefs or preferences are.

Incempleteness of evidepce: The evidence may not justify the degree of confidence
suggested by use of a single number to assess an uncertainty. Some assessments
{@.g., the probability that the Soviets will invade Western Europe within the next
year) are less well supported than others (e.g., the probability that a coin in my
pocket will land heads if tossed). In the former cases, the availsble evidence

may justify no more than a range of probabilities rather than a uingla numbar,

There is an important distinction between these two complaints: the firet is con-
gistent with the basic prescriptive adequacy of probability theeory, but seeks to
accopmodate human shortcoemings in the assessment task, In contrast, the second
objection has a noermative basis: probabilities themselves are inappropriate where

evidence is incomplete. We shall explore these positions in more detail in our
discussions of Zadeh and Shafer, respectively.

2.4.8 Concepts of uncertainty. Bayesian theory is clearly designed to capture

the concept of chance, or uncertainty about facts., We argued in Sectiom 2.4.3
that an important gap in Bayesian theory 1ls the lack of a measure of completensss
or quality of evidence, i.e., the lack of a distinction between firm probabilicies
{.3 as the probability of heads on a coln toss) and those based on guesswork (.5
as the probability of a Soviet invasion). Intuitively, the weight of evidence
supporting some probability judpments is stronger that that supporting others. We
argued that this concept in fact plays an important role in ordinary applications
of probability theory, by guiding the choice among potential revisions of belief
in the light of an analysis or set of analyses. We hope to demonstrate below
{Section 3.0) that an explicit measure of this sort is eritieal for the control of
reasoning in an expert system that intelligently handles uncertainty about facts,

To what extent could Bayesian theory itself be extended to cover the concept of

completenass of evidence? Lindley et &l. (1979) have recently attempted to for-
malize the intuitiwve notien that we are firmer about some probability assessments
than others. The tool they introduce is a second-order probability distribution
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over possible values of the true first-order probability. The spread of the
second-order distribution is a measure of the firmmess of the original
probabilities. Lindley et al. have described procedures for statistically ag-
gregating inconsistent probabilistic analyses by means of such second-order

judgments.

These efforts have failed, in our opinion, for & variety of reasons, Feasibility:
The quantity and difficulty of required inputs ls increased, rather than
decreased, to the degree that one's evidence is incomplete. Computational intrac-
tability will certainly be increased as well. Validity: Axiomatic justifications
and behavioral specifications which apply te first-order probabilities become much
less convincing at higher levels, vwhere, for example, gambles or scores which
depend on one's own "true" probabilities, rather thanm actual events, lack
plausibility. Face validity is dubious as well: e.g., if we attempt to measure
the quality of our second-order probabilities im the same way, we are threatenad
with an infinite regress, FPerhaps the most sericus diffieulty, however, is the
implausibility of the inferences te which thiz model giwes rize, In brief, the
procedure for aggregating probabilisztic analyses assumesz that they dissgree only
because of "noisge " or random errer, In the assessment process; hence, it yields
results which de not reflect the possibility that different analyses have drawm
on different evidence, We sugpest that from a psycholeogical point of wview, dif-
ferent analyses may tap different portions of our store of knowledge, even when
performed by the same individual. These points are amplified in Cohen et al.,
1984, and in a planned paper by Gohen and Lindley.

2.4.9 Summary. Bayesian probability theory is strong in the formal aspects of
validity. Its logical foundations are perhaps uniquely compelling in application
to the concept of chance. Howewver, the input and computational burdens which it
imposes, except when specialized models are adopted, are considerable. It has no
adaquata.raanurtaa for representing the quality of an Inferential argument, and
requires an arbitrary degree of precision In numerical judgments. Ewen its
validicty, in a more Iinformal sense, can be questioned. Bayesian theory, as it
stands, implies that one's beliefs should be coherent but prnvid=£ no guidance for

choosing among alternative equsally coherent analyses. Moreover, by assuming that
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all assessments are based on the same evidence, it closes off the most promising
source of such guldance. We have argued that the application of Bayesian theory
to a problem is not linear process in which conclusions are computed from inputs,
It is {or often should be) an iterative bootstrapping process in which comparison
of conelusions arrived at by different metheods leads to revision of inputs and
assumptions, until overall plausibility is maximized. This process of revising
prnbahility assessments should be guided by & judgment of their qu&lity. & more
satisfactory account of completeness of evidence is, therefore, essemtial.

2.5 Belief Funceions

2.5.1 PFHature of the theerv. In the theory of belief functions introduced by
Shafer (1976&), Bavesian probabilities are replaced by a concept of evidential
support. The contrast, according to Shafer (1981; Shafer and Tversky, 1983} is
between the chance that a hypothesis is true, on the one hand, and the chance that
the evidence means (or proves) that the hypothesis is true, on the other. Thua,
we shift focus frem truth of a hypothesis to the interpretation of the evidence,
Ag & regult, the system {(a) iz able te provide an explicit measure of quality of
evidence, (b) iz less prone to require & degree of definiteness Iin inmputs that
exceads the knowledge of the ewpert, and (e) permits segmentation of reasoning
into analyeses that depend on independent bodies of evidence.

In Shafer's svstem, the support for a hypothesis and for its complement need not
add to unity. For example, if a witness with poor eyesight reports the presence
of enemy artillery at a specific location, there is a certain probability that his
evesight was adequate on the relevant occasion and & certain probability that it
was mot, hence, that the evidence is 1rrelavnntff In A g could the evidence
prove the artillery is not there. Loty firet .-.ﬂmim mﬁ,mu
Yoo s ffey, i Y,

To the extent that the sum of support for a hypothesis and its complement falls
short of unity, there is "uncommitted" support, i.e., the evidence is incomplete.
Evidential support for a hypothesis is a lower bound on the probability of its
being true, since the hypothesis could be true even though our evidemce fails to

demonstrate it. The upper bound is given by supposing that all present evidence
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that is consistent with the truth of the hypothesis were in fact to prove it., The
interval between lower and upper bounds, i.e., the range of permissable belief,
thus refleccs the incompleteness of evidence for that hypothesis, This comcept is
not captured by Bayesian probabilities.

In Shafer's caleculus, support m{") is allocated not to hypotheses, but to sets of
hypotheses. Shafer allows us, therefore, to talk of the support we can place im
any subset of the set of all hypotheses. In the case of three hypotheses, Hy, Hy
and H3, for example, we could allecate support to Hl' HE' Hj, {Hl or Hz:. lHl or
Hyl, (Hg or Hy), and {H; or Hy or Hy). As with probability, the total support
across these subsets will sum te 1, and each support m({") will be between 0 and 1.
It is natural, then, to say that m(") gives the probability that what the evidence
peans is that the truth lies somevhere in the indicated subset.

Suppose, for example, that we know in the case of three hypotheses that H3 im
falze, but have no evidence to distinguish between Hl and HE' In that case, we
would put m{{Hl oY Hi!} = 1, and give zero support to all the other possible
subgets, Alternatively, we may feel that the evidencele means® that Hq is
true, or that (Hy or Hy} is true, gr that it is neot telling us anything (l.e., (H
ot Hp or Hye] is true), and that the weight of evidence is just as stromg with each
possibility. In that case -EHE} = m{[H; er HH}} = m{[H; or Hy or H3]} =173, In
& Bavesian analysis, arbitrary decisions would have to be made sbout allocating

prebability withip these subsets, requiring judgments that are unsupported by the

evidence.

This same device, of allocating support teo subsets of hypotheses, enables us to
represent the reliabilicy of probability assessments. BSuppose, for example, that
the presence of texture X in an image region is associated with a building 70% of
the time and with other labels 30% of the time, based on frequency data from & set
of training photographs. If we are confident that an image now belng analvzed is
representative of the tralning set, we may have m{building) = .7 and m{other) =
o3, But if there {5 reason to doubt the relevance of the freguency data to the
present problem (e.g., due to geological or cultural differences between the two
geographical areas), we may discoypt this support function by allocating ﬂﬁma per-
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centage of support to the universal set. For example, with a discount rate of
0%, we get m({building) - .49, m{other) = .21, and m {[building, other}) = .30.
The latter reflects the chance that the frequency data is irrelevant.

Shafer's belief function Bel(') summarizes the implications of the ={') for a
given subset of hypotheses, Bel(A) 1ls defined as the total support for all sub-
gets of hypotheses contained within A; in ether words, Bel(A) is the probabilicy
that the evidence implies that the truth is in A. The plausibilitcy functiom PL(")
iz the total support for all subsets which overlap with a given subset,

Thus, PL(A) equals l-Bnleﬁ; i.e., the probability that the evidence does not
imply the truth to be in not-A, In one of the examples above, with

m(Hy) = m((H; or Hyl) = m{{Hy or Hy or Ha)) = 1/3,
we get:
Bel(Hq) = m(Hq) = 1/3; P1({Hy) = 1-Bel({H; oxr Hyl) = 1

Bel((Hy or Hyl) = m(Hy) + m({H; or Hy}) = 2/3; PL({H; or Hy)) = 1-Bel((Hy)) = 1.

2.5.2 Dempster's rule. Thus far, we have focused on the representation of uncer-
tainty in Shﬂfar‘s-ayﬂtam. For it to be & useful calculus, we need a procedure
for inferring degrees of bellef in hypotheses in the light of more than one piece
of evidence. This is accomplished in Shafer's theory by Dempster's rule. The es-
gential intuition is simply that the "meaning”™ of the combination of two pleces of
evidence is the intersection, of common element, of the two subsets constituting
their separate meanings. For example, if evidence Ey proves (H; or Hy}, and
aevidence EE Proves lHﬂ oT HE}‘ then the combination El + EI proves Hs. Since the
two pieces of evidemce are assumed to be independent, the probability of any given
combination of meanings is the product of thelr separate probabilities.

Let X be a set of hypotheses Hy, Hy,...,Hp, and write 2% for the power set of X,
that is, the set of all subsgets of X. Thus, a member of Ex will be a subset of
hypotheses, such as (Hy, Hg, Ha}, Hg, or (Hy, Hy, Hy, Hy), etc. Then if mq (&) is
the support given te A by one plece of evidence, and my(A) is the support given by
& second plece of evidence, Dempster's rule is that the support that should be
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given te A by the two pieces of evidence is:

E: my (&g Jmy (Ag)
Alﬂhz-ﬁ.
m 2 (A) = =

1 L z II{EI}IDE{BE}
BinBy=g

The numerator here is the sum of the products of support for all pairs of subsers
Ap. Aq whose intersection is precisely A. The dencminator is a normalizing faeter
which ensures that myo{") sums to 1, by eliminating support for impossible

combinations.

Consider, for example, the following twe support functions:

Table 2-1
my () mal ") myal®)
Hy 0.2 0.1 0.344
Hg 0.1 0.3 0.250
H3 0.3 i 0.172
Hy Hy 0.1 0.3 0.125
HyHy 0.2 0 0.063
HoHy 0 0.1 0.016
Hy HaHa 0.1 0.2 0.031

In the third column, we have used Dempster's rule to compute mye(*). For example

HI(HIHE}IEEﬂlﬂﬂ}+m1{H1H2}ﬂ2{HlHEH3}+ﬂ1(H1H2H3}ﬂQ{HlﬂgJ

“12{H1H2} ropd 1-C

where G % mliﬂlﬁ[lzfﬂgj + mziﬂg} + ET{HEHH}} + Ilfﬂg}fﬁgfhl} = Hzﬂﬂaj + mzfﬂlﬂj}]
+ mq (HaHydma (Hy)

0.1x0.3+0.1x0.2+0.1=0.3

and so mlE{HIHE} = T -0 36

= 0.125,
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Let us now eXamine the performance, or at least the potential, of Shafer's theory

within our evaluation framework.

2.5.3 Feasibility: Quantity of inputn; One of the main difficulties standing in
the way of a Baveslan analysis is lts complexity. At first sight the Shaferlan
approach seems simpler, since complicated independence judgments and conditional
probability assessments appear not to be required. This appearance is illusory.
Support functions must be assessed over not just the hypothesis set, but over the
power set of the hypothesis set., With 10 hypotheses, for example, the support
distribution has 1,023 elements. For both Bayesian and Shaferian medels, the
required mumber of assessments or judgments increases exponentially with the num-
ber of events or hypotheses. To see the parallel, compare the Bayvesian rule:

Fr{h or B] = Pr[A] + Pr[B] - PrlA]Pr[B|A]
with Shafer's rule:
Bel({& or B)) = m{aA)Y + m(B) + m{[A or B]).

In each case, to get an uncertainty measure for a disjunction (i.e., a member of
2%}, we must make one assessment in addition to the measures already assessed for
the elements. For Bavesians, the extra assessment is & conditiomal prebability
PriB|a]; for Shaferiams it is the direct evidential support m{(& or B}).

A Shaferian response to this, in parallel with the Bayesian response (Sectiom
2.4.2), is that specialized models may be developed that require far fewer
assessments. Im fact, the belief function framework admits & wvariety of interest-
ing special cases: e.g.,

. simple support fumctions: all support goes either to some one in-
dividual hypothesis or to the universal set X, i.e., either the
evidence iz reliable and pinpoints the answer or it is totally
untrustworthy;
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. discounted probabilistic support functicons: all support goes to in-
dividual hypotheses (as in a standard probability distributiom), with
some additional support possibly geing to the universal set X
(reflecting & judgment of the quality of the evidence for the prob-
ability distribution};

- consonant support funmetions: all support goes to a nested series of
gsubsets of hypotheses; i.e,, the evidence points in a certain direc-
tion but is unclear how far we should go;

- hierarchical support funetions: the evidence supports subsets of
hypotheses that can be arranged in a tree.

Here again, however, (as in the Bayesian case) complex and diffieulr judgments
must be made to determine that a particular speclalized model iz applicable,
before savings in quantity of assessments can be realized,

The problem for Shaferians may even be deeper. The applicability of Dempster's
rule to two bits of evidence E; and E; is not automatic. It requires rather care-
ful and difficult consideration of & whole set of independence assumptions. We

shall return to this peint in our discussion of the wvalidity of Shafer's theory
(Bection 2.5.5).

2.5.4 Computational tractability. Here again the story is parallel to the
Bayesian case. The employment of unrestricted belief funection models would in-
volwe prohibitive computationm, As a result, Gordon and Shortliffe (19840 propose
to modify Dempster's rule to simplify computatiom im MYCIN., Shafer (1984a) has
argued in response that ad hoc modifications of this sort might be aveided by a
contrel strategy that intelligently exploits the structure of restricted belief
function models, such as the hierarchical structure proposed for MYCIN, Here as
in the Bavesian case, feasibility is purchased only in special cases, and,

evidently, at the cost of complex and subtle judgments regarding the structure of
the everall argument,

2.5.5% Validity: Semantics. Shafer argues that the regquirement for a behavioral
specification of probabilities is irrelevant. People bet in a certain way becasuss
of their beliefs and preferences; observing their own betting behavior will net
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help them to gssess those beliefs. Shafer thus urges a shift from the positivist
to a more cognitive oriemtation. He argues that uncertainty is quantified on the
basis of an analogy between one's problem and & “"canonical example”. In Bayesian
modeling, we assess the probability of an event by comparing its likelihood with
the likelihood of & frequency-based event, such as a random drawing from an urn.
Thus, for Shafer, to say that the Bayesian probability of an event is x i= to say
that it iz "like" the chance of drawing a white ball from an urn with a propertion
of white balls egqual to x. Similarly, to say that your Shaferian belief in a
proposition is ¥, is to compare it to canonical examples of the type we shall ex-
plore in Sectiom 2Z.5.6, where the reliability of an evidential source is deter-
mined by chance.

Unfortunately, Shafer's position is weakened by two considerations: First, his
canonical examples, as we shall see below, are far more complex and less obviously
useable, even from a cognitive point of wiew, than the Bayesian examples. Second,
behavioral specification probably plays a gggnitive role in clarifying the sense
of a canonical example. For example, what does it pegp to say that my uncertainty
about whether an object is a building is "like" my uncertainty about drawing from
an urn? In what respects must they be similar? Many people will find it il-
luminating when told it means that 1 would bet at equal stakes on either event.

A mejor strength of Shafer's theory, nevertheless, is the naturalness of the input
format it imposes:

. Assessments need go no further than the evidence justifies. As we
have seen, "ignorance" is naturally represented by assigning support
to a subset of hypotheses, with no further commitment to an allocation
within the subset. A Bayesian must decide among quite definite and
distinet, but equally arbitrary, allocations of probability.

. Weight or completeness of evidence is quite intuitively represented as
the degree to which the sum of belief for a hypothesis and itz comple-
ment falls short eof unity.

- Assessments may be based on distinet, separable bodies of evidence,

rather than requiring--as in Bayesian theory--that all assessments be
based on all the evidence.
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2.5.6 Face validity. Belief function theory possesses no deep awilomatic jus-
tification comparable to the de Finetti and Lindley arguments for Bayeslan theory.
Hot coincidentally, however, Shafer has offered a view of model "validation" which
contrasts sharply with the sxiomatic approach. On Shafer's view (198l; Shafer and
Tversky, 1983), theories of inference are tools which can be used to help us gop-
stryct (rather than elicit or discowver) a set of probabilities. The justification
for applying a particular tool to a particular problem is that we see an analogy
between that problem and the canonical example underlying the theory. For
example, te the extent that the Bayesian theory has anything te contribute, it is
by establishing a persuasive analogy between your problem and & situation, like
drawing balls from an urn, where the truth is generated by known chances.

Bayesian analogies of this sort, according to Shafer, will usually be imperfect,
because in the canonical example we know the rules of the game that determine how
the truth is generated {(e.g., the composition of the urn and the precedure for
drawing a ball). In real problems, there are nearly always many aspects of the
situation where comparable rules cannot be given without making numerous
assunptions. When these assumptions become very extensive, it may be bettar to
switch to & simpler kind of medel, which iz move plausible despite not giving a
complete picture of hew the truth 1z generated, Such szimpler models can be based
on canonical examples in which the meaning of the evidence rather than the truth
iz generated by knowm chances.

We comment on Shafer's pesition at twe levels: First, how convincing is his gop-
cept of walidity? Second, how plausible or useful are the canonical examples un-
derlying belief functiona?

2.53.7 Concept of walidity, For Shafer, validicy reduces to face wvalidity and
plausibilicy eof instances, His argument for this position, however, contains some
confusion. Shafer mistakenly assumes that the adoptieon of an axiomatic framework
implies & belief in pre-existing rather than constructed probsbilities. Thus,
Shafer (1%84a) speaks derisively of assessment im the Bayesian context as
"pretending” that one already has probebilistically echerent beliefs and
preferences, and then, somehow, "trying to figure out what they are."
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Cur owvn view iz that Shafer is correct to regard probability frameworks as tools
for the construction, rather than discovery, of probabilities., But he iz wrong in
supposing that the axiomatic derivation of a framework detracts from this role--as
long as we understand, as argued in Section 2.2.3, that axiomatic derivatiom is
only one argument in faver of a given framework. If taken seriously, Shafer's ar-
gument would declare as "non-constructive™ any set of prior constraints on the way
uncertainty is represented or manipulated; thus, it applies as strongly against
belief functioms and Dempster's rule as to Bayesian probabilities. The sclution
in our view is not to drop constraints, but to drop the view that amy particular
set of constraints is inevitable. Thus, probability assessment as we understand
it (Sectiom 2.4.5) is an iterative and constructive process, in which a tentative
framework (e.g., Bavesian or Shaferian) iz adopted, assessments are made within
the frameworlk, checked for consistency, and revised, if the overall result iz un-
natural or implausible, the framework itself may be rejected or revised. In other
words, "pretending” that a framework is correct is a legitimate strategy in uncer-
tainty assessment; indeed, it is the only possible strategy. A framework is of
use as a tool precisely because it dogs impose (tentative) constraints on the
asgsesaments that are produced. It challenges the expert to actively shape & pre-
viously disorgenized and perhaps even unverbalized set of beliefs. It serves as a
medium or language in which the expert "thinks®™ about uncertainty and in which he
expresges those thoughts., A supposedly "neutral" framework, that imposed no for-
mat or s:ructurt,?;aynnd that already present, would not help the expert in the
process of construction and could not advance his or our understanding of his
beliefs. (See Cohen, Mavor, and Kidd, 1984, for a more general argument in the
context of knowledge engineering.) '

In sum, Shafer's argument for & constructive process of probability assessment is
correct., But he appears to have drawn two umnecessary conclusions: (1) It in neo
way contradiccs the added plausibility that may be lent te a framewerk by the ex-
istence of an axiomatic derivation; and {2} it should not blind us to the impor-
tance of the iterative strategy of tentatively adopting a framework and testing
its implications.
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2.5.8 Shafer's canonjeal example, As noted shove, when we apply a belief fume-
tion snalyeiz, we "pretend® that the meaning of the evidence is generated by known
chances. In order te evaluate Shafer's theory in terms of face wvalidity, we must
examine this analogy more closely, In particular, we must focus on the indepen-
dence assumptions embodied in the canonical example which are reguired to license
an application of Dempster's rule. It turns out that these assumptions are the
primary eenstraints imposed by Shafer's theory on the process of evaluaring
evidence; hence, they are its main contribution to the "construction™ of probabil-
ity judgments. They have slsc been the major source of controvery between Shafer
and Bavesians. Early eritics of Shafer's work (e.g., Williams, 1973) complained
about thi.ﬁhscutity of Shafer's notion of "independent evidence.” In a recent
paper, however, Shafer (in press) has clarified this concept considerably.

Shafer's interpretation of belief fumctions imvelves two sets of hypotheses [or
"frames®) as shown in Figure 2-3. One frame, 5, iz a set of background hypotheses
which concern the state of the process that produced the evidence at hand. For
example, if the evidence El iz & witness's testimony that he saw artillery in a
certain location, the frame 8 may simply be the two possibilities [the witness is
reliable, the witness 1s not relisble]. The other frame, T, contains the
hypotheses of primary interest, e.g., (the artillery {=z present, the arrillery i=
not present}. To get a belief funetion, we only need (i) a probabilicy discribu-
tien over 5, i.e., standard probabilities F, and P,, for the reliabiliry and un-
reliability of the witness; and (ii) a mapping frem S te T based on the content of
the evidence. BSince the evidence is the witness's report of artillery,
reliability in 5 maps onto {the artillery is present] in T; unrelisbility im 5
maps onte the set [the artillery iz present, the artillery is not presemt} in T.
Support m{A) for & subset A In T is just the probability for hypotheses in 5 that
map only ente A, (We have referred to this, somevhat loosely, as the probability
that the evidence "means" A). Bel{i) for a subset & in T is the sum of the prob-
abilities for hypotheses in § that map onte subsets of T that are contained in A.
Thus, in cur example, Bel{artillery is present) = F;; Bel((present, not present])
= Py + Ps.
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Suppose we now receive a second piece of evidence, E,, which is the testimony of a
gecond witness that he saw artillery in the same vicinity. We define a new belief
function for this witness by specifying a frame 5, with the elements {the second
witness im relisble, the second witness is unreliable], and by assessing probabil-
ities Fy"' and Py' over S,. What is our new overall belief in the elements of T7?

Ql}fﬁqgamiug S as 5q, Figure 2-4 showe a new frame, Sqx8,, which results from combining

™

elements of 51 and 52. Each cell has a probability which is the product of the
probabilities of the elements from 31 and 52: and each cell is mapped onto a sub-
set of hypotheses in T, based on knowledge of El and EI' According te this map-
ping (as shown by the labels in the cells), support for the artillery being
present tdual: the chance that either witness 1 eor witness I Is rellable, i.e.,

PP + PqFy" + P,Fy'. This is the result given by Dempster's rule.

¥hat if the report of the second witness contradicts, rather than confirms, the
first? That is, E; is a report that artillery is not present in the specified
lecation. In that case, the new frame, 5. x5,, appears as in Figure 2-3. The only
change is in the mapping of the cells to subsets in T--a change required by the
change in E;. It turns out, however, that the cell corresponding to both wit-
nesses being reliable does not map to any subset in T. Since E; and E; are
contradictory, both cannot be true. Thus, we use our knowledge of Ey and E; to
pruns out impossible cells in 51152, According to the mapping, support for artil-
lery being present equals the chance that witness 1 ie reliable and witness 2 is
unrelisble, i.e&., PlEE'jﬁl-P1P11j, normalizing to remove the Ilmpossible case,
Once again, thiz iz the result of applying Dempster's rule,

In many of Shafer’'s discussions, he appears to argue that Dempster's rule is jus-
tified in situatiens which "resemble" this canonical exsmple, because it is the
correct rule for the exsmple {just as Bayesian rules are correct for the case of
drawing balls frem an urn), But what makes 1t correct? Ewven these simple ex-
amples may seem too complex for such a direct appeal to intuition. A recent paper
by Shafer {in press) contains & more extensive discussion of the preconditions of
Dempeter's rule. We can use Dempster's rule, he says, only if the following judg-
ments are made;
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(a) Before comnsideration of the mapping to T, any hypothesie in 51 iz ecom-
patible with any hypotheszisz in 52 {za 51252 can be defined a2 & new
frame).

(b} Frebabilities for elements of 3, are independent of elements in 5
(e.g., we do not alter our estimate of the reliability of one witness
based on the reliability or unreliability of the other witness).

(o) If we could draw a conclusion about the truth of a subset in T by
knowing that a certain combination of hypotheses from 5, and 5, was
the caszse, then we could have drawnm the same conclusion %y knowing that
either one or the other of the hypotheses (from 51 or 52} was the
cage, (In the example of concurring witnesses, we can conclude that
artillery is present Lf both witnesses are reliable; but all we needed
wae one or the other to be reliable}.

{(d} The evidence we use for assessing 5 and 5, tells us nothing more
directly about T. (All the work of reasoning about T is transferred
to reasoning about 5.)

Having enumerated these assumptions, we must remark that our original question
about the rationale for Dempster's rule remains unanswered. It has not been
demonstrated in amny way that Dempster's rule "follows from" these preconditioms.
Perhaps Shafer means simply that when these particular conditions are met,

Dempster's rule will appear more plausible or matural.

Hote, however, that the canonlecal situation described by these conditions includes
& chance model: Because of assumptions (a) and (b), the probablility for a com-
penent of 5.%5, ls simply the product of the probabilities assigned to the com-
ponents of 5, and 5,. It is tempting, therefore, to view the belief function
model as a special case of a Bayesian analysis, defined by the restrictions out-
lined in (a) - {(d). In that case, Dempster's rule should be justifiable from (&)
- (d) by the rules of probability theory. Moreover, Shafer's model would then in-
herit the axiomatic justification of the Bayesian model in the speclal cir-
cumstances where it applied.

2,3,% A Bavesian foundatiop for belief functiens? To see how this might work,
consider the simple case of Figure 2-3, with H = the arcillery is prt:tnt,'ﬁ = the
artillery is not present, R = the first witmess is reliable, and R = the first
vitness is mot relisble. It follows from probability theory thaf:
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Pr(H) = Pr(H|R)Pr(Ry) + Pr(H|R)Pr(R).

Following Shafer's definitions, we interpret m(H) as Pr(R) and m(H or H) as Prfﬁ}.
In addition, frem our knowledge of Eq (i.e., the mapping from 8y to T which it
establiches), and using (d), we know that Pr(H|R) = 1; if the witness iz reliable,
then the artillery is present. Hence, we may write '

Pr(H) = m(H) + Pr(H|R) m(H or H)
and this éivnu
Bel(H) = m(H) < Pr(H) < m(H)+n(H or H) = FL(H),

wheres Bel{H) and PL{H} are Shafer's belief and plausibility functions. It
gppears, them, that the belief fumction snalysisz iz zimply an incosplete Bayesian
analysis, Our uncertainty about Pr{H) iz due to our failure, im the belief funec-
tion approach, to specify Pr{H]Eﬁ, i.e., the chance of the hypothesiz being true
despite the fact that the present evidence iz unreliable. This is just another
way of zaying that Shafer iz interested in the proof of the hypothesiz, not its
truth, If Pr{Hfﬁ} = 0, Pr{H) = Bel(H), and if Pr{HfE} = 1, Pr{H) = PL{H). Thus,
Bel(H) and PL{H) give lower and upper bounds for the Bavesian probability.

Let us now see how Dempster's rule works within this Bayesian interpretation. Let
By and By refer to the reliability of the first and second witness, respectiwvely,
gnd take the case where El and Eﬂ apgree. A Bavesian probsbility Fr("|'}, iz a
function of two arguments, the event and the evidence, Presumably, therefore, in
using Dempster's rule, the prebability te be bounded Is Fr(H|E{.E;). Let us for
the moment, however, ignore this consideration and use Pr{H). (Hote that in the
case of one plece of evidence, we likewise used Pr(H) instead of Pr(H|E,).) By
probability theory, we have

Fr{H) = Pr(H|Ry or Ry)Pr(Ry or Rs) + Pr(H|R; or Ry)Pr(Rq or Rq).
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Substituting based on conditions (a) and (b), we have

Pr(H) = Pr(H|By or Ry)[Pr(R,)+Pr(R;)-Pr(Ry)Pr(Ry)] + Pr(H]EliijPrtﬁlerﬁzj.

By Dempster's rule,

IIE(H} - PT{EIJ + Pr{Eg} = Pr(lePr{HEJ

ane by Shaken s aefiniers,

my5(H oxr H) = Pr(Ry)Pr(®,).
Using (c) and (d) and the mapping from 51x8, to T, Pr(H|R; or Ry) = 1. Therefore,

Pr(H) = my,(H) -[»- Pr{HrEl'EZ}nLE (H or H}.

It follows that

Belis(H) = mys(H) £ Pr{H) £ my4(H) + m4(H or H)} = Fl,4(H).

Thus, Bal(H) and P1(H), when computed by Dempster's rule, continue to give upper
and lewar bounde for Pr(H). (Hote, howewer, that Bel(') and PL({') are net bounds
o what the future probability gcould be, given further evidence, They are bounds
onn Pr{*) implied by our present evidence.) A similar demonstration can be given
for the case where E{ and Ey conflict. This approach can be generalized to the
case where support iz assigned to arbitrary subsets of hypotheses by regarding
"relisability" as a set of geparately assessed skills ipvelved in dizcriminating
subsets of hypotheses from their complements.

The problem, of course, is that we have not justified Dempster's rule as a bound
on the Bayesiap probabilicy, PI{H|E1EE}, Vhen we conditionmalize on the evidence,

as we certainly must in a Bayesian analysis, Pr(R; or R,;) ls replaced by

Pr(R) or Rg|EqEp) = Pr(Ry|EqEp) + Pr(Ry|EqEy) - Pr(Ry|E Eo)Pr(Ry|EqEsRy).
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This brings out a curious and critical feature of Shafer's theory. He is asking
us to assess the reliabilicy of a witness (or more genmerally, the status of an
evidentiary process) without taking into account our knowledge of what the witness
said. Im Shafer's canonical example, knowledge of the evidence enters im only for
the mapping from § te T, afcer all the probability work has been dome on 5. In a
Bayesian analysis, on the other hand, the credibilicy of a witness can be shown to
depend both on what is said and on its prior probability, i.e., our original ten-
dency to think it true. If a witness says something which is independently
bellievable, our estimate of his reliability increases, HMore importamtly, perhaps,
the credibilicy of one witness can, in a Bayesian analysis, be increased by cor-
rﬁhur-:laﬂ of a second witness, and decreased by contradiction.

Assumption (b) is plausible only in light of this restriction. The strict
Bayesian versiom of (b) is

Pr{R,|E;EqR ) = Pr(Ry|E,E,;).

HNote that E1R1 implies H, 1.&., if witness 1 is relisble &nd says H, H is true.
But we would expect, quite generally, that Pr{REIEEH} = Pr{RE|ElE2}, i.e., learn-
ing for a fact that what the witpezz sald iz true Increaszes his credibility more
than corroboration by a second witness. On the other hand, if we ave assessing a
witness's rellability prior to {(or without consideration of) his testimeny, it
dogs make sense to reguire that his reliability be independent of the reliabilicy
of another witness. We thereby preclude shared uncertainties {(e.g., a conspiracy)
in the two evidential processes being combined.

A group of Swedish researchers, whose work is summarized and extended in Freeling
and Sahlin (1983), and Freeling (1%83), has explored issues such as this. Like
Shafer, they focus on the reliability of the evidence, rather than the truth of
the hypothesis, i.e., they reject the traditional Bayesian effort to model the
chance of & hypothesis when the evidence is unreliable. But unlike Shafer, they
analyze reliability im the light of the ewvidence, as FPr(E|E) rather than Fr{R).
In effect, this is an effort to give a proper Bayesian account of the notion of
gquality or completeness of evidence, rather than truth. {As such, it iz an zlter-
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native to the idea of second-order probabilities discussed in Sectiom 2.4.8) The
upshot of this research is that if m{H) If eguated with Pr(R|E), Dempster's rule
cannot in general be justified. Depending on the character of the belief func-
tions being combined, and the kinds of conditional dependence assumed in the
Bayesian analysis, Dempster's rule may be correct, a good approximation, eor en-
tirely off the mark in comparison to the "proper® Bayesian rule of combination.

While it fails to fully wvalidate Dempster's rule, the Swedizh work also lacks
most, 1f net all, of the wirtues of the belief function representation. In cerms
of feasibility, formulatioms which conditionalize on the evidence become extremely
copplex even for the simplest examples. The Swedish group has made little
progress in deriving rules for the combination of evidence involwing the full
range of cases to which Dempster's rule applies, in particular, Hh-rt_vurying e -

rees of auppurt are assigned to arbitrary subsets of hypotheses. Moreover, the
l-"!-l"‘"!-"'I

prior probabilities is incompatible with the segmentation of
m. I oo P
Iwid a|1rhiq:h is vi.ul_ﬁrﬂu—rmﬁnvﬂ-ui-m-h Shaefer's system.

Shafer (in press) explicitly rejects the attempt to provide any sort of Bayesian
foundation for belief functionms. Arguments based on Dempster's rule "have their
own logic"--based on the appropriate canonical examples and an intultive convic-
tion that the appropriate conditions of independence are satisfied. As noted
above, Shafer's appeal to intuition has not entirely succeeded in making that
"logic™ clear. We propose, however, that it cam be clarified. In opposition to
both Shafer and the Bayesians, we would argue the merits of the pseudo-Bayesian
analysis of Bel(") and P1(")} as bounds om Pr("), which we illustrated in this
sectien., It fails to derive Dempster’'s rule as a gpeeial case of probabllicy
theory. HNonetheless, it clarifies the relationship of Dempster's rule to the
cancnical example; by an argument that rasembles s welid Bayesisn argument in most
respects, Moreover, the dizsimilarity can be crisply and clearly stated: the ar-
pument concerning reliability is conducted without congideration of the content of
the evidence. The latter can be regarded as am explicit decision, justified by
enormous gainsg in the gimplicity and power of the caleulus, This is not
equivalent, however, to a fixed belief that the content of evidence is irrelevant.
In an iterative, bootstrapping system, we can guard against the pitfalls of that
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assumption by continually reexXamining it as an analysis proceeds., In Section 3.0
we explore the design of a system in which the function of recallbrating sources
of evidence in light of corrocboration or conflict is assigned to a process of
qualitative reasoning.

2.5.10 PBRole of the assumptions ip constructing sn gnalysis. Conditions (b) and
{c) play an important role as constraints im the construction of a belief functiom
analysis. WVielation requires reassessment of the overall structure of an
analysie, redefining frames for either 8 or T or both (ef., Shafer, 1984a).

(e) says that elements from both witnesses' testimony must not be required im or-
der to cuﬁ:truct a2 chain of reasoning that gets us te T. For example, if one wit-
ness gaid p and the other said p+g we would need to assume both were relisble te
infer gq. Therefere, these two statements must be counted as parts of & zingle
evidential argument. In this sense, Dempster's rule combines self-contained
"arguments” rather tham "bits”™ of evidence. And application of the rule presup-

poses a more glebal process of reasoning addressed to problem structuring.

{b) and {c) represent a limitatiem on Dempster's rule in & second semse: Once our
evidence has been segmented inte independent arguments, we can combine it by

Dempster's rule, but that rule tells us noething about how two dependent pleces of
evidence should be combined within a self-contained argument. Fﬂf 8K if we

g———— Pl

knwwﬁfmﬁst C installatiunﬁ are larga r&ctangular buildings™, an "Iﬂst lirga

huiIarnga ﬂrﬁ_nnar—a road, " what can we say asbout the thance that an object, known

to bE_EHE&_EEEEEiEEEI;;, iz near & road? Clearly, in any expert system
application, Dempster's rule must be supplemented by other forms of inference.
Interestingly, in a recent paper, Shafer {l?Eﬁa}himaelf suggested that expert sys-
tems will have to make provision for dependent evidence, and that the full range
of Bayvesian operations can be applied on preobabilities for the background frame,
£, This is a departure from the position that only Dempster's rule is appropriate

for combining evidence in the belief function context.

We have now noted three different ways in which an expert system application of
Shafer's system might need to be supplemented;
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] recalibration of sources of evidence In terms of the content of the

evidence,
. reframing evidence and hypotheses to achieve independence of
arguments, and
- reasoning about dependent evidence within an argument,
We may refer to this set of issues as the incompleteness of Dempster’'s rtule, in

analogy to the incompleteness of Bayesian theory discussed in Sectionm 2.4.5. The
system of qualitative reasoning proposed in Section 3.0 addresses all three.

2.5.11 FPlausibility of instances: Conflict of evidence. To what extent does
belief function theory yield inferences which are intuitive and plausible in
specific applications? A topic of special concern in this regard is conflict of

evidence. Zadeh (19B4b) recently raised am example of the fellowing sort. Sup-
pose we have twe experte who we believe to be wery relisble and who produce con-
flieting judgments. For example, there are three possible interpretations of an
object x in a specified leocation: H;--x is a fleld; Ho--x is a ferest] Hy--x is a
building. Analyst A, using phntagtlpkﬁﬁH::Fdﬂﬂnl, assigns .99 support te Hy and
.01 to Hy; analyst B, using in&apindtﬂtﬁintilligincu information, assigns

.99 support to Hy and .01 to Hy. We have the following two support fumctions, and
may combine them by Dempster's rule, as shown in Figure 2-6:

Table Z-2
my () mg(*) map( ")
Hy 0.99 0 0
Hy 0.01 0.01 1.00
Hy 0 0.99 0

The counterintuitive result, according to Zadeh, is that exclusive support is now
assigned to Hy, a hypeothesis that neither expert regarded as likely. Horeover,
the result is independent of the probabilities assigned to Hy or Hj.
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Figure 2-6. Support Functions te Illustrate Combination of
Conflicting Evidence by Dempster's Rule
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Shefer's response (in press) Is cogent, but ultimately, we feel, off the mark. 1If
we really regard these experts as perfectly reliable, Shafer says, the argument as
stated is correct. After all, A says that Hy is ispessible, and B rules out Hy;
that leaves H, as the only remaining possibilicy. (It is impercant to note that
exactly the same result would be obtained in Bayesian updating, if we interpret

the m(*} as likelihoods of the evidence given the hypnthEaiaaand_nsauuﬂ—ihﬂt—priﬂi

probabilities fex—tine Chrse—hypothesss—are—egunr—r— On the other hand, Shafer
argues that experts are seldom in fact perfectly reliable. A more reasenable Pro-

cedure would be to "discount” the belief functions supplied by the experts to
reflect our degree of doubt in the reliability of their reports. In discounting,
we reduce each degree of support by a fixed percentage, and allocate the remainder
to the universal =set ‘Hl'HE'HEJ‘ The result of applylng Dempster's rule will now
be a bellef function that assigns support to all three hypotheses.

Let us examine this response in a bit more detail. BRecalling that we regard these
experts as highly reliable (though net perfect), suppose we discount A"s belief
function by 1% and B's by 2%. The result is the following, as depicted in Figure
=7

Table 2-3
L mg ") mapl
Hy 0.9801 o 656
Hy 0.0099 0,0098 .013
Hy 0 0.9702 . 325
[Hy,Hs,Hy) 0.01 . 0.02 .007

We now have a "bimodal" belief function, with the prapﬁnﬂar&nﬂa of support going
te Hy and Hy. This appears, at first look, to be an intuitively plausible result:
it reflects our feeling, which we represented in the form of discount rates, that
A or B (or both) could possibly be unreliable. But let us lock a little more

closely.
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Figure 2-7. Support Functions to Illustrate Combilnation of
Conflicting Evidence with Discounting
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The first thing to note is what & vast difference a small amount of discounting
makes, In Table 2-2, after combination by Dempster's rule, there was exclusive
support fer Hy. In Table 2-3, final suppert for He is only slightly greater than
1. The second thing to notice is the large discrepancy between mup(H,) and
myplHs}. Although we did in fact discount B at twice the rate as A, the actual
numbers (2% and 1%, respectively) and the differemce betweem them were very small.
It is by no means clear that the resulting differemce in support for H) and Hy is
intuitively plausible. More to the point, the sensitivity of the result for all
three hypotheses to very small differences in discount rates is disturbing.
Finally, to dramatize the sensitivity even further, note that if support for

!Hl Hi H3] were 0 for bﬂth experts, and if A assigned 0 support to H#?Hand B as-

signed 0 support to q: these very small changes render Dempster's rule
indetermipate,

Perhaps the problem is that our original assessment of the rellabilicy of the ex-
perts was mistaken. Suppose then we discount A by 29% and B by 30%. We now get:

Table 2-4&
m“{'ﬁ mﬂ{'] 'lﬂhi']
Hy L7029 ] 243
H, 0071 007 D085
H3 0 L6893 A
[Hy,Hy,Ha) .29 .30 1751

Support for H; and H, after combinationm is mow roughly equal, certainly a mere in-
tuitive result. Then should we have discounted & and B more in the first place?
According to Shafer, presumsbly, this iz indeed the case; the fault is not in the
theory, but in the initial allocation of support, The example, however, high-
lights a deeper problem, As we noted In Section 2.5.5, reliability iz to be
azgesged ge 1f we had no knowledge of the evidence actually provided., Thus, we
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are apparently not permitted to use the confliet between A and B as & clue regard-
ing their capabilities or as a guide to the appropriate amount of discounting. We
return to this issue wvery shortly.

Zadeh himself objects to the procedure in Dempster's rule of nermalizing support
messures to eliminate impossible combinations. But we think this cbjection is
mistaken. MNormalization is im faect the gply way in Shafer’'s theory (albeit quite
indirect) that our knowledge of the evidence enters into the assessment of
reliability. It accomplishes a sort of de facte discounting as a functiom of con-
fliet of evidence, WNote in the earlier example of Figure 2-5 that the reliability
of witnngi 1, afrer combining his testimeny with the eonflieting evidence of wit

ness I, is (PqPs'/(L-Fq{F{"). This is less than F,, the original assessment of
witnesz 1's reliability.

Although normalization is in itself not problematic, nevertheless, it is not a
complete or adequate solution to the problem of comflict. First, because there is
no lasting effect on later problems, i.e., we have not truly updated our estimate,
Fio of A's reliability in the light of his confliet with B. BSecond, there is mw
rrocedure for exploring potential reasons for the conflict. A closer examination
ef (a) the factors that determined our original reliability estimates, (b) our as-
sumptions regarding independence of the two arguments, and {c) the internal struc-
ture of the arguments employed by A and B, might lead to & revision in beliefs and

assuppticns that permanently improves ocur knowledge base.

We argue, then, that the revision of rellabllity estimates is only one possible
result of an iterative, constructive process of problem seolving prompted by con-
flict of evidence, (We also have the options of reframing evidence and hypotheses
to reflect revised judgments of independence and of revising specific beliefs in-
ternal to the conflicting arguments. These are the alternatives outlined at the
conclusion of Sectiom 2.5.10). Therefore, such revisions must be justified by
consideractions which, once discovered, carry weight independent of the conflict of
evidence that led to their discovery. Ideally, these newly discovered factors
could be regarded as sufficient to justify revisions in reliability estimates in-
dependently of Eq and E5. (Referring to these factors as F, we would have
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FriRq|EqEsF) = Pr(R{|F).) This justifies the reassessment of reliabilities in the
light of the evidence in the Shafer-Dempster svstem, and is the method implemented
in the system to be described in Section 3.0.

2.5.12 ¥hat is "conflict of evidence™? 5o far, we haeve taken for granted the no-
tion of comflicting evidence, and that in some cases at least special steps are

justified in dealing with it. But it is by no mesns obvious what "confliet" is,
or why steps outside the normal caleulus of uncertainty should be regquired to
handle it., Conflict of evidence does not appear, on the surface, te be the same
az incoherence, The formal constraints of Bavesian theory dictate, as we saw In
Seccion 2.4.5, that multiple probabilistic analyses should asgree with one another
and with direct judgment. Similar ccherence constraints can be derived for
Shafer's theory from the reguirement that uncertainty on 5 be measured by a
probability. But it is impliecit that these anelyses are, or should be, based on
the same evidence. There appears to be no corresponding guarantee or prescription
that arguments based on different evidence should arrive at the zame or similar
conclusions. Dempster's rule is designed explicitly teo combine arguments based om
independent evidence; hence, there are no direet constraints on the extent to
which rthose argusents must agree (except that there be at least one palr of mean-
ings from the two argusents whose intersection is non-empty).

Hevertheless, we propose that the resolution of conflict in a belief function
analysis be construed as a desire for coheremce. The missing elememt, which is
responsible for the incoherence, is a judgment, often impliecit, regarding the
cverall structure which the final bellef representation is expected to have, Such
judgments are based on one's knowledge about reasoning in a particular problem
domain, "Conflicting evidence" iz evidence whose combinatlon produces a structure
that violates such a prior expectation. Thus, the definition of "conflict" will
vary from one problem domain to another. The locus of conflict is net, strictly
speaking, between the two sources of evidence, but hEtFEEn both of them, on one
side, and & structural expectation regarding the outcome of the argument, on the
other., When a conflict of this sort cccurs, in an iterative, constructive
context, the decision maker has a choice of either revising the expectation or
else making one or more of the three kinds of changes we discussed above (revising
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discount rates, frames, or steps in an argument).

I1f belief functions are probabilistic with discounting (i.e., assign support only
to single hypotheses and to the universal set), then it is often plausible to
require that hypotheses which receive very little support from either of two argu-
ments not receive predominant support Iin the combined analysis. This was the
basis of the adjustment of discount rates in the above example (and alsoc seems to
underlie the use of discnﬁnting in Shafer, 1982). Hote that an analogous reguire-
ment is recommended for Bavesian analvsis by deGroot (19812).

Other pna#ihlu structural expectations regarding the form of a belief function
model include that it be consonant or hierarchical. In these cases, support is
assigned only to nested subsets of hypotheses or to subsets that form a tree,
respectively. HNeither of these properties ie necessarily preserved through com-
bination by Dempster's rule, Yet, as we noted in Section 2.5.3 above, such struc-
tural constraints may (a) be quite plausible for particular problem domsins [(=E.,
Gordan and Ehnrtlﬁffu, 1984, on medical diagnesis), and (b} be required to reduce
the :nmputatinnnl“;ractahility of a Deppster-Shafer model, Thus, eonce again, a
higher-order prceg;a of qualitative reasoning may be necessary te explore revi-
gions in beliefs and assumptions, in order to handle "conflict™ and to ensure the

applicability and plausibility of a Dempster-Shafer calceulus (see Section 3.0
below) .

An impertant by-product of requiring consonance should be noted. One potential
eriticism of Shafer's theory is that it lacks a concept of the gggeptapce of a
hypothesis once it achieves a sufficient degree of evidential support (e.g., Levi,
1983: L.J. Cohen, 1977). A precondition of scceptance--and what makes it a useful
concept in some contexts--is that it should yield a lngically consistent and com-
plete gtory, Heither is true If a threshold or cuteff for acceptance is defined
on Bel(') in Shafer's system. Both a hypothesis and its complement could hawve
positive support, and thus conceivably both could be accepted, vielding a
contradiction. Moreover, two propositions, p and gq, might be accepted but their
conjunction, p&g, rejected. Both of these problems dizappear in a comscnant

belief function: Since & hypothesis and its complement are mot nested, they can
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not both receive support; and it can be shown that Bel{phig) = HIN(Bel(p),Bel(qg))
and thus that a conjunction is at least as credible as either of its conjuncts.

In all these cases, there is a tensiom between the desirability or plausibility of
depicting the state of evidence "as it is," conflicts and all, and attempting to
produce a resolutiom or recomclliation within the framework of some plausible or
desirable global requirement, We clalm that this tension iz at the heart of any
truly intelligent and flexible reasoning with probabilistic systems.

2,.5.13 BSummary., Shafer's theory provides a natural representation of gquality of
evidence and relaxes the assessment requirement to the extent that the evidence is
incomplete. Like Bayesian theory, however, belief function models impeose inor-
dinate input amd computational demands unless specialized models are adopted. The
validity of Shaferian theory has not been clearly established, slthough it may be
illuminated by a partial Bayeslan derivation, A major difference iz that Shafer's
theory does not permit reassessment of the gquality of an information source in
terms of what that source says; the credibility of one witness cannot be increased
by corroboration of a second witness or decreased by contradictiom. 1In belief
functien theory, the ocutcome of combining the informstiom from two conflicting
data sources can vary dramatically, depending on our assessment of their
credibility., Yet we cannot use the two sources to crosscheck one ancther. We
argue that this gap in Shafer's theory reguires that it be supplemented by a
process of gualitative reagoning that reexamines sources of evidence as an
anazlysls proceeds, and recalibrates them in the light of corrcboration or
conflict., The same process might supplement Shafer's theory in other wavs: by
reframing evidence and hypotheses to establish independence of evidential
arguments, and by revising inferential steps which are internal to such arguments.

2.6 Fuzzy Set Theory

2.6.1 PHature of the theorv. Since L.A. Zadeh advanced fuzzy set theory in 19835,
an enormous amount of interest, and & very large literature, has been generated.

Most of this interest has been theoretical, concerned with the mathematical im-

plications of the theory, but there have been a number of attempts te apply the
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delﬁﬁﬂ'4}. .
theory to practical problems. This is in line with Zadeh's original reazon for {Eéj
iy i

introducing the concept. He—argusd-shat—mweh—ayvatems—analicle was Inadeguate ha.
calse—Etrregwdsenente—ware oo pracise, He felt that our intuitive understanding 1

of concepts and, more interestingly, our reasoning about those conceptsz, were
St Sl

typically imprecise, yet analysis tespeciallywith-sompusers; required f

pruai:iizhiainn_ To resolve this paradox, he introduced the now well-known ¢nﬂ¢lpt:
|
of the fuzzy set--a set with imprecise boundaries. The essential element is the

membership function Ug(x) which represents the degree,t vhich an element = l
belongs to some set A. If ug(x) = 1 then x inﬂiapuéiﬁ%ﬁ*haluugﬂ to A, while if (j:)

indicates that x belongs to the set to some degree. Fuzzy sets are thus a precise

Halx) = 0, % does not belong to A. An intermediate walus, such as p,(x) = 0.6,

tool for representing and manipulating imprecise notions.

ooty
Application of fuzzy set theory involwes: first, the representation ﬂﬁmimpreciae
cnnttp%ihy fuzzy sets; second, the use of a calculus to construct other fuzzy sets (EE
representdae®the output variables E:Laf analysis; and third, reinterpretation of
the results inﬂF;prqnisa language {(see L.A. Zadeh, 1975). The first and last
steps are crucial if the flavor of the fuzzy theory is to be fully captured., The
core idea is to construct a calculus for the formal (i.e., precise) manipulation of |
imprecise concepts, which takes in imprecise inputs and puts out imprecise outputs,

2.6.2 pApplicecions of fuzzy set theory to inferemce. The theory of fuzzy sets
can be applied in many ways, In the sense that wherever a mathematical relation-

ship exists, it can be fuzzified. Thus, there are many possibilities for using
the fuzzy calculus in conjunction with other inference theories. Alternatively,
it can be applied directly to ordinary imprecise reasoning (by experts or non-
experts) in natural lanpguage. We will introduce some of the formalism of fuzzy
set theory by examples of these two Cypes.

{...:rtw

Euppnsﬁﬁa rule for an image interpreter could be

2.6.3 Fuzzy implication.

written:

"If the texture is rough, and the illumination i{s good, then the objeect is
a forest.”



To express this rule using fuzzy set theory, we need to define the input fuzzy
sets. The first will be yp(t), which measures the extent te which a particular
texture-vector ¢ can be said to belong to the set of "rough' texture wvectors., The
second will be us(i), the extent to which an illumination level, i, can be said to
be 'good.' The third will be yp(x) describing the 'forest'-ness of the object: =
is some variable which gives a precise categerization of each object andu p(x}
will be a fuzzy-set on the variable x.

The first manipulation will be to representli pe(t,i), the extent to which an image
with texture-vector t and 1llumination level 1 can be sald to be beth "rough" and

“good." Zadeh's caleulus suggests that this iz the minisus of the two membership
functions:

Hpelt,i) = min{pg(t) Ug(L)].

Implication in fuzzy set theory is defined as a relation. Thus, "if U is F, then
¥V is G," where F and G are fuzzy zets on the variables u snd v underlying U and ¥V,
iz described by the relatlion

Wy, v) = min(l, My (v} + 1-uq(u))

using an obvious notation. This may be interpreted as the extent to which a par-

ticular value of U implies a particular velue of W,

The nexXt step is to combine the rule with a statement about the fact described in
its antecedent. In fuzzy implication, not only may be the concepts imvolwved be
fuzzy, but the mateh between a faet and the antecedent of a rule may be & matter
of degree as well. Thus, we may have a rule stating "If U is F then V is G," but

ann input stating that "U is F*", u;ere F ;:#-F* are not the same. Zadeh defines
this as

by(v) = max(min(V pu(u).l 4 e, v2)0.
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where ¥ is the fuzzy set that results from combining F* and V/U. Thus, in our

Aranld
illumination, €t and i. FJ(t,i] may reflect an input te the effect that T

iz "wvery rough" and the illumination is "not very good.® We find that

example, suppose i '(t,1) iz a fuzry set on the varisbles for texture and 7
on

&

uylx) = max(min{y'(t,1i) ,min(l,l-min{ (), ug(i))+ ()2}
£,1

is the induced fuzzy set on the categorization wariable, x. py(x)} is a quantita-
tive measure of the possibility that the object is & forest given the fuzzy '
evidence regarding roughmess and illumination and the fuzzry implication rule. The
sutput may now be translated into an imprecise natural language expreaﬂiﬁn (e.g-,
"very possibly a forest") corresponding to py(x).

Z.6.4 Fuzgy probabilities. Uncertainty about facts (i.e., chance) was not men-
tioned above; we just talked about imprecision. Zadeh stresses that the twoe con-
cepts are distinct, and that fuzzy set theory should only be used to describe

imprecision. If we are imprecise our uncertainties, however, then a role exists
for describing that imprecision with fuzzy sets. Watson et al. (1979) and Zadeh
(1981} discuss thizs idea in the context of decision analysis, but it can clearly
be spplied to any use of Bayeslan probabllity theory, or belief fumction theory.

The basic tool for fuzzifying a caleculus is Zadeh's extension principle, which

enables us to compute the fuzzy set membership function for a wariable when it is

a function of variables whose fuzzy set membership functione are knowm. Lat (:Ei:

Y = F(X;,X,, x.a Then yy(y) = max(minfuy (%)), uy (%3)...., g (%3)) where ¥
UyEF} iz the extent to which & value ¥y belongs to the set of poszible mumbers for

the output wvariable,

Suppose a scene labeling procedure leads te a probability p that an object should
be classified as a building. Imagine we have a loss function which gives unit
loge if misclassification oceurs, and zero loss if not. Then the expected loss
from classifying the cbject as a bullding is
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1x (l-p) +0=xp=1-p
while the expected loss from classifying the object as 'not a building' is
lxp+0x (1-p) = p.

Clearly, wve minimize expected loss by categorizing it as a building if p>1/2. How
suppose that we are imprecise about p to the extent that we can only describes a
furzy sat u(p) sbout possible values of p. Fuzzy sets for the expected loss in
the two cases (actually p(l-p) and u(p)) can be produced using Zadeh's extension
principle. But vhat conclusions can we draw? Freeling (1980) discusses this in
some detail, suggesting several alternatives approaches. As we might expect, when
results are fuzzy, the analyzis may not indicate any particular decision regarding

classification.

Az with the Baveslan analysis, there are some non-trivial problemsz in attempting
to apply fuzzy set theory to inference in expert systems.

2.6, Feagiblliew, We criticized both Bavesian theory and belief function theory
on the grounds that the analysis invelved in practical problems cam be quite
complex. This will also be true of fuzzy set theory. The fact that functions ﬂf
variables have o be handled in computations makes the analysis difficult to
handle mumerically. WNonmetheless, there are indications that the max-min opera-
tions are mumerically sasier than the sum-product operations of the other
theories. It would be wrong, however, to agsert that the use of fuzzy set theory

removes &ll of the diffieulties caused by complexity inm the other twe theories ex-
amined here.

2.6.6 Validity. For a theory which has had an enormous literature, there is

still & considerable disecusgion amongst scholarz on the justification and inter-
pretation of the theory.

2.6.7 Semantics: Where do the pumbers come frog? This question is raised by
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most people when they first study fuzzy set theory. There are mo standard proce-
dures to be applied in every case; anything plausible would seem to do. Im
particular, there are neither behavioral specifications nor canonical examples of
the kind Shafer claims to be important. Zadeh would argue that a theory of im-
rrecisien should not need precise inputs, so that we should not bother too much
over the exact nature of the ilmput membership functions., If that iz the case,
then answers should not be very sensitive to input membership functiuf:.

In many applications, this is not the case, and i’l‘ldttd.!ﬂ:]‘.’!i artfse.n- @

sitive to just one point on a membership function.

¥hat is ;ﬁg meanipng of the cutput? Paralleling the uncertainty relationship be-
tween human perceptions of imprecision and the caloulus of fuzzy sets is the
reverse relationship: once we have computed an output fuzzy set, what do we do
with it? We briefly discussed the possibility of linguistic interpretation above.
This does not appear to have been & satisfactorily implemented approach, s
in part because people differ in the conclusions they draw from the same natural

language statement.

In the light of these difficulties, it i= not surprising that efforts should be
made to assimilate fuzzy sets to some other framework of uncertainty, such as the
Baveslian or Shaferian. It is difficult to do this in a natural way, however, due
to the difference between imprecision and uncertainty about facts. For example,
suppoese Analyst A refers to an object x as "long", after having measured x
exactly. There is no doubt as teo x's sctual langth;and although A may regard x as
long only to a certain degree, he is not uncertain whether or not % is long. What
fact then could A be uncertain of? e add three caveats: (1) 1if A tells & second
Analvst B that x is long, then B may be uncertaln regarding x's actual length;
(ii) if A had only glanced at x, rather than measuring it, he might be uncertain
(as well as imprecise) about x"s actual length; (iii) we may in fact be uncertain
as te whether & random English speaker would call the object "long".

Nevertheless, the most natural approach is to treat this kind of uncertainty as
the degree to which x (or an object of x's length) is long, rather than the chance
that x is long. Put another way, these degrees are part of the meaning
{denotation) of "long", and not (necessarily) a result of uncertainty asbout what
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"long® means or about the actual length of an object.

Honetheless, it may be worthwhile exploring ways to represent lmprecision in terms
of other frameworks. For example, a consonant Shaferian support function (Section
2.5.3 sbove) obeys & calculus that closely approximates Zadeh's possibility
theory. Consonant support functions seem appropriate for representing imprecision
in the implications of evidence (it points to a set of nested regions where the
truth could lie). And they have the advantage of a somewhat more secure normative
foundation (Sectioms 2.5.5 - 2.5.11 abowe). Thus, the possiblility of translating
between natural language expressions and support functions might be worth
exploring, despite some cost in naturalness.

2.6.8 Inference: What are the gppropriate coppnectives? In terms of either
axiomatic justification or face walidity, the procedures Zadeh recommends for com-
bining his membership fumctioms are mot unique. For example, Zadeh argues that

the degree to which an element belongs to a set 4, and another set by should be
computed by

A (%) = min(n, (x),, ().
Fagna, A A

This is clearly consistent with the requiresent that if both =sets are grigp (i.e.,
enly takes the values 0 or 1), set membership should obey the usual rules (l.e,, %

uaqfa, 1f and only if xchq and xeh,). HNete however, that this 1s net the eonly eon-
nective rule with this property. For example, the family of connectives

1- 1-a
nin{uﬁl {I”]"'z (x), ]JAE EI}Uﬁl (=)), Ogine] .

all have this property, where 1- ails a power to which the membership fumctiom is
raised, Zadeh choosesao= 1; the choice ofa= 0 gives the Bayesian rule for the

probability of a conjunction {uﬂnaly]Jﬁl{x}-1Lﬂz{1}}. There are many other pos-
sible definitions (see Dubols and Prade, 1984).
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Similarly, disjunetien, negation and implication all have alternative
representations, and the cheice of the forms usually employed is arguable. So far
88 we are aware, very little research has been carried out on the implicatiens of
using different connectives on the results of a fuzzy analysis. There is,
therefore, some arbitrariness in the connectives chosen by Zadeh--an arbitrariness
which pervades the theory.

2.6.9 Plausibility of instances: The main stremgth of Zadeh's theory is in its
ability to produce instances of reasoming that are acceptable on a case by case
basiz. Im this regard, it has a richness and scope that no other theory even at-
tempts to capture. In particular, it ia the only theory that attempts to formal-
ize the combination of conziderations based on similarity (e.g., the cleoseness of
F¥ to F in the above example) with more traditional considerations in inference
(g.g., traditional logic or probability). Im this largely uncharted domain, the
(present) absence of deep normative foundations may be no disgrace.

Honetheleéss, there may be cases where fuzzy logic gives implausible {(or nom-
useful) answers., Fuzziness is concerned with what is possible, rather thanm what
is probable. Zadeh zees a pessibility distributien as being an upper bound on a
probability distribution. Articulating the possible may be important, but LIf many
options are possible, it does not help in our search for what is probable. In
practice, this point is expressed by the tendency for fuzzy sets te produce rather
bland answers, giving high velues of the membership function for large sets of
varigbles. One can see some applications when this is not an obstacle to
understanding, if some ifmportant cptions are seen to have very low or zero
pessibility. In general, it does present a difficulty.

2.6.10 Summary. Fuzzy loglec is & highly flexible and versatile tool for handling
imprecision., It may be applied directly to reasoning with verbal expressions or,
at a higher level, to reasoning with a numerical caleulus like probability theory.
Unfortunately, the meaning of fuzzy measures is nmot always clear; and the rules
for manipulating them seem to lack any deeper justification than the plausibility
of the answer in a specific applicationm.
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2.7 Fon-Monotonic Reasoning

In this section we turn to & quite differemt approach to reasoning under condi-
tions of uncertainty. Although non-monotonic reasoning emerges directly from the
tradition of non-numerical reasoning in artificial intelligence, it is designed to
address problems of incomplete information. The basic ideas of non-monotonde
reasoning were first applied by Stallman and Sussman (1977) in a system for
electronic circuit analysis. Since then, theoretical work has been assoclated
with Dovle (1979), McDermott and Doyle (1980), Reiter (1980), McCarthy (1980), and
others.

2.7.1 RFRature pf the theory. Traditional, axiomatic formal systems are monotonic,
in the fellowing sense: beginning with an initisl set of premises, the number of
provable statements or theorems of the system increases monotonically in time as

new axioms or premises are added on,

In contrast, the content of practical structures of argument and belief may
diminish as well as increase. New data may compel an analyst to challenge and
reject previously derived conclusions. Such systems are pon-mopmotonic in tima.
Humans become skilled at merging conflicting data into existing arguments or
beliefs B0 &8s to regain consistency while minimally disrupting the established
gystems. Non-monotonic logic is the name associated with a set of formal and
computer-based systems designed to incorporate new, conflicting data into systems
of belief based on incomplete informatiom.

2.7.2 Dependemcv-directed backtracking is s key concept in implementing non-

monotonic systems. As datsa and constraints are added to a non-monotonic system,
they are treated as valid until a contradiction ig found, Traditional systems, in
the face of a contradiction, must backtrack past the data that was added im-
mediately prior to the contradietion, searching for a new path that is
contradiction-free. Many dead-ends are likely to be encountered in an exhaustive
gearch of this type before a consistent total set of beliefs is found. In a non-
monotonic system, only those beliefs which actusally contributed to the contradic-
tion need to be considered.
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Dependencies among statements in & non-monotonic system (Doyle, 197%) are repre-
sented (primarily) by data structures called support lists, A support list jus-
tificatien for a statement has the form

Statement # statement (8L <iplist> <putlist>).

Such a justification is & wvalid reason for belief in the statement if every state-
ment in its inlist is believed, and every statement in its outlist is not

believed, For present purposes, we can distingulsh three kinds of justifi:atinn
in these terms:

(1) A premise justification has an empty iplist and an empty putlist; i.e.,
(ELECDY.  Thus, nothing else nmeeds to be demonmstrated, or mot to be demonstrated,
te ensure acceptance of a statement with such a justification. Observational data

{or unquestioned gemeral principles) might be treated in this way. For example,
HN-1 Object has texture of type x (BLLACD)

is automatically regarded as IN.

(2) A monotonic justification has a non-empty inlist, but an empty outlist, For

exsmple,
H-2 Object is a building (SL{0bject has texture of type x) ())

iz a momotonie justification. Note that it corresponds to the exasple discussed
in Section 2.4: This type of node simply states that {f certain other facts are
believed {e.g., teXxture iz type x), thep the relevant statement should be
accepted (e.g., the object is a building). WN-1's being IN, in conjunction with
this justification for H-2Z, is gufficient te causze H-2 to ba IM.

(3) If only momotonic justifications exist, no statements can be retracted,

Hence, they are appropriate only if all possible evidence is explicitly stated in
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the inlists corresponding to varicus possible conclusions., In other words, we
oust resclve not to accept any statement until we possess all the information
regarding its truth or falsity that we ever intend to regard as relevant. In this
example, N-2 would meke sense only if texture was the sole clue relevant to class-
ifying an object &8 a building. More typically, we cammot afford to be this
conservative, We may wish to accept a statement provisionally, te act "as 1f" ic
were true, and to use it in subsequent reasoning, based on only a subset of the
possible observations. The appropriate means for doing so is Eii & pen-menctenic
justification, i.e., a support list whose putlist is mon-empty. Statements with
non-monotonic justifications are called assumptions, The inlist states the condi-
tions (if any) under which it is desirable to assume the truth of the statement;
the putlist states the conditions under which the assumption would have to be

rejected, Thus, te continue the example, a more appropriate version of H-2 might
be:

K-2' Object is & building {5L{0bject has texture of type x)
(Ooject is far from road))

In other words, if we know the texture of the object to be x, we can assume the
cbject is a building as long as we have not proven that it is far from the road,
Thus, M-1's being IN, in conjunction with this justification for R-2', is still
sufficient to cause {provisional) acceptance of the statement that the cbject is a
building. The assumption is appropriate even if we have as wet collected no data
at all regarding the object's distance from a road. But suppose we now collect
such data and as a result add the following premise to our system:

H-3 Object is far from road CELEYCNY.

H-3's being IN is now sufficlent te cause N-2' te go OUT.

The latter is an extremely simple example of dependency-directed backtracking.
Let us spell out the steps in a bit more detail. NK-2' and N-3 being jointly IN

is detected by the system as & contradiction. The system then sets up a CON-
TRADICTION node with H-2' and R-3 in its inmlist:
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M-& CONTRADICTION (BL{N-2' H-3)(}).

H-4 states a "local constraint™ governing the relationship of H-2' and H-3: they
cannot both be IN. Hote, however, that NH-4 is IN only so long as K-2' and N-3 are
IM. The system now searches for the set § of assumptions (i.e., statements with
non-empty gputlists) which are respomsible for the CONTRADICTION node R-4; in other
words, 5 contains the assumptions whosze being IN has caused N-2' and N-3 to be IN.
The system then sete up & NOGOOD node as & permanently IN record of the inconsis-
tency of ﬁ- This node has the form:

Statement # ROGOOD 5 {CP(CONTRADICTION) (51}

where CF iz a conditional-proocf type of Justificatiom. Essentially, the ROGIID
node is justified by the relationship between 5§ and the CONTRADICTION, indepen-
dently of whether the COFIRADICTION happens to be IN or not. In our example,
there is only one assumption responsible for W-4's being IN, and that is N-2°
itself. Thus, we get the following:

H-5 NOGOOD N-2 (CR{N-&) (H-2"3{)).

In this case, the CF justificatiom 1s walid (and H-5 is IN) because K-4 iz IH
whenever N-2' is IN,

The next step is crucial in more complex examples. The system selects a “culprit”
G from the members of 5, i.e., it identifies some one assumption among those col-
lectively responsible for the problem and decides to deny that assumption. To do
so, it further selects some member O of the outlist of the culprit, It then sets
up & suppert list justification for ©. This justification says, in effect, that

if you want to keep all the other assumptions in 5 (except ), and if you have not
proven any of the other grounds for retracting C, then you should believe 0. (The
inlist of this justification contains all the assumptions in 5, except C, together
with the NOFOOD node; the putlist contains all the members of the gutlist of C ex-
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and the CONTRADICTION node goes OUT. Of course, O is only an assumptiom; later
nuntraﬁictinns may lead to its retraction and to the use of some other member of
the outlist of €, or else to the rescoration of € and the denigl of some other as-
sumption in 5.

Although in our example this process is triwvial, it does fllustrate ancther impor-
tant aspect of the truth maintenance system. In our example, as noted,
dependency-directed backtracking must select N-2' as the "culprit™ for demial.
Since H-3 is the only member of its putlist, H-3 receives a mew justification. It
now appears as

-3 Object is far from road (SL()()) (SL(R-3)(}).

It appears that N-3' can be justified sither as a premise (data) or an assumption
required to resclve the inconsistency represented by N-5. This, however, is
wrong. The second justifiecation is circular, since it was H-3 that led to the in-
consistency in the first place. Doyle's Truth Maintenance System guards against
circular justifications of this sort, by designating certain justificatiomns as
"well-founded® and others a&s not,

Ve now turn te a somewhat more detailed example.

2.7.3 Exapple of informal non-monotopnic reasonipg. An image analyst is shown two
images taken from a platform directly above the ocbject of interest, a rectangular
structure on the deck of a vessel. The images are taken at different times of
day. The sun angles and the height of the platform above the vessel are known,
and the analyst is tasked to measure the object and make some inferences about its

structure. The images are shown below:
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A question of particular interest s whether the dark "object” 1Is a hole in the
deck through which the dark interior of the vessel's hold is seen, or a solid
structure on or above the deck.

The analyst might reason quickly as follows:

"The object is uniform in reflectance, therefore, probably plamar. It caste a
shadow, therefore, must be an opague structure elevated above the deck. From the
distance between the left-hand edge of the shadow and left-hand edge of the
object, I can measure the height of the object above the deck.”

"There's a problem with this simple model. The shadow in the second imsge is much
longer than the object. Therefore, Either_l!'ﬂ‘m ohject iz a planar structure at-
tached to the deck at some angle, or if it a horizomtal planar structure 1t must
be supported by some other structure, imri;ibla to me, that contributes to the
shadow." The analyst might proceed te sketch several configurations that are con-
sistent with the data:
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The analyst has quickly noted and resolved two inconsistencies: First, the existc-

ence of the shadow doesn't jibe with the theory that the dark object is an aper-

ture in the deck, so this hypothesis is ruled out. Second, the size of the shadow

in the second imsge doesn't fit the theory that the object 1z a horizontal plans
laced

suspended above the deck; this is ruled out and ﬁ:;h;:td with the "leaning wall®

and "planar support™ hypotheses, as illustrated.

2.7.4 pApplication of B pop-momotonic svstem. We will next illustrate how this
argument would be treated im & non-monotonic ressoning system. We assume that ob-
ject recogrition and feature extraction have been performed, either by an analyst
or by & machine, and that these data have been represented in computer-compatible
form. The image-processing system or snalyst will have recognized ocbjects and
ghadows and will have measured the distances from object to shadow boundaries. A
set of plausible hypotheses (flat object on surface; aperture in deck; tilted
object) will have been fermulated and recorded as statements. The resulting data
set is as follows:

2-68



Statemsnt # Statement State Support List
IH JUT In Out

1 Object is aperture in A 3,7
deck.

2 Flat object lying flat X 27 1
on deck. &

3 Flat, horizontal object X -

m above dack. "
.l

& : Flat ocbject, tilted at X 6,9
angle to deck.

3 At sun angle B,, object 4
iz uniformly bright, casts
no shadow,

& At sun angle 9, object X
is uniformly bright, casts
a shadow of dimension less
than object.

7 At sun angle By, cbject X
is uniformly bright, casts
no shadow.

8 At sun angle f,, object X
is uniforaly bright, casts
& shadow smpaller than object.

9 At sun angle By s ohject X
is uniformly bright, cascs
a shadow larger than cbject.

As in our earlier discussieon, a statement is IN or OUT at any given time depending
on whether or not it is juetified based on evidemce currently available. The jus-
tification for a statement being IN or OUT ie based in turn on certain other
statements being IN or OUT. The suppert of a given statement is the set of state-
ments required to be IN or OUT for that statement to be IN, Thus, the statements
and the justification relatiomships form a tangled network. The set of IN state-
mente grows and shrinks in a non-monotonic fashion as new evidence changes the

states of particular statements, and as thea effects of these changes propagate

L



through the nmetwork. (The set of justifications, however, grows monotonically.)

For example, the support list of scatement 1 is (SL{3,73(2,3,4,6,8,9)). To see
how the system deals with conflicts between data and cbhservations, let us assume

the analyst starts by assigning IN as the state of statement 1., The observation
data states are:

2,7 OUT (Object dpoes cast a shadow)

b IR (At sun angle @, object casts a small shadow)
8 OUT
) IN (At sun angle £y, object casts a large shadow)

The non-monotonic system checks the network for consistency among the states and
support sets, notes an inconsistency, and introduces a new conflict assertion:

Statement # Statement State Support List
IH ouT In Qi
10 COMTEADTCTION 4 1,6,9 3, F

The system proceeds to resolve this conflict by changing statement states; cbzer-
vation data is challenged only as & last resort. For efficiency, the system may
atcempt first to achieve consistency with a subset of the chservation data, since
this is potentially a large data base. In our example, the system works initially
with the (5,6) cbservation data, and subsequently considers the (7,8,9) data.
Initial consistency is achieved by setting statements 1 and 2 to OUT and statement
3 toe IN, retaining statement & in the OUT state. Statement 10, CONTRADICTION,
reverts to the 0UT state (although the system retains a permanent trace of this

conflict "proof® for subsequent possible activation,)

Since statements 7,8,9 are not being considered at this moment, statement 3 IN is
consistent with the data (5 OUT, & IN).

Rext, the system broadens its scope to consider a larger piece of the data base.
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A mew CONTRADICTION statement is gemerated:
11 CONTRADICTION K 2,9 &

To resolwve this confllict the system considers new state settings. Resetting
statement 1 to IN is disallowed by the trace of the previous conflict. The cor-

rect solution setting statement 3 to OUT and statement 4 to IN achiewves
consistency.

The scenaric sketched above illustrates the truth maintenance feature to be found
in deductive retrieval systems, such as DUCE (McDermott, 1983), Hen-monotonic
reasoning is very much, however, an active area of Al research, with open ques-
tions remaining both in feasibility and wvalidity.

2.7.5 Feasibility. Dependency directed backtracking is a species of discrete
relaxation (like Walz filtering, as described in Cohen and Feigenbaum, 1982). It
seeks a consistent allocation of truth velues across a set of statements, by
utilizing local consistency constralnts between palrs of statements, rather than
by exhaustive search through the space of all possibilities. Thus, a high lewvel
of computational efficiency can be achieved.

To make this efficiency possible, however, in non-momotonic systems, the traces of
proofs are retained, even though the premises utilized by the proof, end the
statement that was proved, may (temporarily) be judged imvalid or OUT., Therefore,
if the premizes become wvalid or IN at some later time, the work of rediscovering
the proof need not be repeated. The justifications consume space in memory, and
the tradecff is therefore made between memory storage and the processing overhead
of regenerating proofs on the fly.

2.7.6 Face validity. Implementations of non-monotonic reasoning revise beliefs
go ag to arrive at a consistent overall system of beliefs in the face of a
contradiction, But they provide only a very limited capability for deciding among
alternative possible revisions. The selection of an assumption as the "culprit,”
apd the zelection of a member of its putlist to be assumed as true, are both
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highly arbitrary. Some control information is implicit in the ordering of nodes
in the gytlist of statement 5; i.e., if 5 is te be rejected, the system Wwill then
assume the truth nf'nembera,ai—aunheru‘fgptha putlist in the order shown. But (a)
this is insufficient to remove all ambiguities, and (b) it makes control informa-
tion implicit rather than expliecit, hence, difficult to evaluate or modify.

2.7.7 Plausibility of instances: Conflicting evidence., An often voliced
eriticism of non-monotonic reasoning is that uncertainty caleuli (e.g., Bavesian,
Shaferian, or fuzzy) can do the same job better. In the example of Sectiom 2.7.4,
for example, our initisl state of belief, before consideration of either image,
could be represented as & belief function assigning some support to statement 1
end some suppert te (1,2,2,4), The evidence represented by (3 OUT, & IN)} could be
construed as lending some support to node 3 and some to {3, 4}, The second bit of
evidence (7,8 OUT; 9 IN) could be construed as assigning exelusive support to node
L&, Combination by Dempster's rule leaves node & as the only viable hypothesis,
The belief function analysis appears to be more general, since it accommodates
sources of information which conflict to varving degrees, and provides a measure
of degree of belief in warious possible conclusions.

Although we are convineed of the walue of mmerical representations of
uncertainty, we will arpue that this objection misses the mark in two ways. It
overlooks an important role of non-monotonie reasoning (1) in drawing implications
for the wvalidicy of cne argument or line of reasening from another, even where

they are independent, and (2} in reasoning about the application of the uncer-
tainty calculus itself.

The basie idea of (1) is the follewing: Suppose we have two independent lines of
reasoning, A and B, with regard to the same sets of hypotheses. Each line of
reasoning depends on certain data and certain assusptions, as illustrated in
Figure 2-8. In Argument A, the impact of Data 1 and Data 2 depends on the accept-
ence of Assumptien 1; for Argument B, the impact of Data 3 and Data & depends on
Assumption 2.

What happens when A and B support conflicting hypotheses? In a non-monotonic
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system, the set of assumptions that contributed to the contradiction are iden-
tified and declared inconsistent {(as a set)., Then a selected member of this set
is rejected, by producing a justification (itself an assumption) for a member of
its putlist. As a resulc, at least one of the two arguments fails (or has a dif-
ferent conclusion), and consistency is restored.

The key point here is that conflict between A and B causes the system to reach in-
gide each of the arguments. Conflict resolution is a process of reasoning about
knowledge: what are the weakest links in each line of reasoning? where would
revision accomplish the most?

It will be worthwhile to illustrate this process by a modification of our exampla.
Imagine (somewhat fancifully) that we are less sure about reported cbservations of
large shadows than asbout small omes, due to possible large-scale non-unifermities

in the reflectance of the deck. Then we make the follewing changes toe the initilal
state of belief: :

Statement # Statement State Support List
IN ouT In Chat
9 At sun angle £y, object X 11,12

is uniformly bright, casts
& shadow larger than ohject

11 AT sun angle EE. obhject is X
uniformly bright, appesrs to
cast a shadow larger than
object
12 Surface of deck has wuniform X 13
reflectance
13 Surface of deck has non- X Ho justification

uniform reflectance

We see that 9', unlike 9, iz not a premise; it is inferred from 11 and 12--i.e.,
the gppearsnce that the shadow is large (11) plus the gssumption, in effect, that
thiz appearance iz not deceiving (12). Statement 12 iz & "default assumption:"
its acceptance depends only on the absence of evidence te the contrary. At the
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start of reasoning, 12 is declared IN, since statement 13, that the deck has non-
vAiform reflectance, has no justification. As a result, all inferences based on
the two images proceed exactly as described above.

Now suppose we receive some new, independent evidence., For example, an intel-
ligence report from Agent ¥, who is inside the country which owns the ship, says
that plans were made to place a device Z on the deck at the precise spot in
question--and we know that such a device would appear as &4 flat horizontal object
supported above the deck. This evidence, if reliable, supports statement 3, and
is inconsistent with the other hypotheses. We now add nodes corresponding to this
a?idanca,.and add a mew justification for statement 3 to represent its potemtial

impaect;
Statement % Statement State Support List a Support List b
In ourT In Qut In Out
3 Flft horizontal 6.8 1.2,4 14 1,2,&
:.E:r:tdanh “’l“”-&" gk
14 Device £ is present X 15,18
15 Device Z is reported X
present by Agent ¥
16 Agent Y is relisble X 17
17 Agent ¥ is not X He juscification

reliable

Ve also add 14 to the guglists of statements 1, 2, and &, A premise, statement
15, describes our new evidence. But, here too, we have explicitly represented an
assumption (16) which is required to make the evidence useful. Since the
reliability of Agent ¥ (16) is a default assumption, the system Infers that device
Z is in fact present as reported (14 IW). (14 IN) leads to (3" IN, 1,24 OQUT),
which is a contradiction of our previous conclusion.

Dependency-directed backtracking will resolve the conflict by revising one of the
assumptions that produced it. It may assume that the surface of the deck must,
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after all, have mon-uniform reflectance, (12 OUT, 13 IN), hence, 3' iz te be
accepted. Or it may assume that Agent ¥ must be unreliable, (16 OUT, 17 IHN),
hence, & iz to be accepted. A= moted sbove, & clear imadequacy of the system
described by Doyle (197%) is the lack of some measure of the firmness of an as-
sunption upon which to base this choice. Honetheless; the important peint is that
confliet of evidence leads to inferences regarding the aceeptability of beliefs
{12 and 16) which are internal to each of the conflicting arguments,

Consider, on the other hand, how an uncertainty caleulus such as Shafer’'s would
handle this problem. We examined the issue of conmflict resclution, im the context
of belief function theory, in some detail im Section 2.5.6. There we found that,
depending on the dagree of conflict, and on the existence and degree of discoumt-
ing for the two arguments, we could have: (a) an indeterminate result (if there
is no non-empty intersection between possible meanings of the two arguments), (b)
exclusive support for hypotheses in the intersection of meanings (if there is no
discounting), or (¢} strong support for each of the two conflicting conclusions),
Home of these alterpatives examines the sources of the conflict and zeeks insights
regarding its causes, Adjustments of dizcount rates in the light of conflict are
likely, mereover, to be invalid in the absence of some exploration of reaszons for
the adjustment.

0f course, a belief function analysis cgn examine the contents of two arguments.
To do so, however, it must encrmously complicate the frame T (see Section 2.5.5).
In other words, the original set of hypotheses (1,2 3 4} must be replaced by a
much larger set which also includes the assumptions: (1,2,3,4)1 x {12,13) %
{16,17}. Then evidential support must be assessed, for ecach of the two conflict-
ing arguments, on the subsets of this expanded set. The price we pay for this
strategy, however, is enormous: in quantity of inputs and computatiomal
tractablility, but alse in the naturalness of Inputs., It is not likely te be wvery
clear, for example, what bearing our evidence for or against the reliability of
Agent Y would have on our beliefs regaerding the reflectance of the deck; and
similarly, vice versa. The reasom, of course, is that the link is highly indirect
and is discovered only by means of the conflict in conclusions which the two sets

of beliefs engender. The truth maintenance system represents this comnectionm im &

2=Th



quite natursal way.

Honetheleszs, non-monotonic systems as presently constituted are inadequate in a
number of ways., Froblems are chiefly attributable to their gxsctness, on two
levels. For example, non-monotonic systems provide a way of reasening with incom-
plete information, i.e., by adopting assumptions, tracing thelr conseguences, and
revising them if they lead to an inconsistency. But they provide no measure of
the degree of incompleteness in the support for a belief, and no concept of degree
of confliet. As we have already noted, a measure of this sort seems essential in
selecting among alternative possible revisions.

On a second level, the statements whose truth or falsity is adjudicated are them-
selves exact. However, there ig no reason why similar principles of qualitatiwve
reasoning might not be applied to probabilistic or imprecise constraints and data.
The need for such a "meta-reasoning® capability is the chief conclusion of our
comments in earlier discussions of Bayesian and Shaferian caleculi., In our view,
non-monotonic logic may have its most conmvincinmg application at & higher lewel, in
controlling the application of an uncertainty caleulus itself. Assumptions of
more than one sort--about the quality of uncertainty assessments, about the inde-
pendence of evidential arguments, and about the validity of steps in an argument--
are inescapable in the applicatlion of such a caleulus, Most of these assumptions
are not easily represented in the language of the calculus ftself. Hence, non-
monotonie reasoning may be the appropriate tool for keeping track of assumptions
&nd revising them when they lead to anomalous results. As such, it may be the hey
to a truly "intelligent"™ or flexible application of those models. It is to this
possibility that we turm in Section 3.0.

2.7.8 Summary. Non-momotonlc logle is a computationally efficient method for
reasoning with incomplete information, i.e., for adopting assumptions and revising
them in the face of conflicting data. Statements are associated met with numeri-
cal indices of uncertainty, as in the other theories we have examined, but with
reasons. Certain statements {called assumptions) may be accepted In the absense
of positive suppert, as long as certain other beliefs have net been disproven.

Hen-monetonic legle provides a natural method for revising beliefs within indepen-
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dent lines of reasoning when they lead ro conflicting conclusion=. Unfortunately,
validicy is diminished by the arbitrariness of its procedures for selecting among
alternative possible belief revisions, We argue that the most useful application
of non-monotonic reasoning may be as a control process for the application of an

uncertainty calculus.
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3.0 THE HOM-MONOTONIC FROBABILIST: AN AFFLICATION OF BELLEF FUNCTIONS,
FUZZY LOGIC, ARD KON-MONOTONIC REASONIRG

3.1 Contrast Between Probabilistic and Qualitative Approaches to Confliet
Resolution

The attempt to introduce non-"ad hoc" probabilistic reasoning into expert systems
has led to a wvariety of dilemmas. Probabilistic analysis, as practiced by
statisticisna, typilcally requires extensive judgments regarding interdependencies
among hypotheses and data, and regarding the appropriateness of various alterna-
tive models. The application of such models to real problems is typically an
iterative -process, in which the plausibilicy of the results confirms or discon-
firms the wvalidity of judgments and assumptions made in building the model. All
these features seem to conflict with the modularity of knowledge representations
assoelsted with expert systems, In a recent paper, for example, Glenn Shafer
(1984a) has concluded pessimistically

...that the expert systems we see using probability in the near
future are not likely to hawve the flexibility and judgmental capa-
eity that we associate with genuine intelligence. Instead, these
systems will comtinue te leave the work of genuine intelligence

to their designers and uwsers. Thelr designers will have to de-
gign the forms of probability argument for the particular prob-
lem, and their ugers will have to supply the probability judgments,

The present work addresses this problem in the comtext of confliet resolution.
Frobabilistic and qualitative approaches to reasoning offer quite different con-
ceptions of what it is for two lines of argument, or two pileces of evidence, to
conflict. From the Bayesian point of view, for example, divergence can be
regarded as stochastic; it is comparable to the chance occurrence of errors, or
"noise,” in a processz of measurement. Extrems divergence of results is unlikely,
but is in faet expected to occur a small percentage of the time. From the qualite-
tive point of wiew, however, divergence is a result of faulty knowledpe; that is,
conflicting results are taken as evidence that one or more assumptions or forme of
argument that led to the conflict are mistaken.



YK

These two conceptlons of comflict lead to quite different racionmales for the
process of combining evidence or lines of reasoning. From the Bavesian point of
view, the process is akin to that in which independent errors in repeated measure-
ments tend to cancel one another out. From the gualitative point of view, the ob-
ject is to improve the owverall truth of a system of beliefs--te explicitly iden-
tify potentially erroneous steps in the argument and to change them.

This contrast with qualitative approaches does not apply merely to Bayesian
theory. In Shafer's probabilistiec conception, for example, the divergemce of two
arguments iz simply attributed tﬂﬂﬁ%&ﬂggnt that they are based on different, inde-
pendent bodies of evidence. The ﬁi:q:t of combining evidence is, in asseucf:fn
tally support for the alternatives conclusions, not & true "reconciliation®.

Shortcomings in both probabilistic and qualitative points of view are, in part,
complementary. An objection te both Bayesian and Shaferian svstems of
probabilicy, for example, is that they take no formal account of the iterative
process--of tentatively adopting a model and a set of assessments, testing its
implications, and revising--which is essential to the efficient and valid applica-
tion of such theories. Moreover, they provide mo coherent criterion for the
provisional "acceptance"” of & conclusionm as true. Use of conflict as a stimulus
for the restructuring of probability meodels or revisiom of probabilistic inputs
may lead to such a eriterion. On the other hand, gqualitative sysztems of
reasoning, such as Doyle and McDermott's nom-monotonic logic, do not accommodate
degrees of belief or degrees of conflict, and suffer from an arbitrariness in the
procese of selecting beliefs for revision in the face of a comnflict. Numerical
indices of uncertainty may be of use both for communication with users and for
purposes of control in reasoning.

3.2 Functiomal Outline of s Froposed System: Ihe Nop-Momotonic Probabilist

These considerations suggest the design of a system that regards econfliet as
jointly knowledge-based and stochastic. It would reduce conflict by a process of
non-menotonic reasoning prier to statistical aggregation by probabilistic rules;

i.e., non-monotonic processes would operate on and medify the assumptions and
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judgments embodied inm a rule-based belief function model.

At the same time,

however, the non-monotonic processes would be guided by measures of completeness

of support provided by the belief function caleculus.

and probabilistic--thus in a sense embeds the other.

Each model - -mon-monetonic

The justification for such a system, and the motivation behind lts basic
functions, have been argued inm Sectiom 2.0. Our purpose in this subsection is to

pull these threads together inm & high-level conceptual outline of a Non-Henontonic
Probabilist (WMP)} System. Further details are given in Sectiom 3.3, which dis-

cusses the role of the system in human-computer interaction, snd in Sectiom 3.4,

which diaéux:es furzry measures required to implement the system's functions. Ap-

pendix A shows how certain features of this system could be applied to illustra-

tive probless of lmapge underscanding,

3.2.1 Rule-based belief function podule. The core of the probabilistic model is
a set of production rules. The sction components of the rules assipn Shaferian

SUpport measures to subsets of hypotheses. For example,

E.1 If a region has texture of type =,

mi}

then

: Begion
: Regiom
: Region
{5.1,5.

[ e =
o k=

BE.2 If an intelligence agent reports
presence of a building in & regionm,

is & field

is & forest
iz a bullding
2,5.3}1

.98
.01

.01

then

: Begion
: Begion
.3: Begion
: [E.1,8.

W Lo ta ba
E= L ke
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is a field

is & forest
iz & building
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Current knowledge about the problem domain is maintained in a database, which in-
cludes statements sbout subsets of hypotheses, such as 5.1-5.4 above, together
with their current degrees of belief. When the antecedent of a rule appears in
the datsabase, the rule iz triggeved, and the support it essigns is combined by
Dempster's rule with the existing support for the relevant subsets of hypotheses,
Suppert is attenuated if the antecedent of a rule i= only partially established,

In this medel, inference may be either forward-chaining or backward-chaining; an
image understanding svstem could involve either or both. Hete, however, that a
simple forward-chaining model could capture many critical features of both
"bottom-up” and "top-down" reasoning. In bottom-up processing, degrees of belief
for labels of a region are assigned when imege data from that region trigger a
rule, such as R.1. above. Shaferian template matching, described in Section
&.3.5., falls under this heading. In top-down processing, om the other hand,
rules regarding the assigmment of labels to a region may be triggered by ex-
traneous knowledge, as in R.2. Section 4.2.6, describes a different use of ex-
traneous knowledge invelving relations amenmg regions., In that example, the class-
ification of certain regions as roads reduces the support for classifying any dis-
tant region as a building.

These examples strongly suggest an iterative, forward-chaining processing strategy
for image understanding. First, belief functioms are computed for all regioms
based on (bottom-up) image dats and non-relational extraneous knowledge. Then the
belief functions established in this way are used to trigger a second set of rules
involving relational extraneous knowledge.

Where forward-chaining inference proves inadequate iz in the use of the rule-base,
together with partisl results, te prioritize the need for new information. This
will be an essential aspect of the non-monotonic processes to be described. We
believe, therefore, that an effective image-understanding system will utilize
baclward, as well as forward-chaining inference.

The use of belief functions (rather than, say, Bayesian probabilities) provides
the advantages discussed in Section 2.5 above. There is a natural representation
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of incompleteness of evidence as the support assipgned to the universal set (5.4 in
the above example); this will play a eritical rele in the control of non-monotonic
reasoning. And support need not be assigned arbitrarily when approprlate evidence
is missing. In image analyses, as in medical diagnosis (Gordon and Shortliffe,
1984}, we might expect a hierarchical structure of support for hypotheses: e.g.,
one bit of evidence establishes that a region is & building; a second bit estab-
lishes the kind of building it is; ete. Belief functions are a highly natural
tool for capturing such a structure. As a final note, we remark that specislized
belief function models of this sert may be required te ensure computatiomal

femsibility (Seectien 2.5.3 above).

3.2.2. Hen-monotenic reasoning as ap embeddipg coptext. In the NMF system, both
rules and statements are gssusptions, whose acceptance of use depends on- the

failure to disprove certainm other beliefs (ef., Section 2.7 above). Those other
beliefs are the regsons for the rule or the statement. Such beliefs include:

(] Model characteristics (e.g., linearicy, normality, consonance, etc.)
used in geperating the support measures assoclated with a rule,

L2 the representativeness of frequency samples or expert experiences used
-y in generating such support Deasures,

3 the independence or non-independence of different ivems of evidence,

and
| 04 the cccurrence or mon-cccurrence of facts or events which could sffect
R | belief in & statement by triggering some rule, but for which there is
x {as vet) no direct evidence,

xh[?j frpmiieer e & "f“”zﬁ 4 3f'71w:4¢fﬁ;-:f
(For diseussion of these factors in the belief funcrion context, see Section
3.2.5.10 above.) Beliefs of types (1), (2), and (3) are among cthe suppositions
required for application of a ryle. Beliefs of type (4) are presupposed by the
current assigmnment of degrees of belief to declarative statementg. In additionm,
of course, belief in & statement depends on the validity of the rules applied in
deriving it, hence, indirectly, on suppositions of types (1), (2), and (3).

Megesureg of credibility for both rules and statements are mathematically derived
from the degree of their dependence on suppesitions of this type. For example,
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the "discount rate"” for & rule's support function (im R.1 above, this is the sup-
pert for the universsl set, m{(5.1, 5.2, 5.3}) = m{5.4) = .01} will depend on the
nature of the suppositions in categories (1), (2), and (3).. This reflects the
possibilitcy that the evidence summarized in the rule is in fact irrelevant,; e.g.,
because the set of photes used as a training set was from & different geographical

or cultursl area,

The credibility of a statement, in turn, will be a joint function of lts discount
rate (computed by Dempster's rule from the support functions applied In deriwing
it} and the suppositions of type (4). Thus, if E.1l and E.2 are both triggered
with regard to a particular region, the resulting support functiom by Dempster's
tule is:

.1, R.2 {F
E.1 Begion iz a field L4a
5.2 Reglon is a forest LS
5.3 Beglon is a building s
2.4 (5.2, 8.2, 8.3] 05

The discount rate, m{5.4), is reduced to .005. However, the credibility of the
support assignments to 5.1, 5.2, and 5.3 also depends on the existence or mon-

existence of other rules im the rule base (e.g., the rules concerning distance

from roads) which, if they were to be triggered, would significantly change the
support measures,

& state of conflict exists when & significant degree of belief is assigned by

statements in the data base both to a subset of hypotheses and te its complement.

Conflict triggers a process of dependency-directed backtracking, in which one or
" EF \leman of the suppositions listed above may be revised: e.g., the structure of a
i?h model may be altered; the presumed relevance of frequency data or preobabilistic

e

eXpert assessments to the current problem may be adjusted; the problem may be
reframed so as to merge dependent arguments; or the occurrence of relevant facts
or events upon which beliefs depend may be hypothesized. Adaptive learning in

-y such a system could, therefore, invelve revisiom of belief nmot only about the oc-
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currence of external facts or events, but about the walidity of inferential proce-

dures in its own rule base.

In our example, my 1, g.2(') =ppears to present a conflict; thus, the system will
explore potentisl revisions in R.1 and in R.2., In doing so, it will try to reject
suppositions upon which R.1 and R.2 depend. For example, (a) it may question the
relevance of the training set used to derxive R.1; (b} it may question the com-
petence or trustworthiness of the agent in R.2; (e} it may try "reframing™ the
problem, e.g., the region may be partitioned into smaller regions or merged with
other niighhnring regions. (The latter might occur by adjustment of parameters in
a low-level segmentation procedure.) Finally, (d) the svstem might look for
evidence supporting (as yet unconfirmed) events or facts that would significantly
change the assigned support function (e.g., discovery that the region is distanmt

from & road would reduce support for 5.3).

3.2.3 Belief functions as & controlling context for non-monotonic reasoming.

How will the system choose among these alternative tactics for conflict
resolution? More fundamentally, since confliet within a belief function is net
typically an all-or-nething matter (like loglcal contradiction), how will the sys-
tem determine when conflict exists? In the Non-Monotonic Probabilist, the contrel
of dependency-directed backtracking is determined (a) by a domain-specific defini-
tion of conflict for belief functioms, and (b} by the relative standing, in terms
of credibility, of statements, rules, snd the beliefs upon which they depend. The

actual mechanisms are implemented using a set of fuzzy measures described below in
Section 3.4,

Conflict is domain-specific (or even problem-specific) in several senses: (1) The
type of conflict which the system is designed to address can be specified
explicitly, and easily modified. For example, conflict may be regarded as sig-
nificant support for a hypothesis and its complement (as above); but it might also
include, for example, the assignment of strong support te a single hypothesis

based on two support functions neither of which assigns significant suppert to ?L
that hypothesis. (This case is illustrated in Sectiom 2.5.11) (2) Conflict i= &



matter of degree; and the "significance™ of any given degree of conflict is repre-
sented by a single parameter which is easily modified. ({3) Conflict resolution is
not simply "triggered" when the significance of conflict exceeds some threshold.
Conflict resolution is subject to a graded control process, in which the sig-
nificance or seriousness of the conflict is continually compared with the
credibility of the beliefs contributing to the confliet. Conflict resclution
stops when the seriousness of the conflict drops below the degree of
"revisability® of the relevant supposictions. In effect, then, any dlagnosis of
"gipnificant conflict™ can be overruled by strong independent plausibility of the
contributing beliefs. The result is a svstem of beliefs which, in an intuitive
sense, maximizes global plausibility.

The selection of beliefs for revisiom in the face of conflict is & non-random
process. It is guided by measures which capture the extent to which critieal
evidence for a particular belief iz at present incomplete or unrelisble. Indepen-
dent confirmation for hypothesized revisions is then sought either from image
dats, the store of extranecus knowledge, or the user,

¥hen a conflict occurs, the syvstem locates chains of reasoning that (a) con-
tribuced strongly to the conflict and (b) have weak, eor relatively unsupported,
starting points. In our sxample, these are a variety of candidates. R.1 is a
strong contributer to the conflict, since its discount rate is quite low. The
system would search among the reasons for R.1-- e.g., & list of purported
gimilarities and dissimilarities between the current image and the training set --
for those which have the least evidential basis, For example, in constructing che
support function of R.1, we may have supposed (without really knowing for sure)
that weapons facility construction procedures in the target region resemble those
in our country. If this belief were to be revised, the newly posited dis-
similarity would inflate the discount rate for R.1's support function, and the
conflict with B.2 would be decreased, Alternative chains of reasoning invelwing
BE.1 and K.2 lead to other possible revisions, e.g., in the reliability of the
agent referred te by R.2, or in the segmentation of the relevant region. The
choice of & revision would depend on a measure that reflects the potential benefit
in terms of confliet reductionm, and the potential cost, in terms of evidential
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restraints on possible revisions, Whatever revision is chosen, additional infor-
mation regarding the revision may then be sought: by more extended or more sensi-
tive proecessing of the image, by a mere inclusive search for relevant extranecus
knowledge, or by directly guerying the user of the system.

A different sort of example involwves the chain of reasoning that goes from the
statement 5.3 (that the region is a building) to its reasons. The validicy of the
support function assigned to 5.3 {mR.I,R-E{'JJ presupposes that other potentially
relevant rules have pnot been triggered. In particular, if the relevant regionm
were found to be distant from all reoads, support for 5.3 would decline; yet it may
be that nﬁ data has as yet been obtalned regarding the presence pr sbsence of
roads in neighboring regions. One avenue for belief revision, then, is to posit
the absence of roads in the vicinity. Through & backwards chaining inference,

* this posit could direct further processing of the Image in the relevant regions,
in & search for ewvidence of roads,

A5 in "standard” non-monotonic reasoning, revisions in belief are retained by the
system until new comflicts involving those beliefs are discovered. At that peoint,
the revision will be undone--unless additional information has in the meantime
provided an independent basis for its retention.

3.3 The Hon-Monotonle Probabilist as an Intersctive Svstem

In many applications, an image-understanding system will be required to function
interactively with & human user. The appropriate allocation of effort between the
enalyst and the computer can, however, vary drastically as a function of such
variasbles as time pressure, workleoad, the importance of the task, and the need for
"Jjudgment® not incorporated in the automated system.

Under conditions of low time stress and with relatively high-level, unstructured
tasks, the appropriate alleocation mode might imvelve predominant human comtrol of
the problem-seolving process., The computer's role (as explored in Cohen et al.,
1982) might be to monitor the user's behavior and to prompt when the user's
tions are likely (in the computer's opinion) to be significantly subeptimal. The
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user would determine the degree of suboptimality that justifies a prompt.

By contrast, under high time stress and workload or im relatively "mechanical®,
structured tasks, the appropriate azllocation mode might inwvelve a predominant role
for the computer, In this case [(explored in Chinnis, Cohen, and Bresnick, 1934}
the computer might moniter Its own problem-solving activity and prompt the human
when copditions appear that suggest value in a potential human contribution.

An important feature of the Won-Monotonic Probabilistic system is that it can
provide, if desired, & framework for collaborative problem solving between the
user and the system in either of these two modes.

The system described in Sectiom 3.2 already contains an implicit "executive" func-
cien for human-computer task allocationm under conditions of high workleoad. Con-
trol may be shared between user and computer in the following ways: (a) Users
may specify their own definition of the type and degree of conflict among items of
evidence that will trigger belief revision. (b) Based on this user-defined
cbjective, and on an asgessment of limitations and conflict im its own knowledge,
the system will direct user attention to areas where his contribution can be most
valuable, Belliefs which are subject to revision are labeled according to whether
oY not users are a poteéntial source of information. When an appropriately labeled
belief is selected for possible revision by dependency-directed backtracking, the
user will, if he desires, be queried. (c) Users may then adjust support assess-
ments and add and delete support list elements, to reflect their on-the-spot
knowledge,

The advantages of this framework in a high workload and highly uncertain task en-
viromnment are considersble: (i) Users will pof be bothered by the need to provide
inputs when default assumptions sre adequate; (ii)} when anomalies do occur, the
system does take advantage of potential user contributiens; (iii) the system
teduces user workload by generating promising optiens (i.e., petentlal revisions
which would restore consistency) for consideration by the user; (iv) imprecise
linguistic inputs could be accepted; and (v) ultimate control over the objectives

of the reassoning process, its outcome, and his own degree of participation is left
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in the hands of the user.

For high-lewvel tasks, where the human has & predominant role, some fairly
straightforward elaborations of the basic conflict resolution mechanism are
required. The computer could develop hypotheses regarding the user's beliefs and
assumptions and their degree of suboptimality by observing the user's performance
(e.g., manual labeling of image regions) and working the problem itself in
parellel. Discrepancies between user and computer solutions would be treated as
conflicts, triggering a process of (hypothetical) belief revisiom. The computer
would identify the least disruptive changes in its owm beliefs required to make
them consistent with the human's conclusions. The resulting set of belliefs is
attributed, heuristically, to the human. If these beliefs exceed a certain
criterion of implausibility (according to the computer), the user would be
prompted. Moreover, the system would display the assumptions which it has in-
ferred to be involved im the user's solution, and the reasons for their im-
plausibility according to the computer model. The user may then weigh the
computer's arguments against his own. The user himself will control the fregquency
with which he receives such advice, by determining the ecriterion of implausibility
required to trigger a prompt.

3.4 Fuzzy Measures

Fuzzy variables have a variety of potential roles in this syatem:

L in the description of facts or events {(e.g., "rough" or "smooth®
textures);

- in the assessment of numericel measures of support (e.g., "about
L30%); and

. in the system's internal processes of reasoning.

In this section, we focus on the third of these roles, briefly outlining a set of
(tentative) measures corresponding to the concepts described in Section 3.2.

In a certain sense (a% discussed in Sectiom 2.6 above), these measures are ad hog.
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However, they provide an extremely flexible tocl for duplicating, in a continuous
rather than discrete fashion, some of the concepts used in "standard” non-
monotonic reasoning. They enable us to avoeid an elaborate calculus, like second-
order probebilities, which would seem gratuitous, and indeed equally ad hoc, for
this purposze. They provice a graded process of high-level contrel through a
reasonably plausible and simple set of definitions.

2.4.1 Cenfliet. A simple measure of degree of conflict in a belief function is
the folleowing, Let A be a subset of hypotheses and A its complement.
AV IF g = (&, X}, then

S e D Ueonflice(@) = 2 min[Bel(a),Bel(R)].
5 '-,:‘1 > :
W;%;ﬂ. This can be justified in two ways. From the fuzzy logic point-of-view, we might
v regard it as the membership functionm for the intersection of belief in A and
belief in A, i.e., a contradiction. Multiplication by two normalizes the measure,

50 that maximum ucﬂnflint{q}-l iz achieved when Bel(A) = Eel{E] = 5. Secondly,
note that is it equivalent to the following expression:

Bel(A)-Bel(h _— -
"L. ?i 1 - I5:1:a§+n:1{ ;I [Bel{a)+Belih)} = Eﬂtfgzg

when we assume, without loss of generality, that Eal{ﬁjaﬂelfzb- This expression

intuitively captures the notion of conflict in a belief fumetion; the first
bracketed expression ls the relative similaricy of the degrees of belief in A& and
4; the larger this is, the greater the conflict. The second bracketed expression
is the total committed belief; te the extent that the belief functien is
"discounted” by assigning suppert to the universal set {E;E], we regatd the con-

{}f;f;fflict as reduced, In short, the na:imumﬁﬂeltﬂ!’dnasn't matter since increasing it
(with Bel{A) constant) has two opposing effeccs: it inecreases the difference be-
tween Bel{A) and Bel(A), but also increases the total committed belief.

Conflict resolution iz prompted, however, by "significant" conflict, and the



degree of significance required may be a varisble function of the problem domain.
& simple, though somewhat gd hoc. way te accomplish this {s te define

Meignif. conflict'® = Veonfliee' (W

where ¥ 1z a power to whichl-lmnﬂiﬂf_ﬂ_) ie raized, Increasing?y has the effect
of requiring higher degrees of confliet to achievel "significance". ! IL;"
L}#“qﬂﬁ‘ng ﬁﬁg‘iﬂng i
_F-3~ﬁ-2 Support lists. Each rule and each statement is associated with & set of Fk“hj
h}ﬁ? Ieasons, in the form of a suppert list. However, in place of a discrete class-
ification (inlist ws. putlist) we substitute & "fuzzy membership function," i.e.,
a continuum from in to gut. MHoreover, strictly speaking, it is the current sup-
pert gesigoment te a statement, rather than the statement itself, which has
reasons or which serves as a reason. We will dé;LtE [:j support assignment to X o
statement A by underlining, A. -W*’G"I' i

Location of a statement 5 om the support list continuum for a second atatinﬂntF:r (EE
a rule R depends on only two. things: (a) the presence of 5§ on the list of pos-

sible reasons for A or R, and (b)) the amount of suppert for the universal =et

(5,5}. In particular, where $ is a possible reason for A,

Lgue-4 8 ~ (8.5

(2a) & >
'Liﬂ_&f.f_'} = 1l-m{5,8) = Bel{5)+Bel(5}

where in and out hereafter refer to the iplist and gytlist membership fumctions
regpectively {(not to the statement 5's being accepted or belisved as IN or OUT).
Correspondingly, when a rule R is a possible reason for A,

Hoyp-a(R) = mp(A.A)

(2Zb) -
i h.gm} = L-mp(A,A)

where ﬁR{'} is the support function assigned by R,
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These measures capture a very simple intuition. They place thﬁﬂrtn!una for A

" R) in an order corresponding to ¢ E:irtlitbility or completeness of tuidtntzuunﬂar-

Iving iﬁgh reason. To the extent that confidence in A or use of R depends upon
reasons with high Vg they rely on unproven (but not disproven) suppositions.
{We argus that this iz inevitable in any probabilistic amalysis.)

What determines the content of the list of possible reasons? For a statement A,
it contains (a) the rules in the system which have a support assignment for A In
the consequent, and (b)) the statements which occcur in the antecedents of those
rules., The possible reasons for a rule are less well-defined. They may include a
list of potential similarities (or absences of potential dissimilarities) between
the target application of the svstem and the exemplars upon which it was trained.
They may alse include specifications ﬁfqmuQﬁ} assumptions used to generate suppert
assignments. Finally, they include u&aa:tiquﬁnf independence of the evidence
summarized by the rule from evidence utilized in all other rules of the Bystem.

Equation (2) may be elaborated in two respects, First, it might be desirable
(though a bit ad hoe) te fuzzify the membership of a statement 5 in the list of
possible reasons, {.e., 5 may only "resemble" some member of that list 5+, In
that case,

Ugut-gtE) = min[sup(SN5+),m{5,5)]

(ji) L uin_h{gj = min[sup({55+*),1-=m(5,5)]

{Za")

where sup(85*) = Euﬁ{usfu]ﬁﬂ;:{u}}‘ with & referring to min. The latter is a
u
measure of the intersectiom of two fuzzy sets 5 and 5%; the outer min in (2')

reflects the conjunctive requirement for “: E'ﬁ{l}'

A second elaboration of (2) %ﬁwﬁwﬁ Anvelves the observa-

tions (a) that a statement 5 can have no impact, as & reason, on ancther statement
A unless there is a rule linking them (with 8§ in the antecedent and a support as-
sigmment for A in the comseguent), and (b) that a rule K can have no impact on &
witheut the (at least partial) satisfaction of ite antecedent by a statement.
Thus, we must take members of the support list for a statement 4 to be pairs of

=14



statements and rules {ii.Ri}, rather than statemente and rules separately. Ignor-
ing the complications of (2'), we get:

Moue.a(8:R) = mE[M_ e o (8) Moye o (R}]

{2") - min|mlf5.-§}4mﬂl:.hj}]

um-ﬁiifﬂ} = 1- Ugue-alS.R). ' &

3.4.3 Assupptioneg. A statement or & rule is &n assumption to the degree that its
acceptance or use depends on what is possible, rather than on what is supperted by
evidence. The fnllnuing iz a simple messure of that concept:

E— Mgut-a L& R)
Ley T 7

u usu.nptinn{ﬁ':' - n

L
T
Il
_Hhtt.r—n-iz__l;g: total number of statement- __'_I:E_..pﬂ'ira in the support list for A.

.‘M simply the (fuzzy) proportiom of A's reasoms which are gut, i.e., *

e -
.,

unsupported by evidence. (ﬁ'j‘ .
'L{ — ———
3.4.4. Foundations. One requirement of dependency-directed backtracking is the

sgbility to find statements or rules which have an Impact, as reagons, on a glven
statement or rule. A statement-rule pair (5.R)} in fact has an impact on the sup-
poTt assigrment to a statement A to the extent that 5§ or its complement is
believed (thus, triggering the corresponding rule) and to the extent that R as-
signs 8 non-discounted support functiom. Other pairs of statements and rules,
however, may have an indireet effect on A by having an impact om § or R. All

these pairs are, to a degree, part of the "foundarions™ of A. We measure this as
follows:

{El-:l ufwnd_-tiﬂns,bién ar:I o 121&[‘[[ [um_ii_l{ﬁj'_rﬂ-} ]]l
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where 3, = A. In effect, the min funccion says that the chain of impact linking
(8,.EL) to A ¥is {Sn_l.ﬂh_lj...{sl.ﬂl}is only as strong as its weakest link,

To what extent iz a statement 5 by itself (or a rule B by iltszelf) parc of the
foundations of A7 Here, we get:

(3) ufnundatinns-&tin} = sﬂp[ufuundatinnﬂ-&{ﬁn'RJ]'

i.e., §."s impact is equal to the impact of the most effective chain te which it
belongs. Similarly,

Heoundations-a(®) = ’EP[ufuundatinnuaﬁ{E'Rj]'

3.4.% Suppositions. Suppositions are gssugptions with an impact. HMHore
precisely, the statements and rules which A reguires us to "suppose" are

(a) in the foundations of A4, and (b) assumptions in their own right. The degree
to which a statement § (or & rule R) ie a supposition of A is given by the
following:

(&) 1-'.5'|.1.1:+]L:|u:|-ELi1:f.u:nrl-gt':g::| B '1n[”fnundatinn3-&i§}'”assuwptinn{ﬁ}l'

3.4.6 Dependencv-directed backtrackins. There are a variety of wavs that these
measures, or other similar ones, might be used to direct backtracking and belief

revision. Here we give one, quite tentative, approach. Suppose that Q = {A;I]

hae a high degres of eonflict. The strategy is simply to select the maximal sup-
position for A as the "culprit" C, and then to "megate" C by revising the maximal
member of C's oyglist. MHore precisely, we select a rTule or statement C such that

mﬁ¥[l%uppasitinu-atc']] = ¥ supposition-alch-
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Then we select s statement-tule pair (5,.R) for revision such that

max [Voye-cl8 R7)] = Moy olE.R).
8", 8" out

paip
Finally, 8 or B may be revised, depending onm which has the least evidential
support, i.e., max|[m(5 5) ,-RI[E,-E-I-}] ;

3.4.7 Confliet as the contrel ever revislen., Heo revisionzs in faect take place un-
less the degree of conflict is serious enough to justify them. Thiz inwvelwves a
simple ¢uﬁpariaqn between the measure of significance of the conflict and a
measure of the "resistance" to revision for our best available candidate. Thus, Lf

Hgignif. confliect@ 2 ¥in cl8.R),

2 or K may be revised; otherwise, not,

1.5 Co 1

How does BMP relate in general to currently existing Al software teools? Tools for
building expert svstems now exist which provide for quantitative reasoning about
uncertainty {(e.g., EMYCIN). Other systems permit gqualitative reasoning about and
revigion of assumptions (e.g., DUCK). MMF is a superset of these capabilities.
Our description of it has dwelled on its capability of combining aspects of both:
i.e., qualitative reasoning about a guantitative model, and quantitative measures
to guide that reasoning. But note that each extreme can be achieved in NHMF itself
as a special case. If no assumptions are associated with rules or statements, we
get a pure system for probabilistic imference (like EMYCIN or FROSFECTOR, wich a
Shaferian belief fumction caleulus). On the other hand, if all belief functions
were to allocate full support between some single hypothesis and the universal
&L, we get a pure non-momotonic system (like DUCE).

The problems with these extremes, &s we pointed out in Sectiom 3.1, are
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complementary. Pure probabilistic systems never learn anything new about their

probabilistic beliefs and assumptions from the experience of applying them, Pure
noen-monotonic systems do learm, but they have an arbiltrariness and en all-or-none
quality about the new beliefs they acquire. Our argument, quite simply, is that

both capabilities sre needed, and that satisfactory systems will, in general,
require their combinatiomn,
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4.0 SUMHARY AND FROSPECTS
4.1 The Requirement for a Hop-Mopotonic Probabilist

The development of efficient and accurate devices for automated feature extrac.
tion from photographic images has been hampered by a variety of methedslogical
obstacles. Utilization of gemeral lmowledge--about physics, geomeCry,
geography, and culture--is eritical in the face of noisy, ambiguous, and incom-
plete data. But the relevant expert system technologies are often difficult te
integrate with bottom-up procedures that utilize very different modes of repre-
sentation and reasoning. More significantly, beth expert system and image
processing technologies have depended on ad hoe devices for inference and for

handling uncertainty, with consequences that are Iin many cases seriously
suboptimal.

In imagery, and in virtually all problem domains where expert system techmology
might be introduced, there is & need for explicit and walid guantitative model-
ing of uncertainty; at the same time, there is a need for a metastructure of
qualitative reasoning in which the assumptions utilized in the probability model
are reassessed and revised in the course of the argument. These are the dual
requirements addressed by the Hon-Momotonic Probebilist (HMP) described im Sec-

tion 3.0 abowve.

NMF will be a gemeral-purpeose AI teol, like PROLOG, LOGLISP, OPS5, DUCK, or
EMYCIN., Currently existing Al svstem-building tools either neglect uncertainty
alvogether (PROLOG, LOGLISF, OP553), utilize assumptions but provide no explicit
probabilistic measures ([AICK), or incorporate gd hoc caleuli with no provision
for qualitative reasoning about their application (EMYCIF and related systems).
FMF will be designed to fill this weoid. It will serve as an expert system
building teel, which accommodates uncertainty both at the level of probabilistie
reasoning and at the level of qualitative testing and revising of assumptions,

At the same time, NMP's design can be tailored so that it iz optimal for image
understanding applications. HNMF could be capable of embedding within powerful

image processing configurations, te produce systems that perform specialized
image understanding tasks,
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4.2 Hain Results

Sections 2.0 and 3.0 have established the regquirement for a system such as HMP
and developed its techmical foundations. Here we will simply summarize the main
arguments and describe the basic technical concepts that enter inte the HHP
high-level design.

The HMP system (described in section 3.0) blends technology from Shaferian
belief functions, non-monctonic reasoning, and fuzzy logic, as well as more
traditional features of expert system technology. Shaferian belief functions
{Section 2.5) have been chosen as the basic measure of uncertainty, rather than
Bayesian probabilities, for several reasons: they do not require definiteness
of inputs beyond what the evidence suggests; they provide an axplinit Lepre-
sentation of the quality of an inferemtial argument; and they permit *"modular®
probabilistic analyses based on only subsets of the evidence., Shafer‘s systen
permits a variety of useful speclalized models for representing evidence. One
of thesze speclal cases is (very nearly) Bayesian probability cheory icself;
Shaferian belief functions can represent chance as Bayvesian probabilities do,

but permit a simple assessment of the gquality or reliability of those probabil-
ities as well.

Unfortunately, Bayesian theory is not exactly captured within Shafer's system;
the latter does not parmit recalibration of the relisbility of an information
source in the light of what that source says, or in the light of conflict or
corroboration by another source, (Bayesian theory does this only at the cost of
ensrmous complexity.) To ecorrect this flaw, we argued that belief functions--as
an inference mechanism within expert systems--should be supplemented by a
precess of qualitative reasoning. That process would keep track of assumptions
involved in & belief function model (e.g., concerning the reliability of am in-
formation source) and revise them when they lead to anomalies (e.g., conflict
with other highly regarded information sources).

The same conclusion was arrived at by consideratiom of two other features of
Shafer's system: the requirement that different bodies of evidence be indepen-
dent in order to be combined by Shaferian rules, and the lack of any simple
mechanism for assessing steps of reasoning within an independent inferential
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argument. Once again, the solution we propose is & process of qualitative
reasoning that tracks assumptions about the independence of two arguments or the
internal structure of a reasoning process, and revises them when they contriburte
to anomalous results.

In concrete applications, such as image processing, these are by no means idle
concerns. With noisy and incomplete data, no single form of analysls is free of
error; and each relies on different aspects of the data and/or makes different
analytical assumptions. Conflicting results, therefore, may be cbtained from
the application of sultiple cperators to a pixel array, or from combining ex-
traneous Iinformation amnd expectatioms with the cutcome of a bottom-up analysis.
In these cases, the appropriate course of action is to reexamine the factors un-
derlying our evaluation of reliability for the conflicting scurces. In
additien, their assumed independence might be questioned, for example, by revis-
ing the segmentation of the image. Alternatively, new analyses might be in-
itiated to confirm the presence of patterns for which there Is as vyet no
support, but which could account for the anomaly.

We argue that mo application of & probabilistic framework is complete in itself.
Whether Bayesian or Shaferian, assumptions of various types are always lurking
in the background. Conflict among diverse analyses is what forces them inte the
openn. To the extent that assumptions are explicitly tracked and reevalusated,
conflict 1s & prompt for inecreasing the walidity of our beliefs, rather than an
occasion for ignoring parc of the data or meaningless statistical compromise.

The Hon-Monotonle Probabilist implements these requirements by providing a su-
perstructure of non-monotonic reasoning around the application of a belief func-
tion model. Non-monotonic logic (Section 2.7) is a method of reasoning with in-
complete information, in which assumptions may be adopted and subsequently
revised when they lead te contradictery results, The traditional approach,
however, has been exact both in the stacements to which it applies and in its
own control mﬂchaﬁiﬂmx. Az a regult, it fails to capture the isportant intul-
tive notlion that support for hypotheses may be graded; snd the selection among
alternative equally consistent belief revisions is highly arbitrary. The WMF
system advances beyond this, by applying non-monotonic logic te the applicatienm
of an uncertainty calculus, and by utilizing measures derived from that calculus
to direct the process of belief revision itself.
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In the specification of measures suitable for the contrel of non-monotonic
reasoning in MMP, fuzzy leogic has been & valuable teol., It provides a precise
caleulus for vague or imprecise concepts (Sectionm 2.6). It thus makes possible
the redefinition, in continuous form, of concepts which occur discretely in
traditional non-monotonic systems. In NMP, for example, "conflict® is a matter
of degree, and so is the status of a statement or rule as an "assumption™. As &
result, FMF incorporates a graded control process for belief revision, im which
assumptions are subject to retractlion onmly so long as their resistence to revi-
sion is outweighed by the stremgth of the conflict,

An important additional feature of FHF is that it can provide a framework for
collaborative problem solving between a user and the system. In a high wvolume
image interpretation task, users will be free for other tasks as long as
automatic processing based on default assumptions is adequate. But when
anomalies appear, the user's potential contribution may be soclicited. The user

himself will control the degree of conflict that triggers a system prompt.

4.3 Hext Steps

Az noted above, FHF can be implemented ag a general-purpose tool for comstruct-
ing expert systems, and in addition, may be embedded it within an image-
processing enviromment. That enviromment might contain a currently existing
system that performs pixel-level operations such as filtering and smoothing, and
which provides a preliminary segmentation and labeling of the image., HNMF would
serve as a higher-level tool for combining bottom-up results with general
knowledge and intelligence information, and for resolving conflict. It would
influence the operations of the lower-level processor by directimg the resegmen-
tation of the image, the recalibration of knowledge sources, and/or the im-
plementation of a more sensitive search for specified patterms. And it would
solicit the imputs of a human snalyst when the degree and nature of the
conflict, as specified by the user himself, call for it.

& wvariety of technical issues need to be addressed in the course of implementing
HME ;
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» Refinement and verificationm of fuzzy measures and alpgorithme for
contrel of non-monotonic reascning.

™ Finsl design of baszic gystem architecture: e.g., the mix of forward-
chaining and backward chaining inference, control over seguences of
iterative processing, and possible use of a blackboard to represent
multiple levels of analysis.

. Specification of rules [or combining dependent items of evidence
within an independent inferential argument, based on Bavesian andfor
fuzzy logic principles.

. Development of input routines permitting fuzzy specification of lin-
guistic and numerical facts (e.g., "rough texture,® "about 30%
probability"). These may include fuzzy descriptions of interdepen-
dencies emong items of evidence and hypotheses (e.g., "A strongly

corrocborates B"), and of degrees of permissable conflict among lines
of reasoning.

» Design of outputs, consisting of displays of labels for image
regions, together with uncertalnty measures and explanstions where
Eppropriate,

Successful accomplishment of these goals would will yield a product of potential
importance te organizations involved in image analysis and image understanding
both in the Army and inside and outside of government. Hore generally, it would
advance the state-of-the-art of expert syvstem inferencing and provide a new,
highly effective tool to support expert system technology.






AFFENDIX A

A.0 APFLICATION OF ALTERNATIVE INFERENCE THEORIES
TO FROBLEMS OF IMAGE UNDERSTANDING

A.1 Intreduction

In this section we show how different Iinference theories may be applied to repre-
pentetive problems In image understanding. Our goal 1z both to extend the evalua-
tion process of Section 2.0 through concrete examples, and to suggest some new
ways that some standard problems may be attacked. We start, in Section A.2 with a
discussion of how prior context information can be combined with data derived from
the pixels. We show how a Bayesian approach, a fuzzy approach, and a Shaferian
approach differ in their handling of the same problem. The seme kind of arguments
are used in Section A.3, where we discuss template matching, and in Sectiom A 4,
onn relaxation and scene labeling,

4.2 Extraneous Information

A.2.1 Introduction--The problem context. Inm this section, we shall show how dif-
ferent theories of belief may be applied to a specific example. The problem we
have chosen, as suggested by ETL, is in the area of feature extraction from aerisl
photographs, This is & very complex problem area, as is evidenced by the enormous
literature on the subject (see e.g., Rosenfeld, 1983), or the large effort devoted
to this, and closely related topiecs, by DARPA over the last twenty years. In
spite of this effort, there appear to have been few attempts to construct an ex-
pert system (in the strict AI sense) to effect automatic feature identification
from serial photogrephs, let alome to use alternative inference schemes within
such an expert system. One such system we have discovered In the literature
{HEWSIF: Cambier et al., 1983) uses the inference scheme adopted by the PROSFEC-
TOR expert system (Duda et &l., 1977), which employs & mixture of ideas from prob-
ability theory and fuzzy set theory. NEWSIF is not desipgned, howewver, to deal
specifically with the problem of forming & consensue of the evidence contained in



the image with exogenous informatiom about the geographical area being
photographed.

4.2.2 The exapple. In order to illustrate both how inferences may be drawvn from
several different sources of information within an expert svstem and how different
theories of belief modification may be used in doing so, we have constructed the
following inference task.

Task: An aerial photograph is available of a known area of countryside, It
is known that a single road crosses the area, and that hither to there has
been no evidence of any building in the area. The task is to determine if a
building has been erected anywhere.

The normal way to handle this problem is to use edge and corner detectors, or tex-
ture measures, to segment the image inte areas which are then classified into one
of several possible categories. Any region classified in this way as a "bullding’
should be tentatively identified as such. There are now many sophisticated algo-
rithms available to carry out this process automatically (see, for example,
Crombie et al., 1982).

Thesze methods do not, howewver, provide an explicit framework for combining infor-
mation derived from the photegraph with information from other sources, We shall
suppose that we also have available the following information:

L In the area represented by the photograph, buildings are usually
erected near roads,

* Buildings are not generally erected on boggy ground,

. Some information exists on how boggy the ground is for each point on

the photograph.

Our task nmow is to comstruct part of an expert system, which will combine this in-
formation with that produced by the photograph to determine if a building exists



at sny point, In the next four sections we deseribe in detail how that might be
achieved, using four different inferenmce theories,

A.2.3 pDPeterministic ipferepce. We shall assume that we have avallable & state-
of-the-art segmentation algorithm which provides, for any pixel in the image, a
set of classification probabilities, (p;}. For each pessible classification
category, i, p; is the probability that the pixel is indeed cerrectly classified
as belonging to category i (or, more precisely, that the area of land correspond-
ing to the pixel im guestion belonge to category i). What is of most interest to
us is pp, the probability that the true categorizatien should be "building.’
(Fote, at this stage, that we shall assume that the segmentation algorithm in-
volves appropriate relaxation procedures which relate the classificetion probabil-
ities at a pixel to those at neipghboring pixels.)

As with the other inference schemes that we shall discuss below, there are several
possible ways to carry out a deterministic inferemce.®* The following seems a

reasonable scheme, howewear.

We must first convert the somewhat inexsct information presented above into
precise statememts. Somehow, the Information on bogginess must be converted into
an assessment of whether & partieular leocation can, or cannot, support a building.
Ho degrees of partial truth will be allowed here. The truth value of:

Ai: the ground cannet suppert a building

will be either 0, false, or 1, true, for sach pixel.

*We mean, by the title "deterministic inference,' a scheme which not only gives an
unambigucus answer to the question whether a building does or does not exist at a
point, but also onme which uses the cleasrcut implications of standard logic.



Similarly, the distance from the road at which a building becomes impossible must

be determined, so that & truth value of 0 or 1 can be ssgociasted, for each pixel,
with:

f4: the point is too distant from the road for a building te be present.

The inference engine will now consist of the following rule:

IF ({Ay i3 mot true) and {4; is mot true} and (pﬁ}lfij}
THEH (a building is present)
ELSE (& building is mot present]).

Writing H for the hypothesis 'a building is present,"' this can be computed as
B(H} = min(l-B({Aq), L-B{Aq)., G(pp=1/2)}

where (H) is the truth value of the hypothesis H and 8(pp>1/2)=1 if and omly if
pp=l/2. In this framework 8(mot H) = 1-8(H). This completes the construction of
& precedure which will give an unambiguous answer on whether H is true eor net.

A.2.4 Probabilistic inferepce, An ocbvious drawback to the deterministic im-
ference scheme above is thn; it forces a somewhat arbitrary classificatlien for
locations in terms of their distance from the road, and their bogginess. 1t is
more natural to think of distance and bogginess as being factors which might make
a categorization of a pixel as 'building' more or less likely, rather than simply

ruling some places out of consideration. A framework for doing this iz provided
by Bavesian updating.

The probabilicvy of H, in the light net only of the pixel data which led to pg, but
also the distance from the road, d, and bogginess of cthe ground, b, may be
written, using Bayes' theorem, as
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£,(b,d|H.,DY - pg
P{H |h ,d, D) =

fo(b,d|D)

where D is all the relevant data provided by the photegraph, fl is the probability
density on b and d given D and the knowledge that H holds, and £, is the same den-
gity marginalized over (H, not-H). A similar relation helds fox E, the hypothesis

that a building is not present. On dividing one relation by the other, we get
that the postericr odds om H,

p(H|b,d,D) f(b,d|H,D)
O(H|b,d,D) = - - 0
p(H|b,d, D) £,(b,d|H,D)

PB
where Og = —,

1‘PB

the prior odds on a building being present based on the pixel dara alone, HNow
knowledge of the pixel data D will not change our opinion of how likely any par-
ticular values of b and d are, once we know whether H holds or not. For example,
if we were told that a building wag present at a particular location, and asked
our opinions on what b or d might be, then the availability of pixel infermation
should not change that view, since it could only do so by affecting opinions sbout
whether H held or not, about which no doubt existed. It folleows that £y should
not depend on D,

We thus obtain the formula
O(H|b,4,D) = L{b.d;H}'ﬂB (Aa.L1}

vhere L is the likelihood ratio for (b,d) in relation to the hypothesis H.
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In the event thsat our wviews about b and d are independent, in the preobabilistic

sense, then we can write f,(b,d|") as the product of two densities g (B|") and
Bphd| "), thus deriving

L(b,d;H) = Ly(b;H) Ly(d;H)

e e SN oy 2
re Ly{b;H) = —— and Lq(d;H} = ——
g (b|H) Eq{d|H)

The imprecise statement that "Buildings are not generally erected on boggy ground'
can now be represented in the likelihood ratio Ll' If beogginess b is measured on
a (0,1 scale with O meaning "not boggy at all,' and 1 measuring 'wvery bogegyv,'
then the density gy will be of the form

t &, (b H) g, (b|H)

=]
o
'_I
o
'_I

The exact form would be determined by elicitation from experts. These curves are
IEflacting the fact that if = building is present, low bogginess is much more
likely than high; wheresas if & building iz not present, the chance of amy par-
ticular level of bogginess will just equal the general distribution of begginess
on land of the type analyzed (this distribution need not be flat as in our
example), Similsr curves for the distance measures would be elicited.

The result of this analysis will be to modify the initial classification probabil-
ity py, according to formula A.1 above. The method of deing it, by multiplying
the edds on H by the likelihood ratio L, captures extraneocus information about the
image under discussion. The effect will be to increase the odds on H for sites



with low bogginess and mear the road, and to decresse the odds elsevhere,

This probebilistic analysis ends, therefore, with a revised probability that the
pixel and its surrounding area should be classified as 'building.' If a defini-
tive answer iz required at this stage, a classification could be adopted based on
the deduced probability and on the relative costs of classifying a non-building as
*building® or a building as "non-building”.

A.2.5 Fuzzy inference. Since its inception in 1965, the caleulus of furzy sets
has been used in sany different ways to represent Imprecision. Zadeh (1983) has
provided a good argument for a particular way in vhich the caleulus ecould be used
in the management of uncertainty in expert systems, and we follow his approach
here. Zadeh sees a "serious shortcoming of [existing expert systems in] that they
are not capable of coming to grips with the pervasive fuzziness of information in
the knowledge base, and, as & result, are mostly ad hoc in nature.' Zadeh's
stress on the imprecision of the knowledge base {rather then its uncertainty) is
certainly relevant to the example we are consldering inm this chapter. The state-
ment ‘'buildings are not generally erected on boggy ground' is clearly imprecise,
and in the previous two inferential metheds, it had to be made precisze before it
could be included in the analysis., Fuzzy inference allows this imprecision to
persist through the analysis. ZEadeh also points out that implication may be
imprecise. He handles this by his generalized modus ponens, which we can illus-
trate with the following example.

The proposition:
If a person is tall then he iz heavy,
iz represented by a fuzzy relation on variables u and v, deseribing height and

weight respectively. If ug(v) is a fuzzy set describing the meaning of "heavy',
and;JT{u} a fuzzy set describing what is meant by 'tall,' then

LjT-*H{u’?J = min{l, 1-HT{u}+PH{?}J
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is the membership of the pailr (u,v) in the set of (u,v) consistent with (if a per-
son iz tall, he iz heavy).

This definition may seem somewhat arbitrary, but Zadeh supports it by its consis-
tency with a definition found in Lukasiewicz's logic (see Zadeh, 1983, p. 208).
He also calls it & conditional possibility distributiom on v given u. To use this
implication to say something about the heaviness of a person, given some fuzzy
setatement about his height (e.g., that he is "very tall"), we use

”{T*HJ‘T'{“J - uﬁ:(min{pTh(u}, uT_+H{u.v}};

i.e., to find the degree to which a wvalue v could describe the person’'s weight, we
find the most possible helght consistent with his being "very tall® (expressed by
UT') and with the rule that tall pecple are heavy, and use the height possibilicy
there as the weight possibilicy measure.

To apply this to the present example, we will peed to extend the notions. Instead
of a - single variable u, we will have two varisbles; b, the bogginess at a par-
ticular =site, and 4, its dl;tance from the road; Instead of v, we will have p, the
probablility that a building is present., The appropriate equation for
UG+ % (P), the possibilitcy distribution over probabilities that a building is
present, which we abbreviate as UH|E{PJ, is

hHlE{F:‘ - ﬁ{ﬂit‘lfun1 (b.d4d), Iiﬁ{l:l-]—tﬂtb1d}+upfp}}}}

vhere M-(b,d} is the possibility distribution for 'the ground is boggy and the
location is far from the road,' and Up(p) is the possibilicy distribution for
"very unlikely.' up'(b,d) is the representation of the information we have in a
special case.



Of eourse, if we have crigp information about b,d (namely that they are equal te
by, dy. se that u{hu,dﬂ} =1, u(by,dy) = 0, elsevhere),

then UH‘E(P} = min(l,1l-U;(by.dgl+le(p)).

Thiz makes a lot of sense: the possibility of a particular probability being true
depends in this case only on the imprecision of the implication.

Suppose, by way of example, that we define a membership function for "very
unlikely® as follows:

wplp) = 1, for p < 0.05
p-0.05
lrahﬁTEEJ for 0.05 s p < 0.1
- 0, for p = 0.1
This gives: He
UHIE{P‘} -] for p £ 0.1(1- 2)
; e
=Yy 0,1{1- o = 0,
3-ug 505 for { EJ = p = 0.1
= Ll-ug for 0.1 £ p

Thus, if ¥, = 1, that is, the ground is clearly boggy and distant from the road,
then a building is very unlikely {quE{p] = ¥p(p)). If, om the other hand

o = 0, the ground is clearly pnot (boggy and distant from the road) then
leE(p} = 1, for all p: our evidence does not exclude any probabilities.

This extraneous information needs to be combined with evidence from the pizels,
Lat us suppose that this evidence can be expressed as another membership function

Lhatatp}* for the possibilicy of a probability p that 2 building is present. Then
combining these twe sources of information we get



U{:mh{]!} - min{l-lnﬂ,:afp}p LIHFEI:P}}'

This will hawve the effect of reducing the possibilities for probabilities which

have low possibility, from the extraneous information, but leaving the others
unchanged.

The output of this fuzzy analysis would not be a clearcut answer to the guestion
whether a building is present, nor even a modified probability that it is present,
as in the Bayesien case, Rather, it will be a fuzzy probability. This could be
used in several ways; we could try linguistic interpretation, producing an output
such as 'it is not very lilkely that & bullding is present;' we could attempt some
sort of fuzzy maxieum likelihood analysis; or we could construct a procedure to
produce a fuzzy truth value for the hypothesis H. Different theoretical arguments
could be produced to support each of these, but we recommend experimental use of a
methed such as this to explore the practical implications of the different schemes.

h.2.6 Dempster-Shafer ipferepce. Dempster-Shafer theory is concerned with the
combination of evidence, and the strength of support that it is proper to hawve in
any subset of the set of hypotheses. In our example we have three pieces of
evidence, the distance of a location from the road, the bogginess ef the ground,
and the evidence from the pixels, D. We shall start by seeing how to represent
bBelief about H in the light of information on bogginess and discance, and how te

combine these pieces of evidence.

We construct support functions md{H}, nd{H}, md(H and ﬁ}, representing the support
glven by distance from the road to the hypothesis, its negation and the union of
these two hypotheses., In Shafer's theory, the total support allocated to each
element of the power set of the set of hypotheses (i.e. each subset of the set of
hypotheses) must sum to unity. In this case, since there are only two hypotheses
(H and H), the power set has just 3 elements (H, H and (H and ﬁjj, and this
requirement gives
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ma(H) + mg(H) + my(H and H) = 1.

The statement that buildings are usually near roads dees not imply that any
knowledge about d supports H; it is merely that large distance supports H. 5o let
us assign nd(I-l}--ﬂ, md(l:l and E]I-l-md{l_-lj, and ud{ﬁj by a curve of the following type:

Eﬂ_{-l: 1} tq-- aEdEEESEEEREEERERE EREDE

md{H}

-

d

my(A) can be interpreted as the probability that a distance d implies that H is
true, It can, in principle, be elicted from an expert,

In a similar way we can construct a support measure m, ("} based on the evidence of
bogginess. Once again it will be very reasonable to ascribe my (H)-D,
m, (H and E:I—l-mh{ﬁ:l and mhul'_ﬁ] by an empirical curve of the type abova.

Te combine evidence, Shafer recommends the use of Dempster's rule, which may be
stated as follows. If m(-), mzl[':l are the suppert functions for two different
pleces of information, then for any element x im the power set of the set of

hypotheses, the support for x im the light of the two pleces of information is

L
ynz=x® (¥ )My (2)
1

mpgfx) =

'1',r nz_amliy}mz {z}

where © is5 the null set.
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Using this rule, we see that the suppert functiom given both b and d is

ml:l-d.{H} = 0
my g () = my (B)mg(B) + m () (1-mg (M) + (Lomy (B)Img(A) = my ()4my(H) - my (Bomy ()
mg(H and H) = [1-my, (H)][L-ma(H)].

We must now combine this support function with & support function deriving from
the photographic image. If pg is the probability of classification as a building,
derived from the segmentation algorithm, as in A.2.4 above, then it is reasonable
to assign the following support function given the pixel information D.

mp(H) = apg
mp (H) = o (1-pg)

mp(H and H) = l-o.

This reflects the insight that the credibility of the segmentation algorithm may
not be total; some of the weight of support (im fact, 1-@) should be ellocated to
the complete set of hypotheses, H and H.

Using Dempster’'s rule again, we get

& pg(1-my (H)) (1-my(H))

By, qp (H) - — e
1-apg [my, (F)4mg (H) -my, (HImgy (H) ]

- a{1-pg (1~} [my, (H) +mg () -my, (H)m g (H) )
T ap(H) =

1-opg [my, (H)+my (H) -my, (H)ym,y (H) ]

_ (1-ox) (Lemy (H) ) (1-mg(H))
m, ap ({8 and H) =

1-apg [my, (H)4my (H) -my, (H)mg(H) ]

A=12



Ae with the fuzzy version of this problem, there is no agreed procedure now for
determining what te do with this support function, We are thinking of using these
computations in an automatic feature extraction system, however, and so they must
lead to action implications. One approach is parallel to the Bayesian one, with
the introduction of a region of indeterminacy in which no answer is provided,
Thus, a region iz classified as a building if mhﬁnﬂﬂj exceeds some threshold 7
and as & non-building if nhdnfﬁ} exceeds & thresheld 1 - 7, where’ is determined
by the relative costs of mislabeling & building or a non-building., In some cases,
neither threshold will be erossed., An alternative approach, which does always
give an answer, i1z to normalize the support for H and ﬁ, i.e., p{H) '——-EEEl:ra“d

m{H}+m{H}
p(ﬁ} = 1-p(H), before testing against¥. This might be appropriate where the sys-
tem iz te suggest possible buildings for subsequent checking by a hunQn
interpreter.

A.3 Template Matching

A.3.1 Iptrodyctiopn. A common problem in analyzing serisl photographse is search-
ing for a particular object, such as a building, in a set of photographs. One way
to handle this is through template matching, where portions of the photograph are
compared with one, or more, templates, each giving a representation of possible
objects. The art of template matching is to construct an algorithm that computes
s messure of fit in such a way chat the object iz properly identified when the
measure of fit is good., This idea has been studied in the field of computer vi-
sion for many vears (see, for example, Cheng et al., 19&6B). It can be applied
either at the level of raw pixel data or at a higher level in which features or

relational structures extracted from an image are matched with & stored pattern.

There are problems associated with template matching at the pixel level. Firsc,
the appearance of the object may well depend on the illumination, which may be
unknown precisely. A partial solution is to normalize both the image and the
template, by taking deviations from the mean at each point, before comparing. But
in sddition, the size and erientation of the object may well not be known in
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advance, $0 a great number of possible templates may need to be used in the
search; and in certain cases, such as the search for a building, intrimsic

gqualities such as shape and surface reflectance may &lso be unknown.

On the other hand, even at the pixel level, template matching is wvery useful asa
filtering technique, e.g., in heightening edges and corners (see Ballard and
Brown, 19E82). Moreover, some variant of it is usually regquired to identify the
features that are used in a higher-order matching of relational structures. It
is, therefore, & good problem for beginning our investigation of the applicatiom
of belief theories to *bottom up® feature recognitionm in aerial photegraphs. Inm
this section, we will first describe the standard approach te template matching,
end then go on to show how Bayesian statistics, fuzzy set theory, and Shefer's
belief function theory could be used, both to walidate an ad hoec approach, and to
give reasons for wvarying the standard appreoach in certain circumstances.

A_3.2 Standard template matching, Suppose we have an aerial photograph digitized
so that it can be represented as a set [(g(i,j)} of pixel gray levels, where
i=],...,H and j=1,... N index the pixels in the photograph. Let t{k,1},
k=-m,-g¢l,...,0,... m~1,8; l=-n,-o+l,...,0,...,0n-1,n, be a cemplate, that is, a
set of gray levels for the ideal object. If the template is centered at (ip,jp);
then for (k,l) within the template, the differemce im gray lewvel at (k,1) is
t(k,1)-glig+k, J5+1).

Clearly the template matches very well if this difference is wvery small in ab-
solute terme for all {(k,l)} withim the template {i.e. for kf[-m,m], lE[-n,n]). Wa
need a single seasure of goodness-ef-fic, for any center peint ip,j,., te assess
how well the template fits at that point. An ebvicus measure, much used in fit-
ting problems, is the sum of the squared differences,

m

Tu
Dlig,g) = ¥ ¥ (t(k,1)-gligrk,jg+n2.

k=-m 1=-mn
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Hote that this is only defined if (ij.jp) is sufficlently far away from the bound-
ary of the phetograph for all the points to be within range; that is
B £ iy £M-m ngjy < Hem

The standard algorithm for template matching now seeks (ig.jp) te minimize this,
How we can write

m n
Diig. g = Z E (t2(k,1) - 2e(k, L) g(igtk, jo+l) + gI{iﬂ+k,jﬂ+1}1.
k=-m l=-n

The first term here is independent of {ig.)p} &nd so does not affect the best
choice of (iu,juy, In some cases, the last term

- ] Ti
Glig,dg) = ¥ 1E g% (1g+k, 1 g+1)
-m --u

does not change much with (i,,j,) either. TIf this is the case, then the best
(ig+jg? is obtained by maxzimizing

m 0
Ciip. dpd = ek, Ligiintk, jn+l).
o+do h}: kg_n otk g

m

the correlation of the template with the data. C{ig.jg) is, in fact, the result
of a finite filter applied to the image, and so in this case it is possible to
view template matching as a special case of filtering. This is somewhat
contrived, since & is mot oftem comstant enough to be meglected. HRonetheless,
this is one justificatiom for the selection of important classes of filters, such
as edge and corner detectors, and the developments which we shall give in Cthe next
sections can be extended to the choice of such detectors.

415



A.3.3 Bayesian template matching

A.3.3.1 Probability updating. The goodness-of-fit measure Di{ig,j,) adepted in
the last sectioen was chosen in a rather arbitrary way. What is at root of inter-
est te us is the probability that the data sround the pixel {ig,jn) is really =

noisy representation of the template. In other words, we can establish the
hypothesis

H{ig,Jp): 8l{ig+k.jg+D) = t(k,1) + e{iy,Jgik,1)
wvhere E{iﬂ,jn:k,la 1& an error term.

Then, if Plig.dp? Ls our prior probability that Hi{lg,jg) helds (i.e., that the ob-
Jeet 1z in fact centered at (ijy,Jjq)), Bayes' Thecrem gives us

£(1g(1,1) 1 1H(ig,5g))Pig.3g)
E((a(L, 1)1 B(L .1 0P 3")

P (i5.,Jg) = Pr[B{ip, Jp) [1E{L,300] - E:
|

where f(lg{i,j}]|ﬂ{iu1jﬂ}} is the multivariate density for the (Zm+l){2n+l) values
of g{i,j}) within the template around {iﬂ,jﬂ}, given that H{in,ju} holds. We hawve
assused that one Instance of the object is to be found somewhere in the image, so
that the set of hypotheses [H{i,j)] are mutually exclusive and exhauvstive. In
general, this will nmot be the case, and this will lead us to modify the
denominator on the right hand side of the equation above. The conclusioms of this
analysis will not change, however, and so, te aveld inelegant algebra, we will
work on the simpler case.

A.3.3.2 Using loss functiomns, We could, at this stage, take the posterior
probabilicy, pﬂ{iﬁ.jg). as our measure of gpoodness-of-fit, and identify the object
at (i,j) where phfi,jj = max pﬂfi.j}. Alternatively, we can consider this as &
decision problem, recognizing that what matters is the cost of identifying the ob-
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Jeer to be at (i1;.§1), when it is, in fact, at (i,,j,). Let this cost be
L{{i1,992.{is.75)). Then the expected cost of making the declsion (1,.,j,) is

Liy,d1) = 1 pptin 39)L0C41,97) (10, 32)).
i:d2

The best choice of position is at i*, i*, where (regarding L{{Il,jlj.{iz.jzj} as a

positive measure of cost)

L{i*,j%) = min L(iy,Jp).
11'11

Note that, in the special case that L{(i;.J9).(15.35)) = 0 if iy=j;, i9=j,

- ] el zawhara
i{il'jl} - 1-?11-':11._11}

In this case, where all errors are egually costly, i, j*-—j-; the problem reduces
to maximizing the posterior probability om H{i,j).

Other loss functions will give different procedures, however. For example, suppose
7 - FPRY EPRY
L001,370. {19, 390) = (iy-1)% + (3;-3p)

i.e., the mizsplacing becomes dramatically more important, the Further away the ob-
ject iz placed from its true position. Then

Led*,§%) = min [ T b (5,500 ((hg-i0) %4 (41-32) )]

17437 19439

and i*, j* are given, te the nearest integer, by
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i - z 12‘:‘“{12"'12}1 j* = E j'EPTrI:’I'E'-jE:I'
Lg,dq ' iﬂ*ji

In this case, it is best to choose not the mgst likely location, but an average
location, weighted according to probsbilities.

4.3.3.3 Recovering the standard algorithm, and some modifications. To carry out
the analysis in the previous section, we have, of course, to compute pﬂ{i,j}. and
this imvelves the multivariate density £{{g{i,J)VIH{i,]1)), which we have not yet
discussed, In one special case, we can derive the simple formula given In Section
4.3.2 above which is used in standard template matching.

Suppose &£(i,j;k,1l) has zero mean, iz normally distributed, with a variance ﬂz
which is independent of (k,1}, and that all the error terms are independent.

Then  £({g(L,§))IH{L,§)) e B T (- (B{1+k, §+1)-t(k, 1)) 2 /202y
5 L I i D_ __n'l'ﬁ_'ﬂ_ "-":P .E- i r

- (V7o (20+1) (2041) o DCLLAD)
2
b

If, further, p(i,j) is independent of (i,j) (i.e. our prior opinion is that the
object is equally likely to be anywhere), then maximizing p_(1,j) is equivalent to
minimizing D{L,1)}.

S0 we conclude that Lf:

a) the loss involved in misplacing the object is constant,

B} we have a uniferm prier distributien on location,
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c}) the nolse on the image iz normally distributed, unbiased, and
has constant variance,

d} the noise on the image i{s uncorrelated,

we recover the standard algorithm - minimize D.

We have already seen, in Section A.3.3.2 above, that if a) does not held, a dif-
ferent procedure results, The same is true if b)), ¢) or d) are relaxed.

A.3.3.4 Using prior information. Suppose that we have prior belief that some
lecations are more likely than others for the object, but that conditiens a), ¢}

and d) above still hold. Then we should identify the object at {115}. where {I.i}
maximizes over (i,])

txpl*DEi.j}fﬂﬂzi'P(i.jja

Ap would be ewpected, this more or less rules out locations which are extremaly

unlikely (where p(i,j) iz near zero); more significantly, it shows precisely how
the sum of sgusres should be offset to take sccount of prior opinien.

4.3.3.5 Systematic error. It is possible that there could be physical reasons
for the error te have a systematic bias, but one that varies over the lmapge, In
other words, we could take

(thus changing part of condition éj in Section A.3.3.3). Eeeping the other condi-
tions econstant, this leads us to want to minimize

“+m +n
L L (s{1+k,.1+1}-t{k,l}- ¢{1.J;k.1a*
F--u 1--'“_
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This proevides another modification of the standard algorithm. We could also, of

course, vary condition d), that the noise is uncorrelated to yield yet another
modification of the standard algorithm.

A.3.3.6 Summary. It should be stressed that the problem we have looked at in
this section iz somevhat special. We have assumed that the object iz to be found
at one, and only ome location in the image, and that any failure of the template
to matech is caused by noise. We have excluded the possibility that more than one,
or rero, matches exist. The analysis could have been presented for the more

general case, but at a cost of clarity in argument.

What we have shown, however, iz how Bayvesian Decizion Theory may puide the choice
of a template matching algorithm, taking inte account:

{1} the possibly variable cost of a wrong identification,
(1i} rthe inclusion of prior probabilities on location,
(11i) the effect of correlated noise,

(iv) the effect of systematic bias.

A.3.4 Fuzzy tepplate matching. The theory of fuzzy sets provides an alternative
way of representing beliefs within & model. L.A. Zadeh, the originator of the
concept of the fuzzy set, stresses that fuzzy sets should be used to handle
imprecision, or what is possible, while probability theory should be used to
handle uncertainty (see, for exasple, Zadeh, 1981, p. 70). While there are those
who argue that because of imprecision, people are uncertain, and so where informa-
tion is imprecise, it can be handled through probability theory, it is clear that
fuzzy set theory ils not a strict alternative to probability; it is, in & sense, a
broader theory, saying less than probability theory, but still in keeping with the

input information. For example, some values of a variable could be highly
possible, but wvery improbable.
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The goal of fuzzy template matching, then, should be to ask to what extent a par-
ticular template fits the observed data; the gquestion will be, “How possible iz it
that what we are observing fits the template?"” This question has been previously
addressed by Kandel (1982). As is often the case in applications of fuzzy set
theory, there are generally many different ways in which the caleulus of the

theory may be applied to a problem. We shall give two approaches, both of which
differ markedly from Kandel's development.

We can first comcentrate on the imprecisien of our answer to the matching
gquestion. When a photo-interpreter amalyzes a photograph, he is likely to respond
initially with a statement such as: "There could be a building of the type I am
looking for just there." This is an imprecise statement, of the kind produced by
a furzy analysis. When such an analysis yields a result that the possibllicy of a
data-zet being derived from a given template is, say, 0.8, one Interprets this
numerical result by a statement such as that above. In the first instance, let us
suppose that the template t{k,l) is precisely defined, but that the imprecision in
our answer derives from the fact that the data image is, in essence, an imprecise
representation of the template.

One way of looking at this imprecision is on & pixel-by-pixel basis. Comparing a
pixel in the data with the corresponding pixel in the template, we can ask, "How
possible is it that the gray level in the data is consistent with the gray lewvel
in the template?™ We can express this as a membership function

Uy CB(A+k, J+1) .60k, 1)) using the notation develeped in the last section. The con-
struction of this function we shall leave for a mement, but it clearly should
depend both on the pixel gray level, g(i+k,j+l) and on the template gray leval,
t{k,l}). We now argue that the degree to which the template fits the data,
Hp(i,j) is given by

He(i,j) = min (M (g(i+k,j+1),t(k,1))
F 1 ( kl )
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This is the rule recommended by fuzzy set theory for finding the possibilicy for
the conjunction of events, We can summarize it by the proverb that a chain is as
strong as its weakest link: or observe that, if it is guite impossible for one
pixel in the template to be represented by a particular gray level in the data
(e = 0), then Indeed it is impossible for the template te matech, no matter how
good the fit is at other pixels. At least in this extreme case, the rule above
makes a lot of sense. If£, however, it is possible for any data gray level to
result from any template gray level at each pixel, them L 1 for each pixel,
and the ryle sbove tells us nothing at all. It is in this sense that fuzzy set
theery is bland.

It might be reasonable to suppose that the possiblility of a match at a pixel could
be given by a function of the form

Hip lget) = 1- ﬁ{g-t}E

S0 1f the match was very geod (g=t), the representation would be tetally possible;
but i{f the match was as bad as it could be (say, g=0 and t=1, supposing gray

levels to be measured om & [0,1] scale), then the degree of possibility would be
teduced to 1- o,

With this fermula we would get
2
Hep(i,j) = min{l- a{g{i+tk,j+l)-t{k,1))

Having defined the possibility of s match centered on pixel (i,j) by this formula,
we gould choose the best match as the point where Mp(i,j) is biggest. But this
would, to some extent, be contrary to the splrit of fuzzy set theory, where the
goal is not to come up with a definitive, clear cut answer, but rather te lead to
imprecise, yet informative statements sbout the problem. If installed in an
eutomatic system, one could set a level of possibility (say 0.%) above which loca-
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tions could be identified for further study either by human experts, or a more
complex expert system.

The second way of using fuzzy set theory in this context is to recognize that the
template itself should be imprecise. We are not locking for an exact image in the
photograph, but rather for ome that is something like some sort of morm., So we
could specify In advance, for every possible set of gray levels in the Image, the
extent to which that could be the object we are looking for. This could be
specified by a membership function

uplti{-m,-n},t{-m#l,-n),...,t{+m, -0} ;e{-m, -o+l}), ..., t(+m,-ml} ;. ..;
t{-m,+n},...,t{+m,+n)) = UT{I.}I B8y . .

Setting aside for the moment the difficulty of how to specify a (Zmt+l)(2n+l)
dimensional membership function (even for m-n—1 this is a 9-dimensional function),
we now see how simple it is to compute the possibility is that the data centered
at (i,j) represents the cbject.

Writing g{(1.j)} for the vector whose components are gl(i-m,j-n), g{i-m+l,j-n),....
gli+m, j+n), we just need to compute

to get the number we require.

Construction of U.o in the first place will be no simple task, however. Ome pos-
gibility would be to get an expert to rate a large number of images either wver-
bally or mumerically. When shown a template-sized image, the expert would respond
with how possible it is that what he is seeing represents the object we are look-
ing for; he would either give a membership number, or a wverbal response, such as
"highly possible,' 'impossible,' etc., which would then be given a mumerical
interpretation. After a large number of responses, the membership function

would be computed by interpolation (possibly linear). Such a method would be cap-
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turing the expertise of & human expert within the computer system--one of the
original emphases in expert system research, HNotlce that thiz method would have a
considerable advantage over other methods in that different orientations, sizes
and shapes for the building, as well as different levels of illumination could be
handled effectively. A problem might be that sharp dips or peaks which should be
present in the multi-dimensional membership function might mot be created by a
methed based on linear interpolation. The alternative method of constructing UT
by making plausible arguments frem first principles may be feasible in ecertain
circumstances, but its feasibility is likely to depend on the size of the tesplate
and the nature of the object being sought.

We have sesn then how fuzzy set theory may be used as a calculus for imprecise
reasoning in template matching in two distinet ways. Both ways should be applied
to real data to test their efficiemcy.

A.3.5 Bhaferisn template matching. Shafer's theory is designed to provide a
maethod of combining informatiom from distinet sources in the light of what is
knowvn about the reliability of those sources. The most obvious way to apply this
theory to the template matching preblem, then, is te consider the pixel gravy
levels in the image as being separate data sources, each of which may support the
hypothesis that the template matches. This is similar to the case of uncorrelated
noise in the Bayesiean analysis; we are assuming that if the hypothesis is trus
(the template fits), then the only reason that the individual gray levels in the
pixels are different frem those in the template is that some random error in the
eptical image representation has occurred and that these errors are independent.
The concept of independence in Shafer's theory is still being developed, but it is
clear that what we need to assume iz that it is appropriate to combine evidence

uging Dempster's rule,

Let us change the notation slightly for convenience of exposition. Label the
pixels in the template from 1 te N, rather than with the two indices i and j as
before. If t; is the gray level in the template at the ith pixel, and g; that in
the image for a particular positioning of the template, then our sources of
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evidence are in pairs (t;,gy). If H is the hypothesis that the template fits,
then it seems senmsible to ascribe a set of support fumetions by relations of the
type

m; (H) - £y(t4.89)

=, (H) - f£o(ty,eq)

m; (H or E) - fa(tq.8¢)

3

for some functions fj{l'l) satisfying 1§1fj(t-53 = 1, The precise form of these
funcrions would depend on what is known about the optical blurring produced when
an image 1s distorted. It might be, for example, that 1f t and g are both at an
extreme of the range of gray levels, then strong support is provided for H, while
if t and g are far enough apart, support is given to H, and if either of them is
central whnile the other is extreme, we can give support to neither (thus giving

our support to (H or H)). Suitable functions displaying these properties are the
following:

£1(t,g) = [1-4c(l-t)][1-4g(1l-g)][1-(t-g)?]
£a(t,g) = [(e-p)?)

f£3(t,g) = [4E(1-t)+hg(l-g)+16ge(1-g) (1-t) ] [1-(t-g)?].

The combination of these K separate support functions is effected by the repesated
application of Dempster's rule. We need some more notatiom to uxptiss this rule
here. Let ¢4 be & variable name for the hypothesis supported by m;("); that is
4 e{H,H,(H or H)). Then let 5, be the set of (cq,...,cy) whose intersection is
H, 54 the set whose intersection is E, S4 the set whose intersection is (H or ﬁ}.

and 5, the set whose intersection ie the null set,

With these definitions, we can apply Dempster's rule repeatedly, to get the fol-
lowing support functions for the hypotheses:
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To understand the implications of these expressions, we have computed them for 13
hypothetical example cases when N = 5, that iz, a five-pizel template, The
results are expressed in the table below,
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Table A=l: Finasl Suppoert Functions for a Five-Pixel Template

5
lasa ty By tz Bz t3 By ty By t5 g olH =#(H) olHer H) iE1Et1.EijE
1 1 0.71|0.68(0.48{0.99({0.64|0.13|0.37|0.59(0.13/0.93) (0.09 0.79 0.12 1.22
2 0.22)|0.31/0.23|0.90|0.59 0.4 |0.00|0.83|0.03|0.37|(0.11 0.80 0.09 1.26
3 0.50(0.55(0.11)0.36(0.82 |[0.87(0.41|0.T1|0.00|0.60|[0.18 0.38 0.44 0.43
4 0.48(0.7T(0.10|0.54|0.88|0.82(0.18(0.53|0.18|0.20|(0.27 0.26 O.47 0.4
5 0.32(0.37|0.92/0.19|0.58(0.86|0.70|0.13(0.01|0.83|{0.08 0.B7 0.05 1.62
[ 0.0%|0.32|0.66|0.08|0.54|0.09(0.68(0.82/0.75|0.7T3([0.11 0.50 0.39 0.68
T 0.97|0.68/0.21)0.56|0.72|0.66|0.52|0.89|0.96|0.18|(0.14 ©0.69 0.17 0.82
8 0.22|0.04(0.76|0.05|0.87|0.33|0.17|0.0T (0.05|0.05|(0.66 0.26 0.09 1.68
g 0.260.07(0.31]0.52|0.08|0.85|0.21|0.06 (0.T0|0.23|(0.25 0.59 0.15 0.92
10 0.32(0.99/0.19|0.02|0.20|0.59(0.60|0.03(0.41(|0.22|(0.19 0.59 0.22 | 0.61
11 0.72(0.7310.48/0.51(0.65(0.62|0,37|0.37(0.13|0.14{(0.31 0.00 O.69 0.0014
12 0.22|0.21|0.23|0.24(0.59|0.58|0.00|0.00(0.03(0.03||0.99 0.01 0.00 0.0001
13 0.51|0.51(0.17{0.11|0.82|0.85|0.41(0.42(0.00|0.00([0.99 O0.00 0.01 0.0010
15 0.58|0.49/0.10(0.10|0.88|0.91|0.18|0.18(0.18(0.17|{0.T6 0.00 ©O.24 0.0010
1% | 0.32|0.31/0.92|0.89{0.58|0.60/0.70|0.670.00|0.00| |0.98 ©.00 0.02 0.0019

In the first 10 cases, the pixel gray levels in both the template and image have
been chosen at random. As may be observed, in none of these cases are the gray
levels close to each other as is evidenced by the moderate values of the sum of
squared differences, which we have computed in the last column of the table. Un-
surprisingly therefore, little support is given to H in these cases. The only
case where m(H) is moderately high, case £, corresponds to a case where one of the
pixels matehes very closely, and at an extreme value (the fifth) while the others
yield quite inconclusive evidence (the values of m(H or H) for the four other
pixels are Q.71, 0.37, 0.65, 0.67).

Cages 11 te 15 are arranged te be highly correlated, as can be seen from the very
small values of the sum of squared differences, In three out of these five cases,
as we might expect, very high support is given te H, and in every case virtually
no support is given to H, Case 11 is interesting in that, despite the high
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correlation, the uncommitted support is still 0.69., This derives from the inter-
mediate values of the gray levels; we constructed our suppoert funetion so that
support for H is only high if t and g are close and at an extreme end of the range.

Onece the support functions for the template matching at a particular position have
been caleulated, we muat decide what to do mext, One procedura would be to choose
the location which maximizes Shafer's plausibilicy funetion, which in this case is
equal toe m(H) + m{H or ﬁ}. Alterpatively we could use the fact that the probabil-
ity of H iz bounded by m(H) and l-m{ﬁ) in this case, and carry out a loss function
computation as in the Bayesian analysis of Section A.3.3.2. Since the probability
of H would lle in a range, the expected loss would alse lie in a range. A further
heuristic would be needed (such as minimax less) to derive a definite conclusion.

We do not pretend that the functions we have used in this analysis are & proper
reflection of the best available understanding of the physics of the template
matching problem; nor do we believe that the neglect of the relatiomship between
the informatiom connecting pixel data is likely to lead to the bast possible
analysis; we do believe, however, that a belief function analysis can give in-

sights which =simple filtering may not be able to echo.

A3, 6 Summary, As we mentioned in the introduction to this chapter, template
matching at the pixel level is subject to problems owing to the imprecisiom in
possible templates, and our uncertainty over how optical conditions might affect
the photographic image of the object. We have outlined above how the procedures
of Bayesian decision theory, fuzzy set theory, and belief function theory might be
applied to this problem to improve the performance of an automatiec procedure for
searching for a particular object in photographs.

A.4 Relaxstion and Scene Labeling
A.4.1 The problem. A common need in interpreting aerial images is to combine

tentative identifications for small regions of the image with more general infor-
mation about the possible relationships of one region to other neighboring
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regions, An example of this problem, at the pixel lewvel, iz how to relate a
categorization for each pixel, (i.e., as field, road, water, etc.), to the class-
ifications of meighboring pixels, to ensure reasonable consistency. The seminal
paper by Rosenfeld et al, (1976) suggested a method for doing this, vwhich haz come
to be termed "probabilistic relaxation.” A considerable literature has built up
on thiz technique (vhere it iz often described as "standard®™), and there iz also
much experience now of using it in practice (see, for example, Peleg, 1980; Bal-
lard and Brown, 1982; Crombie et al., 1982; Haralick, 1983; and Eittler, 19E83).

As Haralick (1983) has pointed out, however, "probabilistic relaxation has been a
mechanism whose theory has not been well understood." It was developed to attempt
modification of crude probabilistic estimates of the labeling {ﬂ£ categorization)
of each basic unit, in the light of information at neighboring unit#- As Haralicel
(1963) suggests, however, K there are alternative ways of achieving this goal, par-
ticularly if one sets the problem in a larger centext than low-level "pixel-
pushing” (te use a phrase of Haralick's {private communication)).

In this chapter, we shall present a Bayesian formulation of the problem much as
Haralick (1983} does; but we shall show hew a slightly different formulation can
work on the scene labeling problem first sugpested in Rosenfeld's 1976 paper. We
ghall generalize this as an example of conflict resolution when different kinds of
basie labeling algorithms are available. Then we discuss Shafer's account of
Rogsenfeld’'s problem, and show how his theory may be combined with the Bayesian
one. Finally, we discuss Rosenfeld's own application of fuzzy set theory te this
problem, and how it might be modified.

A 4.7 Bavesisn anslyais. Suppose we wish to label n objects with & set of labels
L = {lj:j-l,....ul. This could t;thﬁr be the pixel labeling problem, or, at a
higher level of image understanding, scene labeling once a segmentation algoriths
has been applied to identify elemental regions of the image. For each of the n
ohjects separately, data Dy is sveilable on which to base the choice of label for
that object. Moreover, we have prior information about which sets of labelings
are more likely than others which we assume can be expressed as a prier probabil-
iy distribution
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p(l) = Pr[label of the ith object is 1;, i=l,...,n].

Thie will be zere for labeling combinations, 1, that are Impossible; unlike the
assunption made by Haralick (1983, p.423), we cobserve that some labelings 1 with
non-zéeros probability may be more likely than others, and this will be determined
by our prior knowledge of the kinds of sets of objects which we may expect to find
in an image of the kind we are looking at. We will discuss how to specify our
prior distribution in the example of the next section. The guantity of interest
te us is what chance should be associated with each labeling 1, in the light of
the data set (Dy: i=1l,...,n}. We use Bayes' formula to express this quantity as

Pr[ (D) |1]

]:I- B e —————
PALIDY) = s

T opll).

How we follow Haralick, and suggest that since for any object the data Dy will
depend only en the true labeling of that cbject, we can express

T

Pr{(D4}|1] = ﬂ Pr[Dy|1].

For example, in the scene labeling preblem, the data Dy might be a texture wveetor
which should discriminate between water, forests, buildings, ete. The chance of
getting a particular texture vector from an object which is really a field should
not depend (it can be plausibly argued) on whether the neighboring regioms are
buildings, forests or lakes, or on the texture vectors obtained from meighboring
regions,

Using these equations, we get
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T

_1Pr[D, |14 ]
pLLI{Dg)) = ﬂ ok pll). (A.2)

T
{-TFT[Dilli']Pfl‘}
1" i=1

Mow we see that our result depends only en p(l), and Pr[D;|l;]. We have discussed
the first of these above. The second could be assessed direetly, as Haraliek
(1983) implieitly assumes, and we suggest that this may be the most sarisfactory
approach, One of our purposes here, however, is to show how a Bayesian approach
differs from the non-linear relaxation method of Rosenfeld et al. (1976). The in-
puts in that process are not the conditional probabilities on the data given the
label, but the inverse conditional probabilities, Pr(l;|D;]. If we are to be
coherent, it is not possible to specify these probabilities independently of p(l).
our prior opinion on lsbels, since

I Pr(ly|D;]PriDy] = Pril4].
Dy

Pril;] will not need to be assessed in our subsequent analysis; all we need 1s te
assure ourselves that a set of probabilities Pr(D;] (or a distributien, if the
data are continucus) exists which allows a particular assessment of Pr(l;] te be
consistent with the algerithm for finding Pr[l;|Dy]. This will be the case so
long as the m-vector Pr[li—hk], k=1,...,m, is im the comvex hull of the wvector
Pr[li—Lk D), k=1,...,m, for all D which are possible. This iz unlikely to be much
of a restriction, and can be checked In a Hnrkiﬁg algorithm, We shall continue
our analysis assuming that Pr[l;|D;] and Pr{l;] can be separately specified.

Mow given that we can take the statistical interaction between the label snd the
data to be localized, we have
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Prls|Dy]

Pr[Dy]

and inserting this in the formuls shove, we get

L1
pLliDy1) = K {|_llPt'[li Di]\{i} : (A.3)
i- 3

o Pr(l
I:l [14]

where K is a normalization factor which ensures {p{l|{Di}} « 1, i.e., that we are
really dealing with a probability distribution over possible labelings 1. Notice
that in this formulation we do not have to assess probabilities of getting the
data {DL] either conditional om the labeling, or marginal over labelings. This
agsessment task, which could be wery difficult in the case of continuous multi-
dimensional wvarisbles, such as texture vectors, has been replaced by the ap-
parently more tractible problem of assessing conditionals on labels given the
data, for each object independently. (We note that the advantage in doing it this
way may be more apparent than real, however.)

A second apparent advantage of this formulationm is that is separates (a) assess-
ment of the probability of each 1; considering enly the corresponding Dy, from (b)
assessment of the impact of interdependencies among the set of 1; on the probabil-
ity of 1. Note that the ratio on the right hand side, between p(l) and the
product of the Pr[li] iz & measure of the degree to which non-independence amomg
the 1; supports or detracts from the likelihood of a particular set of labels, 1.
To the extent that the ratio exceeds (falls below) 1.0, the 1; (do not) "belong
together” and p{lliﬂi]j is increased (decreased}).

We suggest that this scheme is a more satisfactory way of handling the input in-

formation which Rosenfeld uses inm his nonlinear probabilistic relaxation method
than the procedures of that method itself. This is not to say that probabilistic
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relaxation should not be used, since as a mumerical method it can clearly produce
sensible practical results. BRather, we should interpret the computations of prob-
abilistic relaxation either as Haralick (1983) does, as a process of sequentially
including more and more information; or, as Hummel and Zucker (1%83) do, as not
being probabilisties at all. With the latter interpretation, we can think of
relaxation as being a sensible heuristic technigue for deriving consistent
labelings, or even as= & non-probabilistie method for generating probsbilities, te

be contrasted with the more intelligible probabilistie approach, given by the for-
mula above.

4 4.7 BRogepnfeld's M,. To illustrate the difference between our suggested
method, and non-linear relaﬁntian. we shall apply it to the example that is used
in Bogenfeld et al. (1976)., A triangle iz identified im an image, and the scene
interpreter has to make a three-dimensional interpretation of this triangle on the
basiz of information about each of the three lines., Each line can be labeled with
one of four labels, which we shall eall A;, ;, A5, and };, and of the 4364 pos-
sible labelings, only eight are possible, as listed in the table below, The
reader is referred to Rosenfeld et al. (1976) for a precise meaning of these
labels and the eight interpretations of the triangle.

Table A-2: The Eight Possaible Lsbelings

Labeling of side: l'[.‘i]' l{E] 1{3} .J-.“J 11';5} l"ﬁ} l'lr.ﬂ J.””'
1 M 2 al 1 A3 A2 A2 Ay
2 M| e | A | M | M | M | A2 | R
4 N | e i '3 X e s | s

Prior information is that each of these labelings is equally likely; this being
50, pf_l{k}} - 1/8, for each k. Moreover, we muet use this information to give the
prior marginals for each label on each side. For side 1, this gives

plly=AyI=3/8; p(ly=iy)=3/8; p(ly= Aq)=l/B; p(ly=A )=1/8. (For example, p(ly~ o) =
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p{liij} + ptltﬁ}} + p{l{?}.} But because of the symmetry in the prier
information, we find the marginals te have the same values for sides 2 and 3 as
they have for side 1, Ve can now compute the second factor in braces in the ex-
pression for the postericr distribution, p(l|iD;}), given at the end of the last
gection, i.e., the interpendence ratio discussed in the last section. This is the
joint distribution for the labeling input, divided by the product of the marginals:

Interdependence
Batio
1)

1 2.37
1(2) 2.37
1¢3) 7.11
ligj 7.11
1{5} 7.11
1¢6) 7.11
;f;} 7.11
1482 7.11

The lower ratios for 1{1} and_lfi] reflect the fact that the labels they invelwve
{3 and ks) are more frequent in the possible labelings than h3 or hi: thus, for
example, the cooccurrence of 11'3 in l{l} may more due to chance (rather than
interdependence) than the occurrence of 33, Al' and 11 in L{E}.

In order to make a comparison between our method and that of Rosenfeld, we have
computed the posterior probabilities by our formula using these raties, for each

of the eight examples of input probabilities suggested by Rosenfeld, as given in
Table A-3.
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Table A-3: Input Identification Probabilities
Caze || pllq|Dq) plly D) | pllz[Dg)

=ty A3 Ny H12:11 b g Ay flzih g h3 Ny
A 0.25 0.25 0.25 0.25) 0.25 0.25 0.25 0.25) 0.25 0.25 0.25 0.25
B 0.5 0 0.5 0O 0.5 © 0.5 0 0.5 o 0.5 0
c 0.5 0 0.5 © 0.4 0 0.6 © 0.5 0 0.5 0
D 0.5 @ 0.5 0 0.3 ¢ 0.T © 0.5 0O 0.5 0
E 0.3 0 0.T @ 0.3 0 o.T © 0.5 © 0.5 ©
F 0.2 0 0.8 0 0.3 @ 0.7 © 0.5 © 0.5 0
G 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
H 0.3 0.2 0.3 0.2 0.25 0.25 0.25 0.25| 0.2 0.2 04 0.2

Table A-4 below contains the results of the computations, giving the posterior

probability of each of the pessible interpretations being correct, based on our

Bayesian formula (B), and on Rosenfeld's non-linear relaxation method (R).

Table A=4: Posterior Frobabilities
Cage: A B c D E F G H
Tabeling B R B 2| 8 2| B &| B R E R B R B R
260 fysz0 welwio 1]2/23 1) v o e 1 | /23 o |27/350 1 | 359 0
12 1 q720 /8 0 0 0 0 0 0 0 0 o o 8/3%0 o | 2/59 ©
,153} 3/20 w8 |3/10 o |es23 o|7/14 1|7/18 © | 7/23 o |8w/3s0 0 | w59 O
it8) 13720 1/8 (3710 0 |6/23 0|3/14 ©0|3/18 0 |3/23 0 |82/350 18/59 1
1050 |3720 w8 |3/10 o0 |6s23 0 |3/% 0|7/18 © [12/23 1 |81/350 9/59 0
146 (3720 1/8 0 0 0 0 0 0 0 0 0 0 |24/350 0 | 6/59 ©
17 13720 1/8 o 0 0 0 0 0 0o o o l24/350 o | 6/59 ©
18 | 3720 1/ 00 o 0 o0 0 00 6 o |24/350 0 | 6/59 O

Ve have represented the probebilities im Table A-4 as fractions rather than

decimals in order for the reader to see probability ratios more easily,
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Motice that Iin cases D, F and H, the relaxation result is to pick out the most
likely labeling; what is more interesting are cases B, C, E and G where a labeling
which is net the most likely is chosen (in case E It is only 177 as likelwy). The
results of the Bavesian algorithm in case A may seem surprising: since the data
gives each label to be equally likely for each side, and each interpretation to be
equally likely, would it not seem more reasonable to use the relaxatiom result,
that each lebeling should be equally likely, posterior to getting the data? This
inference is false, however, because the labels are not distributed uniformly im
the possible labelings; 1f the data suggest that a side 1z just as likely teo have
lsbel Aq P Ay for example, this favors labelings 1637, 108 ana 167, over 1017,
eince it must give more weight te the few appearances of label lj.

A.4.4 A alterpative Bavesisn gpalvsis. An important observation can be made
regarding the Bayesian analysis in the last section, namely that the meaning of
the input conditional probabilities, p[ll|ﬂijlmaj in some cases be unclear. To
illustrate this point, and also to illuminate the triangle example, we shall now

construct a simple axample of a labeling problem and discuss the issue in the con-
text of that problam.

Suppose that a room contains a large number of urns, of twe types, A and B, Type
A urns contaln 50% black balls and 50% white balls, while type B urns contain E0%
black balls and 20% white balls. A probabilistie labeling procedure [analogous to
the line labeling algorithm for the previous example) consists of taking a random
sample of size n from any urn, with replacement. This will give the following
probabilities for getting r black and n-r white balls from the urn.

Priz|a] = (D)(0.5)"

Prir|B] = (2)(0.8)%(0.2)™ T
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S0 the algorithm yields, in the general notation Pr[ni|li], and not Pr[lipni], As
we mentioned previously, it would be such more straightforward te do & Bavesian
analysis supposing that Pr(Dy|ly] were the numbers preduced by the line labeling
algorithm in the triangle case; indeed Haralick's analysis of the general case

dees make this assumption. Let us suppose, however, that we must deal with
Pr(l;|Dy].

Suppose, in our simple example, we are now presented with a pair of urns, and we
are asked for a labeling of the pair. Ve have, from Baves' Theorem, snd using an
obvious notation,

Fr(rq,zq]Aq.484]

G N b ) Priry,ryl

Prlhg s

with similar expressions for the other labeling pairs (&7,Bg), (By,A,) and
{BI,BE}, The anslygis of Sectionm A.4.7 now gives

Pr[ﬁl,ﬁz]

?r[ﬁl,h2|r1,r21 = K Pr[h1|rl]Pr[hE|r2]
Pr[Ay PE[As]

But now we pust ask how Pr[ﬁilrl] is computed. Clearly in the triangle example it

should be determined by the very formula that led to its inclusion in the expres-

sion above, namely

Pr(ry|Aq]Pr[A]

Priag|ry] = (A.4)

Pr[rl]

Bubstitution of (A.4) in the previous eguation leads to the equivalent, in this
context, of Haralick's &&uatinn, (A.2), If, of course, E:[&l] iz subjectively
assessed, then there is no reason why we should not think of PrlaAq|x;] as alsc
being subjectively assessed, But even if this iz the case, it is clear that its
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assesspent must be made in awareness of the relationship ([A.&) above which oust
hold. In summary then, the identification of the input numbers in the examples of
Section A.4.3 as conditionsl probabilities of labels given data is appropriate
only in the absence of an understanding of the data generation process comparable
to the understanding we have in the urn sampling example; i.e., 1f we clearly un-
derstand how often a given true label will produce a glven set of data D;, we
should use equation (A,2) rather than equation (A.3).

Let us suppose, then, that we have such an understanding. We can offer an alter-
native Bayesian interpretation.of the triangle example of the last section, which
utilizes Rosenfeld's data, if the mumbers in Table A-3 are taken, mot as probabil-
ities of the lebels given the data, but as the relative sizes of the probabilities

of data given the lsbels. For example, we might have, in case A;

= 0,25:0.25:0.25:0.25.

With this revised interpretation, we can recompute the posterior probabilities

using equation (A.2). The table below gives the results of this caleulation,
again with Rosenfeld's solutions for comparison.

Table A-4": Posterior Probabilities--Bevised Interpretation

Case: | A B c D E F G H
Labeling B B B R B E B E B E E R B R B B
[

103 18] 178 |1 | 1 | 279 |2 |36 [0 320 1| 3725 |0 | 27260 |1 | 3725 | ¢
1822 | 18| 178 olo] oflo| olo]| olo olo| ssis0 o |2/25 |0
1018|178 | 176 |0 | 39 [0 |76 |1 |7/20 o | 7725 |0 | 27150 |0 | 3725 |0
1643 18] 18 |16 |0 | 279 {0 |3/16 |0 |3/20 |0 | 3725 |0 | 277140 |0 | 6/25 |2
1039 18| 18 | 178 |0 | 209 |0 |36 o |720 |0 [12/25 |1 | 27160 |0 | 3725 |0
14801 18| 178 0|0 o |o oo o [o olo| a0 |olz2s |0
1670 | 18| 18 0|0 olo| oo 0 |o olo| ssuo|o|sems]o
108 | 1/8] 178 o |0 o lo 0 |0 o |0 olo| sasoiolasms|o
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Once again there are marked differemces from the Rosenfeld analysis.

Further eveluation of the Bayesian inference schemes we have developed above will
depend on theilr application to real scene labeling problems, as an alternative to
relaxation labeling, to determine if empirically useful results can be cbtained.

A 4.5 Bavesian snalvsis of conflict from more than one labeling algorithm. Im
some cases more than one probabilistic elassifier iz available to give Iinput prob-
abilities for the labeling of each object in the light of data, Pr[l;|D;] or
Pr(D;|l;]. We can think of these as being different because they are based on
different data, Dy and D;', say. This is not unreascnable, if the mtthnﬁ: are
bazed on different ways of handling the fundamental inputs of image analysis,
namely the gray levels at the pixels. We shall consider an alternative
interpretation, namely that the methods hawve different reliabilities, in a later

section.

We are now interested in computing the posterior probabilicy on 1 given the two
data sources, (D;) and [{Dy'). This is given by

Pr{{Dy"}|{Dg),LIPT[1j(Dy)]
Pr[l_DL' ”{Dj_]]

pCLI(Dy}, (D" )) =

Pr{D; " YD) L]1Pe[{Ds )| 1]p{L)
Pr[iD;' ) |(D; HPE[(D;}]

How once a labeling 1 has become known, the chance of getting particular data
ih;") will not depend on (D;}. Hence, we may write

Px[{D;'}|{Dy),1] = Br[(Dy'}|L].
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We could leave matters there, and simply input values of Fr{{D;]|1l] and
Pr({D;'|l]. But to follow our comparisen with Rosenfeld's analysis, we could
adopt the first Bayesian imterpretation (of Sectiom A.4.2) to get

n Prlls|D"] n Pr(l;|Dy]
Dy, 00:'1) = KR | |—————}" _—

where K' is another normalizing constant. This expression is symmetric In the cwo
data sources, as we would expect.

To see how this would affect the computations, suppose the first data source
yields the identification probabilities given by entry A in Table A-3, but that
the zecond data source yields the fdentification probabilities of case B in that
table, In this case, the posterior prebabilities for the 8 possible labelings,
110 18) are, respeerively 1,/28(1,0,9,9,9,0,0,0). As we would expect, this
gives an interpretation which Is different from A and B, Like B, it gives zero
probability te four of the labelings, since one of the methods has shown them to
be impossible; it also suggests Lilj is less likely than egither independent data
source would suggest; here the second methed, B.is confirming the small change in-
dicated by A, thus reducing ic.

A.%.6 Shafer's spproach to the trisngle identification problem. In a discussion
of how to apply his belief theory te the problem of combining dependent evidence
Shafer (1984b) touches upon Rosenfeld's scene labeling problem. Shafer's
critlelism of Rosenfeld's method, as an argument for the proper selection of frames
vhen combining evidence, is of less interest to us than his recommendation of how
the problem should be analyzed.

He suggests that the data which give probabilistic lsbelings for each side of the
triangle should lead to the construction of three independent belief functions
over the frame consisting of the 64 labeling coembinations., The first three of
these are derived from the pixel data for each side; the fourth comes from the
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prior infoermation regarding which interpretations are possible, The pixel infor-
mation corresponds to case B of Table A-4 above, Table A-5 below glves Shafer's
allocation of suppert; the notation is self-explanatory, and we only quote the
subsets of the set of hypotheses which are given non-zeroc support.

Table A-5: Shafer's Four Support Functions

my msg Mg my
my g () (g 0)=1/2 | mpthgduhy, (Ag03=172 | myCthgds (hg) Ap)=1/2 | my(hy Ay hq)=1/8
my (A3, (Aihs (A D)=1/2 | mat(Ardihg (A1) dmly2 | myC(Ay}s (g} As)mLs2 | my(hg hg Ag)m1/s

'II;}':-:'I. -:l. :'l. }-Ll"ﬂ-

(A l l y=1,/8
:i{:hl A3 )=1/8
e (g hg g )=ls8
-n'ﬂuzpllzl.}.ﬂ:l-lfs
ﬂ&{larlzplzj-lfﬂl

The notatien (A;} 1s shert for [31.31.13.ha]. the union of the hypetheses that
each of the four labels is corract.

We now combine these four support functions, using Dempster's rule, to get
mygag iy A a1 0=1/4; myaqu(hy Ag by )=l/h;
mlzahtllqalquj"]-!ﬁ: mliﬂ-"lclﬂ‘ll‘ll}-lf‘!}

with zerc support to all other combinations of hypotheses.

Hote that the suggestion of this analysis is that we should glve eqgual support to
the labelings 1{13. 1{3}, 1Iﬁ3. ansd Lij}: this is in sharp contrast te the results
of the first Bayesian analysis of Section A.4.3, where the posterior probabilicies
were 1,10, 3/10, 3/10, 3/10. The distinction is caused by the handling of prier

belief about label X4. In the first Bayesian analysis, recognition that we would

expect Aq to be only 1/3 as likely as A, on any side, instead of just as likely,
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as the data suggest, leads us to concluda that lsbelings cdntaining 13 ATE mMOTEe
likely {in fact, three times as likely) as lilj which does not contain 13.

The Bayesian analysis would be recovered if different support functioms for my,
My, and my Were uged, If we were to think of the support fer the labels given thes
data as relative to the underlying support for the lsbels, based on m;, then we
might take

my (A DA DA 1=1/8; mg(Rg (A0, [24))=3/4

with similar assignments for m; and mg. Using Dempster's rule on these, we
recover the Bayvesian results. An important point to make here is that the peaning
of Shafer's support functions is very significant.

Altermatively, and perhaps more acceptably, we can compare Shafer's snalysis with
the second Bayesian interpretation above. In that case, Shafer's support function
of Table A-3 leads to results which are consistent with column B of Table A-4',

Ve conclude that Shafer's approach has nothing toe offer over a Bayesian theory
vhen applied in this way to this problem. But there are ways in which it can

provide greater insight, as we shall describe in the next section.

A.4.7 Confliet between two or more svidence mechanisms, Let us now suppose, as
we did in Section A.4.4, that in making lecal assessments of the appropriatensss
ef a label for each object separately, we have two competing inference procedures,
Instead of imagining, however, that esach of these procedures produces probabil-
ities that the label of sach cbject should be a particular lsbel, let us suppose

that we specify support fumctions m(*), me(”) on the set of all subsets of
labelings.

Thus it might be that the data either point unambigucusly to label 11. with prob-
ability &, say; or, with probability 8, the data point to (A;, %31, but fail te
dizstinguish between them; or, with probability 1-a-f do not tell us anything.
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This would lead to the following support function:

and m{C)=0 for C being any other subset of the set of labels. As we pointed out
above, the probabilities could be thought of as relative to the underlying
probabilities.

If two different methods were available for lebeling om the basis of low-level
data about each object, and these labelings were in conflict, we can now see how
to use Shafer's theory te combine this evidence, and prior evidence, te illuminate
the labeling problem. Specifically, suppose each object can be addressed by two
different inference procedures, but that these are applied to each object
separetely. Application to the ith object will lead te support functions

PO G RN 1 LI LN £ SO, - A

vhere ¥® iz any subset of the set of labels and it iz in the ith pesition in the
list of arguments. This notation implies that, while the frame for the support
function actually has (2®-1)" elements (there are 2™-1 possible sets of labels for
each of the n objects), the imnference procedure operating on the ith object does
oot have anything te say about the other n-1 objects, and so the suppert function
for the ith object allocates positive measure only te the universal set of labels
thyv--eahpt for all objects except the ith. Dempster's rule is now applied to the
2n support functioms thus prescribed, to produce a combined support function
mp("); this is then, inm its turn, combined with the prior support function mr{'],

again by Dempster's rule, to give & final support function for subsets of the set
of all labeling n-tuples,

To illustrate this rather complex description, let us return to Eosenfeld's cri-

angle exXample. Suppose that the six support functions im Table A-6& are obtained

by application of two distinet line labeling algorithme te the three sides of the
triangle.
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Here we have abbreviated the notation. The labels in a support function mq just
refer te the ith object; oy gives exclusive support to the complete set

{3 .h9.09, 241 for objects other than the ith. Let us demonstrate how Dempster's
tule is now used. First let us construct 11'12{‘} by combining the first tweo
belief functions im table A-6, again using the asbbreviated notation.

myq (Ag my g (Ag d4myq (A dmg g (A Agdgd+myg (A dmy g (hqAgdmy g (A mya (RyRodahy)
+11 (A3 3)m5 (A1) + = (gdadadgdmyaldg)

my 12(3) =
L-mqq (Aahydmy g (hg d-myy (hohgdmy g (AqgAa)

The numerator of this expression is the sum of products of support functioms for
subsets whose intersection iz exactly 11: the demonimator differs from one by &

similar sum over subsets with a null intersection.

Using similar methods, we derive the fellowing support functioms.

Table A-7: A First Application of Dempster's Rule

.12 =2,12 | B3, 12
my,12(41) - 0,744 my 15(hy) - 0.097 my 15(3y) = 0.904
ml,lI{llkl} = .11& “T,IEKLEJ - 0,861 -3.12{33] - . 0GR
m yplhghg) = 0.023 my 19(Aghy) = 0.014 my 12(Aph3) = 0,048
m y1plhghghy) = 0.047 my 12(hz) = 0.014
my 120hg) - 0.047 my 13{h1Aphg) = 0.014
I1,12f11l2131¢3 = 0.023

Ay
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The next step of combining these support fumctions into a single support function
over the labeling triplets for the triangle will give support to 90 different
elements. PFather than compute all these, let us introduce the prior support funec-
tionm at this stage.

Let us first take mp{*) to be the simple support funmetiom suggested by Shafer in
hiz work en this example giving equal support to the eight possible labelings,
Thiz allecates no support to anything other than single labeling triplets (rather
than sets of labels for ome of more of the sides) and, as a result of joining this
with the support functions in Table A-7, the combined support function will be of
the same type. The caleculations using Dempster's rule on the four support
funetions, give:

Bpplhy A Agd=0.119; mppliq,hq A )=0.843; mpp{Ay,Aq.Aq)=0.012; mPD{ha.ll.llj-ﬂ.ﬂﬂﬁ.

Because of the special structure of this support funetion, these are, in fact,
probabilties for each of the four labelings, and may now be used with a loss
funetien, as suggested by Haralick, 1983, to make a lsbeling decision.

It will be more interesting, howewer, to investigate the implications of Shafer's
theory when the input support functions give positive support to some combination
of simple hypothesea. Imn particular, suppose IF{‘] gives support of 1 to the szet
of labelinge ((A, A, R0, (hgudg, o) (g Agu A0 O A0 29D (Chg A 0 (R Ay L 490,
(Ao, Rgd, (R h9,X9) ). Thus, instead of supposing, with the Bayesians, that each
of the labelings 1':1]'. ...,],':E:' is equally likely, we just give all our support to
the set of all E labelings. This highlights the distinction between the Shaferian
and Bayesian representations of lack of knowledge. It is now a tedious, but
Etraightfnrward matter te compute the final support function, and the associsted
belief and plausibllity functions of the sets of hypotheses (labels),
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Table A-B: Computed Belief Funetions

Label Set Support Belief Plausibility
11 0.0766 0.0766 0.1311
13 0.8633 0.8633 0.8924
14 0.0066 0.0066 0.0132
1° 0 D 0.0261
1t 0.0221 0.9620 0.9934
LI 0.0041 0.0873 0.1367
i.‘l.",.‘LE: 0.0192 0.0958 0.1301
u.?'.f'i 0 0.8699 09042
Ilt’.lﬁl 0 0.0066 0.0380
(13,1% 0 0.8633 0.9127
i bt ) ) 0.0012 0.9739 1.0000
3 :4%1H 0.0011 0.1076 0.1367
il 0.0056 0.9868 0.9934
(1*.1%.1% 0 0.8699 0.9234
(1*.1%.2%.1M 0.0002 1.0000 1.0000

Ve have not Included in the label sets any set of labels which includes a label
triplet not in the allowable four -[J_l. ,]_3, lﬂ or 15,']. It is clear that 13 has the
strongest support of any simple labeling; moreover, one semsible procedure for
making a conclusion from an amalysis of this kind is to adopt the simple labeling
with the maximum plausibility. Omce again, this is lﬂ' in this case.

This analysis does not give us a probability for a hypothesis, but it does lead to
{approximate) boupds on that probability, given by Bel(") and F1({"). Using these
bounds in a loss funetion caleulation might still given an unequivocal lebeling
decision, or, more likely, will lead to indeterminacy. This may well be the
proper odtput of the labeling procedure, since it corresponds to the inherent in-
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determinacy in the input informacioemn.

We have seen how Shafer's theory may be applied te handle the cbject labeling
problem. It cam be a more sensible way of representing what the data tells us,
and we recommend the construction of a labeling program, and low-lewvel labeling
algorithms, which are consistent with this philesophy.

A.4.8 Fuzzy labelipg. In this sectiom we examine the potential of fuzzy set
theory for the scenme labeling problem. We will first describe in cutline the use
suggested by Rosenfeld et al. (1976), and give a critique of that use. Then we

shall suggest an altermative way that fuzzy messures can illuminate the scene

labeling problem.

Eosenfeld et al., start by presuming the existence of an object labeling algorithm
which is able to produce for each object i, and each label, Ay, a number W, (M)
between 0 and 1. This defines the degree to which it is possible to label object
i with label A,. They also define a rumber ?ijilk'hl} as the degree to which
label A, for object i is compatible with label 11 for object j; this mumber is
presumed to derive from some discussion of physically possible relationships be-
tween objects. As before, in our discussions of the object labeling problem, we
gee that the task 1z to combine two types of Information, namely, Intrinsic infor-
mation derived from each object about appropriate labels for that object, and more
global information sbout the compatibilities of different combinations of labels
for the different objects. In this case, this informetion iz giwven by W) end
HEJ{',‘}, respectively.

Then a procedure has to be defined to operate on these input numbers to produce a
combined opinion sbout appropriate labelings for the set of objects. Rosenfeld et
al. do this in two ways, They are not explielt, but appear to compute, for any
labeling ly,15,...,1 the expression

n nl

T{?(U&(li}rwijili.ljjj .
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This represents the degree to which the labeling is compatible both with the data
at each object and with the relationships between objects. One could then choose
the labeling, 1, for which this expression Is largest,

A= an alternative, they suggest that a sequence of membership functions should be
derived using the relationship

u P 1,y - m]-n[Tjax[-m{uj':”(lj:l.?13{11,113'}]]-

This is a kind of relaxation, justified imtuitively. The expression im the immer
square brackets is the degree to which labels 11,11 for objects i and j are
possible. The expression in the outer brackets is the degree to which 1; and 11*
are possible, where 1j* iz the most plausible label for object j conslistent with
label 1; for object i. Fimally, the overall possibility of the label 1, fer ob-
ject 1 is the least of these degrees of possibility over all other objects j.

Rosenfeld et al. report that the behavior of this latter algorithm is umsatisfac-

tory when applied to real labeling problems, since degrees of possibility may
decrease, but never increase, by using ic.

As an alternative to Rosenfeld et al.'s approach, consider the following, which
is, in essence, & generalizatiom of thelr first method., Suppose that Iinstead of
representing our knowledge about the consistency of labelings by relationships be-
tween pairs of objects, we look at the whole set of objects at once., Thus, in-
stead of ¥{', ), we specify ¢{ll‘11,...,1ﬂj to be the extent to which the labels

11*"‘*1n for the objects 1,...,n, are possible., We then compute the overall pos-
sibility of a labeling to be

min(min(l (15)),8(1y, ..., 1)) (A.5)
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and we could then adopt the labeling for which this measure is bipgest. In the
casze that i

'#'{11. ' --.ln} o ?fjl wij{liplj_}

thiz reverts te Rosenfeld et al.'s first methed, Our mechod allows greater
generality than theirs, however, since we can ask for more general information
than the compatibility of pairs: it may be, for example, that lsbel 1 for object
L is compatible with label 3 for object & only if object 7 has lebel 2; this in-
formation canmot be represented in the function ¥(-,").

As an example of our approach, consider once agesin the triangle labeling problem.
suppose that for some image of a triangle, we have the following possibilities:

Table A-9: Input Poszsibilities (1)

M b2 Ay i
My (") 1 0.1 0.9 | 0.2
pal*) 0.7 0.3 0.95 | 0.6
py (") 1 0.1 1 0.3

This says that for side 1 labels A, and Ay are very possible while labels 11 and
Ay are well-nigh impossible, and szo on. Further suppose that the following values
of ¢ are given for the labelings 1! ee 12 respectively, using the notation of
Table 4-2.

1, 0.1, 1, 0.85, 1, 0, 0.1, 0

with zere possibility for all other labelings. Then the values of (A.5) for the
eight labelings are, respectively,

0.7, 0.1, 0.95, 0.7, 0.7, 0, 0.1, 0.
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Thus the most possible lebeling is l}. Notice that even if all of the eight
labelings were thought to be totally pessible {dJ{lk"jl—l1 k=l,...,8), we would get

0.7, 0.1, 0.95, 0.7, 0.7, 0.1, 0.1, 0.1
from applying (A.5), a barely neticeable difference.

The depepdence of the output of this algoriths on the smallest numberz around is
intuitively unsatisfactery. Part of the problem may be interpretation of the pos-
sibilities as probabilities. Imn fact, as Zadeh points out, generally speaking
possibilities will be bigger than probabilities. A label may be very possible,
but improbable. A highly probable label will not be almost impossible. "That
being so0, it may be that more plausible input pogsibilities may be as below:

Table A-10: Input Possibilities (2)

hl lﬂ 13 hﬂ
My () 1 0.5 1 0.5
ugl®) 1 1 1 1
B30 1 0 1 0.8

If we combine this with the toetal possibilicy (2=1) of the eight labelings
11,....13. using (A.3), we get, respectively,

1, 0,1, 1, 1, 0, 0.5, 0.

This iz not very infermative; it execludes three possible labelings

{l;. lﬁ and 1?} on the grounds that label ), for side 3 is not possible, and
leaves us with the information that four labelings remain totally possible. We
sugpect that this phenomenon is endemic in uses of fuzzy set theory in this way.
We conclude, therefore, as Rosenfeld et al. did, that using fuzzy logic on the
scene labeling problem iz not likely to be wvery useful.
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