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TRUST IN DECISION AIDS: A MODEL AND ITS TRAINING IMPLICATIONS1

Marvin S. Cohen, Raja Parasuraman, and Jared T. Freeman

1. THE PROBLEM OF TRUST
Decision aids have much in common with other types of automation. For example, they

vary in the level of automation that they offer  — from data integration, through expert systems
that generate decision options, to associate systems that take action unless the user overrides. In
principle, “autonomous” systems can be developed that evaluate, choose and act without the
user’s knowledge.

Automation of decision making has not advanced as far along this spectrum as
automation in other fields. Explanations for this “failure” vary. According to some advocates of
decision aids, the reason is a sort of irrational technophobia, evidenced by a lack of appropriate
trust in the decisions that such aids make. According to skeptics, on the other hand, a good
reason for rejecting decision aids altogether is overtrust: the tendency of users to rely on an aid
as if it were infallible when they should instead rely on their own judgment. Strangely enough,
both camps share a similar concept of trust. In both views, trust is a relatively enduring attitude
that a user has toward an aid, akin to love, hate, or faith, rather than a more transient and
situation-specific attitude, such as agreement or disagreement.

We will propose an alternative, more differentiated conception of trust. It includes the
more enduring concept as a special case, but emphasizes instead the specific conditions under
which an aid will and will not perform well. According to this alternative approach, the problem
of decision aid acceptance is neither undertrust nor overtrust, but inappropriate trust: a failure to
understand or properly evaluate the conditions affecting good and bad aid performance.

The issue of trust marks an important difference between decision aids and other types of
automation. Decision aids are often intended to help users handle uncertainty about a domain.
Yet, an obstacle to the effective use of decision aids is uncertainty about the decision aids
themselves. Unlike other kinds of automation, therefore, decision aids may transform, but not
eliminate, the human task that was to have been automated.

Existing training has neglected the issue of uncertainty. It typically focuses on what the
user must do to make the aid work, i.e., inputs, outputs, and modes of operation. In doing so, it
has inadvertently reinforced the misconception that trust must be a permanent stance, to accept
or reject an aid as a whole. More often than not, however, to benefit from a decision aid, the user
must learn, or be trained, to recognize and act on uncertainty about the quality of the aid’s
recommendations, and to understand how such uncertainty can change from situation to
situation. In most cases, this task is not trivial. The domains in which decision aids are
introduced tend to be complex; novel situations are likely to arise that were not anticipated by aid
designers; the workload and task priorities of users may shift, along with the attention they can
devote to the decision aid itself; and by the very nature of uncertainty, even the best decision
may on occasion have a bad outcome, or a bad decision a good outcome. It is not easy in this
context to acquire an understanding of the aid's decision making processes that will support
effective exploitation of the aid. The challenge is perhaps not unlike the one we face in learning
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to work effectively with our fellow humans.
The research to be described had two goals: (1) To develop a systematic and general

framework for understanding trust in decision aids, (2) to derive training implications from that
framework, and (3) to apply the framework and test its feasibility by developing a training
strategy for a specific decision aiding environment (the Rotorcraft Pilot’s Associate). Section 2
of this paper briefly describes a part of the framework that has been developed, while Section 3
explores some of its training implications. Section 4 compares the framework to previous work
on trust. A more complete description of the framework, as well as of its initial application to
RPA, can be found in Cohen, Parasuraman, Serfaty, & Andes (1997).

2. A QUALITATIVE MODEL OF TRUST IN DECISION AIDS
The model of trust that we will describe depends on two key concepts: (1) The qualitative

structure of trust is represented by a template for arguments of a certain kind. Such arguments
marshal observations and prior beliefs to make predictions about the quality of system
performance under specific conditions and over a specified period of time. (2) The quantitative
aspect of trust highlights the uncertainty of these predictions, and can be conveniently
represented by probability distributions over the appropriateness of system actions given features
of the system and of the situation: e.g., p(correct action | system, situation). Because of this
duality, we refer to the theory as the Argument-based Probabilistic Trust (APT) model. This
model builds on previous work by Muir and others (e.g., Muir, 1987.1988; Zuboff, 1988; Riley,
1994). However, interpreting trust in terms of arguments and uncertainty leads to a theory that is
more general, more parsimonious, and more useful for training than some of the current
formulations. The present paper will focus on the qualitative aspects of the model.

Trust as Context-Specific Arguments about System Performance
The qualitative aspect of trust is based on Toulmin’s (1958) theory of argument.

Toulmin’s goal was to examine actual methods of reasoning in real-world domains such as law
and medicine, rather than idealized forms of reasoning represented in logic. He provides us a
convenient framework for reasoning about the expected quality of a decision aid’s performance.

The basic structure of an argument, according to Toulmin is shown in Figure 1. A claim
is any conclusion whose merits we are seeking to establish. The claim is supported by grounds,
or evidence. The reason that this particular evidence supports this particular conclusion is the
existence of a warrant, i.e., a belief in a general connection between this type of grounds and this
type of claim. The backing provides an explanation of the warrant, i.e., a theoretical or empirical
basis for the connection between ground and claim. Modal qualifiers (e.g., probably, possibly,
almost certainly) weaken or strengthen the validity of the claim. Possible rebuttals are factors
capable of deactivating the link between grounds and claim, by asserting conditions under which
the warrant would be invalid.
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Grounds Claim

Backing
(Basis for believing Warrant)

Modal
qualifiers

Possible
rebuttals

Warrant
(If Grounds then Claim)

Figure 1. Toulmin’s model of argument. The structure can be read: Grounds, so Qualified Claim, unless
Rebuttal, since Warrant, on account of Backing.

Figure 1 shows how APT uses the components of Toulmin’s model. We will describe
each of its elements in turn:

Warrant. A Warrant says that certain conditions are associated with a certain quality of
aid performance. The conditions, which the user believes to be correlated with aid performance,
may be features or combinations of features of the system, situation, task, or even specific aid
conclusions. The quality of performance may be described specifically (e.g., the system will be
wrong under these conditions), probabilistically (e.g., the system is right about 3 times out of 4
under these conditions), or with more vague qualifiers (e.g., the system is highly reliable under
these conditions).
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Figure 2. Main components of Argument-based Probabilistic Trust (APT) model. The argument structure
is shown within the box. Parameters associated with these components are shown outside the box, linked
to the relevant components by dotted lines.

Grounds. To play a role in an argument for (or against) trusting an aid, a feature or
combination of features must also be observed on the particular occasion for which trust is being
assessed (as reflected in the grounds). Grounds are simply the current or on-going observations
that influence a user’s judgment of the reliability of an aid.
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 Qualified Claim. The output of the trust model is a qualified claim. This Qualified
Claim represents the degree of trust in the system under the conditions specified in the Grounds,
according to the Warrant. As noted above, qualifications may be precise (e.g., 30%) or, as is
more often the case, vague (e.g., very reliable).

Degree of trust in a system, then, is the probability (or more vaguely expressed
uncertainty) that the system will produce correct actions over a given period of time, conditional
on relevant features of the system, current situation, task, and/or conclusion.

Backing. The fourth component of the model is the origin of the user’s predictions about
system performance, i.e., how the Warrants were learned or inferred. Users can learn about a
system, and develop an appreciation of factors that influence trust, in many different ways: by
direct experience with the system, by learning about system design, by talking to more
experienced users, or by making assumptions (e.g., best case or worst case).

Rebuttals. Rebuttals are possible exceptions to the rule expressed by the Warrant. They
may lurk as implicit assumptions in the backing, for example, that one’s past experience with the
aid has been representative of present conditions. Sometimes, rebuttals reflect explicit
assumptions, for example, a decision by the user to assume worst-case conditions for aid validity
until he or she learns otherwise. Assumptions are natural and inevitable, since it is impossible to
verify every condition that could potentially affect an aid’s performance. As a result, any
assessment of trust is subject to rebuttals, even assessments that are based on long experience
with the aid or on thorough design knowledge. When events violate expectations, however,
assumptions are worth ferreting out and re-examining through a process of critical thinking.

How Trust Varies
The most important use of APT is to chart how trust varies, from one user to another,

from one decision aid to another, from one situation to another, and across phases of decision aid
use. To track such changes, APT supplies a set of five interrelated parameters to describe any
given assessment of trust. Two of these parameters, resolution and calibration, are most easily
illustrated by reference to probabilities. However, other, more verbal assessments of uncertainty
could be substituted. The quantitative aspect of the model is secondary to the qualitative aspects,
and is of value primarily for the light it sheds on qualitative relationships These parameters, as
shown in Figure 2, are:

Temporal scope. This is the duration of time that the assessment (i.e., the qualified
claim) covers. As shown in Table 1, we will distinguish four principal phases in the use of a
decision aid, corresponding to decreasing temporal scope: (1) trust in a system generally over all
its potential uses, before a specific mission has been assigned or a specific task has been
undertaken, (2) trust in the system’s capability for a specific mission or task, (3) trust in a
specific recommendation that the aid has made, before the recommendation has been verified or
implemented, and (4) trust in a specific aid recommendation after it has been verified or
implemented and its quality is known. These “phases” do not necessarily follow a strict
sequence, and the boundaries may be blurred (e.g., missions are “replanned” in the course of
execution). As shown in Table 1, the main point is to capture the relationship between different
kinds of decisions about interaction with the decision aid, the different kinds of information they
rely on, and the differences in temporal scope that usually attend such decisions.
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Table 1.Temporal phases of trust.

Phase of Aid Use
1: Pre-theater 2: Mission /

task planning
3: Task /mission
execution

4: Task
outcome

Temporal
scope of trust
and reliance
decision

Entire lifetime
of aid

Aid during
mission/task

Specific aid
conclusion

Specific aid
conclusion

Illustrative
information
used to predict
trust (grounds)

Type of system,
environments to
which system is
suited,
functions it can
perform.

Terrain,
mission
objectives,
types of tasks.

Task goals, task
situation. Type
of aid
conclusion;
content of aid
conclusion; aid’s
confidence level
[conditional on
user’s choosing
to monitor aid in
Phase 2].

Quality of aid
conclusion
[conditional on
user’s deciding
to verify or
implement aid
conclusion in
Phase 3].

Illustrative
reliance
decisions made

Managers:
Build aid or
not; basic aid
functionality.
Designers:
types of
interaction &
automation
modes; degree
of adaptability
of aid by user,
degree of
automatic
adaptiveness of
aid to user).
Trainers:
scenarios & aid
functions to
focus on.
Users: degree
of acceptance
of aid.

Users: Select
automation
mode (e.g.,
fully automatic;
monitoring &
possible
verification by
user; manual
with monitoring
by aid; fully
manual); adjust
aid parameters
[conditional on
designers’
choosing an
adaptable aid
design in Phase
1]

Users: Accept,
override, modify,
or verify specific
aid conclusion;
use aid to verify
user’s conclusion
[conditional on
user’s choice of
automation
modes in Phase
2].

Completeness. Grounds and Warrant can vary in their coverage of the features that
potentially affect system performance. Completeness thus reflects the degree to which the user
understands the conditions that affect trust at any given temporal phase.

Resolution. The resolution of the qualified claim is the degree to which the user can



7

reduce uncertainty about aid performance, either for better or worse, by discriminating situations.
If trust is measured as the probability of an acceptable system response given the situation,
average resolution is increased by defining situations in more detail, so that this probability
moves closer to either zero or one for each situation that might occur. Completeness obviously
affects the resolution of the trust assessment. The more information that is used to predict an
aid’s performance, i.e., the more completeness in the grounds and warrant, the higher the
average, or expected, resolution. For example, a decision aid user may believe that an aid tends
to be correct in 80% of all the situations in which it is used. But trust assessments will have more
resolution if the user can observationally identify specific types of situations where the
performance of the aid is better (e.g., 95%) or worse (e.g., 60%) than the overall average.

These quantitative aspect of the model, i.e., probabilities, are secondary to the qualitative
aspects, and are of value primarily for the light they shed on qualitative relationships.

Reliability. Reliability of the backing refers to the amount and quality of data or
information that underlies the trust assessment. The more experience a user has with the aid and
the situation, the more representative that experience is, the more detailed and accurate the
design knowledge the user has, or the more robust the assumptions the user makes, the more
reliable is the Backing for trust assessments. In probabilistic terms, a user who is highly
experienced with a decision aid may be confident that the percentage of correct aid
recommendations is between 80% and 90%, while a user who is less familiar with the aid may
know only that the percentage is somewhere between 50% and 100%.

Calibration. Calibration of the qualified claim is the correspondence of trust to the true
quality of aid performance, within the specified situation. In probabilistic terms, calibration is the
relationship between the probability estimate and the true frequencies of correct system response
given the conditions in the Grounds. Just as completeness is related to resolution, so reliability is
related to calibration. The amount and quality of information in the Backing determines the
calibration of trust. For example, suppose each of two users assesses as 85% the probability of an
aid’s selecting an appropriate response. One user, who is familiar with the aid, is unlikely to be
off by more than 5%, while the other user, who is less familiar with the aid, may be off by as
much as 25%.

Trust as an Evolving, Uncertain Prediction
A key feature of trust is that it evolves not only as the user gains experience with an aid,

but also  as the user moves through the various phases of a particular mission or task. In this
section, we delve more deeply into this important aspect of APT. In so doing, we also explore
and clarify the elements of the APT model.

In our discussion, we will draw on examples from a Battle Position Planner such as the
one being developed for the Rotorcraft Pilot’s Associate program. The Battle Position Planner
evaluates potential sites from which an enemy, such as a moving tank column, can be engaged
by attack helicopters. Sites are evaluated by the aid in terms of the concealment provided by the
terrain, the presence of a backdrop to prevent the helicopter from being silhouetted, the distance
of the battle position from the target relative to the helicopter’s weapon range, the altitude of the
site relative to the target, room to maneuver within the site, and others. The aid is designed to
relieve the user from the workload of noting and weighing these factors.

However, there is a fly in the ointment: Other factors that are relevant to the evaluation of
battle positions are not considered by the aid. One of these, for example, is rotorwash, which is a
cloud of dust, leaves, snow or water that may be thrown up by the helicopter’s blades, and which
can give away the helicopter’s position to the enemy. Another factor omitted by the aid is angle
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of attack, i.e., whether the enemy will be attacked from the front, rear, or side. A flanking or rear
attack is preferable to one that engages the enemy frontally. Omission of these (and other) factors
can result in selection of an unacceptable battle position. If trust is regarded as a single, global
assessment of the aid, the result may be total rejection by users. Clearly, a more differentiated
conception of trust is required, which allows users to reap the aid’s benefits where possible,
while selectively allocating their attention to issues that the aid fails to address when they are
important.

Once the aid recommends a battle position (phase 3), the user can determine the angle of
attack by reference to maps and in the light of expected enemy avenues of approach. By contrast,
it is usually not possible to determine whether rotorwash will be a factor from a map alone,
without visually inspecting the prospective battle position (phase 4). However, the pilot may
have some prior notion of the likelihood of rotorwash in the type of terrain where the mission
will take place, and this knowledge may influence the pilot’s degree of trust in an aid
recommendation in earlier phases.

Suppose a user of the Battle Position Planner has studied the recommended battle
position on a map, and determined that it represents a flanking angle of attack, which is
acceptable. The user still does not know if the position will suffer from rotorwash. An illustrative
argument regarding the reliability of the aid’s recommendation in phase 3 might be the
following:

Angle of attack is acceptable, and we are in desert terrain (Grounds). Thirty per cent of
desert terrain is typically affected by rotorwash; the aid does not consider rotorwash; and
rotorwash makes a battle position unacceptable (Warrant). So the chance the system will
recommend an acceptable battle position is 70% (Qualified Claim) – unless the terrain has been
changed in some way recently (e.g., it may have snowed or rained) and unless other factors
besides rotorwash and angle of attack also affect the aid’s accuracy (Rebuttals). The backing for
this argument is derived from the pilot’s long experience with desert terrain, and use of the aid in
situations where its omission of rotorwash as a factor was apparent.

Event Trees for Trust in Decision Aids
With successive phases of aid use (Table 1), more and more information about the

performance of an aid is available, and different types of decisions are made about the degree to
which the user will rely on the aid:

This process of acquiring information over time, and updating trust, can be conveniently
visualized as a progression along the branches of an event tree(Shafer, 1996). Such an event tree
is a succession of observations or experiences, in each of which the decision-aid user learns
something new that is relevant to predictions about aid performance. The event tree thus
represents all the factors that are known to affect the aid’s accuracy, organized in the sequence in
which they are expected to be observed by an aid user. A full sequence of observations and
experiences determines a particular path through the tree. Each such path is a possible story, or
scenario, about decision aid use. The end or outcome of each story is either a successful or
unsuccessful contribution by the decision aid to the user’s task (e.g., a successful attack).The
expectation that this final contribution will be acceptable, at each point in the event tree, is the
user’s trust in the aid at that point.

The components of our trust model, as well as their parameters, can all be defined with
respect to such event trees. Note that the event tree itself is not equivalent to the user’s mental
model , or way of thinking about, the decision aid’s performance. It is, however, a summary of
the effects of the user’s mental models on expectations about aid performance. It includes the
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factors that play a role in such models in generating predictions of aid performance.
Figure 3 is an event tree which illustrates the kind of information that might become

available to a user at each phase of use. In this simple example, this user is aware of two factors
that bear on the accuracy of the Battle Position Planner: angle of attack and rotorwash. The user
believes that terrain interacts with both of these factors. In particular, the user believes that
rotorwash will be worse if he or she is assigned to a mission in the desert than to one in the
mountains, and that a rear or flanking battle position is more likely to be selected by chance in
the desert than in the mountains. The illustrative argument given above represents a user at point
A in the event tree, having become familiar with the system as a whole during pre-theater
training (phase 1), having been assigned to a desert mission in phase 2, and having evaluated the
angle of attack of a recommended battle position in phase 3, but prior to visually inspecting it in
Phase 4.

In Figure 3, we have assigned probabilities summing to 1.0 to the branches emerging
directly from each node. These reflect the chance that the factor corresponding to each branch
will in fact occur. For example, in the pre-mission stage (phase 1), the user believes there is a
60% chance of being assigned to a desert region, and a 40% chance of being assigned to a
mountainous region. If the mission turns out to be in desert terrain, the user believes the chance
is three out of four that the aid’s recommended battle position will be a rear or flanking one
rather than frontal. But if the mission is in mountainous terrain, the user believes the chances are
even. In addition, if the mission is in the desert, the user believes that about 30% of the terrain
will be subject to rotorwash, while if the mission is in the mountains, rotorwash will be a factor
in only about 5% of the potential sites.

The 1’s and 0’s in the terminal nodes of this tree stand for the aid’s selection of an
acceptable or unacceptable battle position, respectively. They can also be interpreted as
probabilities of a successful completion of the mission or task (in this case, a successful attack)
with respect to battle position. For an attack to succeed, it is assumed that more than an
acceptable battle position is required: other factors must also go the right way. Since this tree
represents trust in the Battle Position Planner, it shows the chance that battle position will not be
a cause of failure of the attack. Note that the 1’s and 0’s could be replaced by more graded
assessments, e.g., if the user believes that rotorwash is not necessarily fatal to a successful attack.
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.5
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.4
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A

B

Figure 3. An event tree with illustrative probabilities for each branch.

Event Trees and Components of Trust
Event trees with probabilities clarify APT’s components and parameters:
Warrant. An event tree with probabilities (or some other, perhaps qualitative
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representation of uncertainty) is a compendium of all the warrants a user might draw on for
arguments about trust. We can use it to derive generalizations about the connection between
potential observations (features of the situation, aid, task, or aid recommendation) and aid
performance. For example, our illustrative user at the node labeled A in Figure 3 was assigned to
the desert and received an aid recommendation that involves a rear or flanking attack. For this
user, the major remaining uncertainty about aid performance is due to the possibility of
rotorwash. Since the user believes that approximately 30% of this terrain will be affected by
rotorwash and that there is a 0% chance of successful attack with rotorwash, the user’s trust in
the aid (probability of an acceptable recommendation) is (.70) (1.0) + (.30) (0) = .70. The event
tree in Figure 3 thus embeds within itself the following warrant: “If this system is used in the
desert and recommends a battle position that involves a rear or flanking attack, the chance of the
recommendation’s being acceptable is approximately 70%.”

The same event tree implies a warrant for trust assessments at every vantage the point the
user might encounter. Each such vantage point, represented by the circular nodes, involves a
series of observations corresponding to the branches leading to it (grounds). And each such
vantage point also corresponds to a specific prediction regarding the performance of the aid,
which can be calculated from the branches leading from it. A warrant is simply a pairing of a set
of potential observations on the path leading up to a node, and a prediction of system
performance based on all the paths leading out of that node.

Grounds. The grounds for a trust assessment consist of the observations that were made
by the user as he or she moved along the path to the currently occupied node. Each time the user
advances along another branch of the event tree, the observation corresponding to that branch is
added to the grounds for the next trust judgment. Thus, the grounds for a trust assessment in
phase 1, as shown in the tree of Figure 3, is a knowledge of system features that are common to
all its potential uses. By the time the user gets to phase 2, a mission has been assigned, and the
grounds include system features plus a knowledge of the terrain (desert or mountain). In phase 3,
the system has made some specific recommendation, and grounds include system, terrain, and
specific features of the recommendation (i.e., that it involves either a rear or flank attack, or a
frontal attack). Once the recommendation has been verified by observing the recommended site
in phase 4, the grounds also include “no rotorwash” or “rotorwash.”

Qualified Claim. At each node in the tree, the user can determine the probability of a
correct aid conclusion conditional on the grounds. Trust is simply the expected, or probability-
weighted average, aid performance as seen from that particular viewpoint, and it is determined
by looking toward the possibilities (if any) branching from the node toward the right. Numbers
within the circular nodes of the tree represent trust at that point in the event tree.

Backing. Backing refers to the sources of the knowledge that is summarized in an event
tree. The knowledge required to generate predictions of system performance can come from
many sources: the user’s experience with the system in different environments and tasks, the
user’s experience with analogous systems, the user’s respect for the designers or the design
process, reports by other users of their experiences with the same or similar systems, projection
of the user’s own strengths and weaknesses into the aid, and/or inference from knowledge of
system design. In fact, more than one of these sources might be available to a user
simultaneously, e.g., a user who has both design knowledge and personal experience with an aid.
Multiple confirming sources of knowledge will increase the reliability of the trust assessment,
while conflicting sources will reduce it.

Although the event tree itself is not the user’s mental model, it crisply summarizes the
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user’s knowledge of factors that are relevant to prediction of the aid’s performance. To illustrate,
suppose a different user never learned the importance of angle of attack or rotorwash for the
aid’s accuracy. However, in many simulation experiences with this particular system in mountain
and desert terrain, this user developed a sense of its overall accuracy in each of these
environments – even though unable to analyze the reasons for success or failure on particular
occasions. The event tree for such a user might be represented by Figure 4, rather than by Figure
3. Since this user fails to note the significance of angle of attack and rotorwash, no further
relevant information is acquired in phases 3 and 4, so the trust assessment remains the same.

Phase 1.
 Pre-theater.

Longest  scope.
Decisions re aid

acceptance.

Phase 2.
 Mission planning.

Intermediate
scope.

Decisions re
automation mode.

.53

.47

desert
.6

.71
mountains

.4

system

B

Phase 3.
Task

execution.

Phase 4.
Task

outcome.

.47 .47

.53 .53
A

Figure 4. The user is unaware of the importance of either rotorwash or angle of attack, but has had
extensive experience with the aid in both desert and mountainous terrain.

Rebuttals. Rebuttals are challenges to assumptions, either implicit or explicit, underlying
an assessment of trust. Assumptions represent limitations of the user’s mental model, and are
open to challenge by new experience, design knowledge, or training. When an assumption is
rejected, judgments of trust that depended on it may be dramatically changed.

Typically, assumptions arise because of incomplete knowledge of the domain, lack of
experience with an aid, or poor understanding of the aid’s design. For example, let us imagine
yet another user of the Battle Position Planner, who recognizes the importance of rotorwash, but
does not understand the importance of angle of attack in selecting a battle position. However,
this user has been fortunate thus far to experience only situations where angle of attack was
irrelevant, perhaps because the targets to be engaged did not represent a significant threat to the
attackers. The event tree for this user may look like Figure 5.
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no rotorwash
.95

.95

1
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rotorwash
.05

no rotorwash
.7
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1
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Phase 1.
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Phase 4.
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Phase 2.
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B

.95

.70

Phase 3
Task
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A

Figure 5 Event tree in which the user is unaware of the importance of angle of attack, and only
experiences situations in which it is irrelevant. As a result, trust is higher than in the fuller event tree of
Figure 3, and no updating occurs in Phase 3.

In this tree, the probability of correct system action, given that the aid is used in the
desert, is 70%. Notice that 70% would be an accurate assessment of trust, according to Figure 3,
if we expanded the grounds to include the additional condition that the recommended battle
position is on the flank or rear. Similarly, 95% would be an accurate assessment of trust in the
mountains, if we knew that angle of attack were ideal. The belief that angle of attack is ideal thus
functions as an implicit assumption in this event tree. As a result of it, the user’s trust in the aid
will on many (but not all) occasions be higher than it should be.

Suppose that the user’s subsequent experience in mountain and desert exercises is not so
fortunate, and as a result the user learns that his or her assessment of trust in phase 2 was overly
optimistic. In particular, these new experiences eventually lead the user to learn a probability of
correct system response of 53% in desert terrain, and to learn a probability of correct response of
47% in mountain terrain. Figure 4 summarizes this new experience-based mental model, in
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which the user has accurate trust, but no coherent way to break it down into causal factors such
as rotorwash and angle of attack. It conflicts with a more detailed mental model that this user
also possesses, which is summarized by the event tree of Figure 5.

One option for resolving conflict, though not a very good one, is to average the
competing estimates. A problem with this approach is that it offers no explanation of the conflict;
the user learns nothing new about the system’s performance. Another, more fruitful approach is
to use the conflict as a symptom that something is wrong in one’s thinking about the aid and/or
the situation. The solution is to probe deeper for causes of the conflict, by looking for mistaken
assumptions underlying one or the other of the conflicting assessments (Cohen, 1986). In this
example, both of the competing event trees involve assumptions: trust assessments based on
Figure 4 assume that the user’s experience has been representative; trust assessments based on
Figure 5 assume that the user has explicitly recognized and sampled important factors that can
degrade aid performance. the user might find the first assumption more plausible, and surmise
that the overly optimistic event tree in Figure 5 must be incomplete. There is some factor in
addition to rotorwash degrading the system’s performance. This realization may initiate a
process of more careful monitoring of the aid, which eventually leads both to a more accurate
assessment of trust in the present case and to a more accurate mental model for use in the future.

It is always possible for the aid to behave in unexpected ways in new situations, because
of some overlooked factor. It is neither possible nor worthwhile to try to enumerate and test all
the assumptions underlying a particular assessment of trust. Hidden assumptions are worth
ferreting out, however, in situations where the current mental model does proves inadequate, and
the aid behaves differently than expected. In this situation, rebuttals are a reminder that a user’s
mental model of the aid is never quite finished or perfect. A critical cue for the need to consider
rebuttals is conflict among different sources of information about the aid’s performance.

The lesson for training is important: Users must learn to monitor not simply for the
specific features that signal degraded aid performance (as in the event trees we have considered),
but should also monitor for more subtle signs of trouble with the event tree itself, such as
conflicting assessments of trust.

Event Trees and Parameters of Trust
Event trees help clarify the parameters of the APT model and their interactions.
Temporal scope. The event tree representation makes clear the sense in which larger

temporal scope (Table 1) corresponds to more general judgments of trust, i.e., judgments that
cover more possible cases of decision aid use. As the user moves along the phases of aid use
from left to right, the temporal scope of the assessments decreases, from a consideration of the
entire event tree at the extreme left node (prior to assignment to a theater), to consideration of
more and more restricted sets of possibilities represented by smaller and smaller subtrees, as the
user moves into a mission, and from there into a specific task. A problem with overly global
conceptions of trust is that they do not track the more differentiated assessments that occur in
smaller temporal windows.

Completeness. Completeness in a judgment of trust refers to the richness of the event
tree, i.e., the number of factors relevant to the prediction of aid performance (each represented by
a node with branches emerging from it). Completeness involves the ability to dynamically update
situation awareness regarding the trustworthiness of the decision aid. For example, the user in
Figure 4 starts out in phase 2 with the same level of trust as the user in Figure 3. In subsequent
phases, however, the user with the less complete tree (Figure 4) is unable to update the
assessment of trust based on new information about angle of attack and rotorwash.
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The introduction of a decision aid changes the requirements for situation awareness.
Situation awareness must be shaped to de-emphasize factors that are effectively handled by the
decision aid, and to include factors that are predictive of decision aid success or failure. We can
refer to this important implication of a differentiated trust model as decision-aid driven situation
awareness.

Resolution. Resolution, in conjunction with probabilities, provides a mathematical way
to measure the effect of completeness on trust. A more complete event tree obviously provides
more alternative paths from one temporal phase to another. For example, the user at B in phase 2
of Figure 5 has only one path to phase 3, since no new information will be acquired. On the other
hand, the user at B in phase 2 of the more complete tree in Figure 3 has two pathways that could
take him or her to phase 3, one via the observation of a frontal angle of attack and the other via
an observation of a rear or flanking angle of attack.

The more alternative paths provided by an event tree from an earlier temporal stage to a
later one, the higher the resolution is expected to be at the later time, from the point of view of
the earlier time.

It is both interesting and important to realize that resolution has nothing to do with
whether the numbers that someone assesses (e.g., for trust in aid performance) behave like real
probabilities. First, the numbers need not correspond to true relative frequencies of events (e.g.,
whenever the user assesses 95% probability, the event might only occur 35% of the time).
Second, the assessments need not be logically related to one another like probabilities (e.g., the
probability of two independent events need not equal the product of their respective
probabilities). In fact, the “numbers” need not be numbers at all. Instead of saying that a decision
aid recommendation is 95% likely to be successful, the user could say “George” instead, or,
more plausibly, that success is “highly likely.” What matters for resolution is that truly different
situations are in fact discriminated from one another, no matter what numbers (or other
expressions) happen to be used to do the discriminating, and that the situations have a real
chance of occurring. Measuring the resolution of a trust assessment therefore does not require
that the decision aid user actually assess trust as a probability.

Consider again the users at point B in phase 2. It might seem that the .95 trust assessment
in Figure 5 represents higher resolution than the .47 assessment in  Figure 3. In fact, however,
the resolution of the two assessments is exactly the same. Resolution is based on the proximity of
the true probability to 0 or 1, not the assessed probability, given the discriminations made by the
assessor. The true probability must be the same for these two individuals, since they have
traversed the same event tree, and thus discriminated the same situations, up to point B (both
have taken note of system properties and the mountainous terrain). We can thus infer that the
resolutions are equal, even if we don’t know what the true probability of a correct
recommendation by this system in mountainous terrain is.

The event trees are, of course, different after point B. Thus, the expected resolution in the
future is different (at point B) for the two users. The user at B in Figure 3 can be expected, in
phase 3, to have discriminated situations in which the chance of a successful aid
recommendation is truly different (and, if the probability assessments are accurate, close to either
.95 or to 0). By contrast, the user at B in Figure 5 will have made no additional discriminations in
phase 3 that were not already made in phase 2. Expected resolution is thus higher for the user in
Figure 3 than for the user in Figure 5.2

                                                
2 The resolution of a trust assessment is usually measured negatively. Thus, to maximize
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 Calibration. Calibration, unlike resolution, depends very much on the assessments
themselves. Calibration is the correspondence of the trust assessments to real-world frequencies
of successful system performance. Thus, while resolution depends on making discriminations,
calibration is a matter of the correct numerical labeling of the situations that have been
discriminated. Having distinguished a set of truly possible situations in which the probability of
an event truly does vary (resolution), has the decision maker correctly estimated the probabilities
associated with those situations (calibration)?

Miscalibration may be caused by unreliable backing, e.g., faulty design knowledge or
non-representative experiences. For example, in the event tree of Figure 5 a lucky but non-
representative set of experiences with the aid led to the incorrect assumption that angle of attack
is irrelevant. As a result, the probabilities are miscalibrated (relative to the tree in Figure 3).
Miscalibration could also be due to lack of skill in assessing probabilities.

Miscalibration, however, is not caused merely by incomplete knowledge, i.e., a sparse
event tree. Whether an assessment of trust is correctly calibrated or not always depends on the
context in which the user intended it, i.e., on the user’s decision tree and current location within
it. Users with different knowledge regarding features that affect aid performance, hence,
different event trees, will make different assessments of trust. But they may all be well calibrated
within their respective intended contexts, i.e., given the situations that they respectively
discriminate.

For example, the user of the incomplete, but accurate tree in Figure 4 obtains only one
new piece of information after Phase 1, viz., the nature of the terrain (phase 2). Despite this poor
resolution, the probabilities in Figure 4 are correct, if understood relative to the information
actually relied on (the grounds of that user’s assessment). This user’s assessments of trust in
phases 3 and 4 continue to be conditioned on the same grounds, i.e., the system and the terrain,
as in phase 2. The user ignores the newly available information about angle of attack and
rotorwash, and continues to report (correctly!) the likelihood of a successful system response
across all desert situations.

As the user advances through phases 3 and 4, more specific assessments would in fact be
far more useful. The large scope of the user’s Phase 2 assessment becomes less and less relevant
to the decision-making requirements of later phases. (This user’s assessment of trust, if given in
phase 3 after the aid has actually made a recommendation, might naturally be mistaken by others
for an assessment of the likely appropriateness of that recommendation — rather than a
generalization about how the aid performs in the desert!) What users need is a probability of
correct performance in the detailed circumstances that arise. To get this, users must increase the
completeness of their event trees and make the observations required to advance along branches

                                                                                                                                                            
resolution, we minimize a resolution penalty. The resolution penalty is derived by calculating the
product of the true probability corresponding to a discriminated situation times its complement.
We then multiply each of these products by the true probability of the discriminated situation,
and sum.

Assuming that the probabilities in Figure 3 approximate the true relative frequencies, the
resolution penalty for both users is (.43)(.57) = .117 at point B. The expected resolution penalty
for phase 3 for the user at B in Figure 3 goes down, to (.5)(.95)(.05)+(.5)(0)(1) = .02375. The
expected resolution penalty for phase 3 for the user at B in Figure 5, on the other hand, is
unchanged from phase 2, at (1)(.47)(.53) = .117.
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of the richer tree. In short, they must drop their relatively global and undifferentiated approach to
trust, and make distinctions. Resolution, not calibration, is designed to capture this differentiated
aspect of trust.

The primary function of probabilities, or any other scheme for representing uncertainty, is
not necessarily to come up with “correct” numbers, but to promote discriminations among
situations that vary significantly in their implications for performance. Resolution is more
important than calibration.

Trust in User-Decision Aid Interaction
Trust in an aid may evolve over time not only because of new observations, but because

of active decisions by the user. As users gain understanding of the aid’s strengths and
weaknesses, they also learn how to interact more effectively with the aid, compensating for the
weaknesses and exploiting the strengths. As a result of their own active participation, users’ trust
in an acceptable outcome is likely to increase. Trust must now be considered a product of the
interaction between the decision aid and the user.

Decisions regarding the interaction between user and aid (i.e., reliance decisions) vary
with temporal phase, as indicated by Table 1. For example, in phase 2, users may select
automation modes and adjust aid parameters (if permitted by the aid’s design). In phase 3, they
may choose to accept, reject, or verify a specific aid conclusion (if permitted by the chosen
automation mode). Our framework lends itself nicely to the way an evolving assessment of trust
supports these different kinds of decisions at different times.

Figure 6 shows some variables that could influence a user’s reliance on an aid, at each
phase. These variables include trust in the aid, trust in one’s own performance, anticipated or
actual workload or time stress, and the stakes of the decision (see Lee and Moray,1994, and
Riley, 1989, for empirical support). Decisions in each phase, of course, draw on knowledge
relevant to that phase (e.g., regarding the entire domain, a specific mission and situation, or a
particular task and aid conclusion), is influenced by estimates of trust, stakes, and workload over
a different temporal period, and has effects that span different periods of time. Choices made in
the longer decision cycles are revisited less frequently, and determine the options that are
available to users at the shorter cycles. For example, a user will not have the opportunity to
verify an aid conclusion in phase 3 if that user did not decide to monitor aid conclusions in phase
2.
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Figure 6. How trust and other factors might influence user reliance decisions. Numbers represent
decisions at different temporal phases, and the factors that affect them in the corresponding phase.

In phase 4, the outcomes of system and user performance become known. Trust in the
user-system interaction, at any time prior to that, is simply the user’s expectation of the
performance that will be observed in phase 4, averaged over the relevant temporal interval. Trust
in this new sense, i.e., trust in overall user-system interaction, is a function of the user’s self-
trust, the user’s trust in the aid by itself, and the way performance by the user and aid are mixed
in the decision making process by reliance decisions that affect the relevant temporal interval.

Trust and the Verification Decision
In the verification decision, the user decides whether to accept, reject, or consider further

a specific aid conclusion. We will use this decision to illustrate the way reliance decisions can be
modeled within the APT framework. Each reliance decision (e.g., to monitor the aid in phase 2,
or to verify a specific conclusion in phase 3) is based on all the information the user has collected
along the path in the event tree up to that point. The verification decision, therefore, is based on
information about the system, domain, and situation obtained prior to the current aid
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recommendation. In addition, the user will have some information about the aid recommendation
itself simply by virtue of having decided in phase 2 to monitor the aid: (1) First, the user knows
the type of recommendation that is involved. Many decision aids support more than one type of
decision, which the user might decide to monitor. For example, an attack planning aid may
recommend a battle position as well as a route to that position. A target identification aid might
classify contacts and also prioritize them for engagement. The user may trust the aid more on
some of these matters than on others, and this trust will influence decisions about verifying the
conclusions. (2) Second, the user may be aware of the content of the aid conclusion or
recommendation, and this too can influence verification decisions. For example, the user may
trust identifications of contacts as friends (since they are based on reliable Identification-Friend-
or-Foe (IFF) procedures), but not trust identifications of contacts as foes (since friends may stray
from designated areas or turn off their IFF transponders). (3) Finally, the user may be aware of
such supporting information as the aid’s own reported confidence level, or its explanation of its
reasoning in arriving at the conclusion. These reports, too, (if the user trusts them!) may
influence decisions about whether or not to verify the conclusion.

Verification includes a number of different activities, such as checking the aid’s
reasoning, examining the aid’s conclusion against evidence known to the user but not to the aid
(e.g., angle of attack or rotorwash), or attempting to find (or create) a better alternative.
Verification is not usually a once-and-for-all decision. More typically, it is an iterative process. If
the user does decide to verify an aid recommendation by collecting more information, that new
information will then influence trust, and thus shape subsequent decisions to continue or not to
continue verifying. If the user chooses to continue verifying, the user may consult more of the
available evidence or try out a different verification strategy. The process should end when the
uncertainty is resolved, the priority of the issue decreases, or the cost of delay grows
unacceptable.

Decision Trees for Verification
The process of discovering new information or insights during verification can be

pictured as an event tree, in which the user’s trust in the aid evolves as new observations are
made. It is illuminating to incorporate the decision whether or not to verify within such a tree as
an event under the control of the user. A tree that includes both chance events and decisions is, of
course, called a decision tree (Raiffa, 1968; Shafer, 1997).
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Figure 7. A decision tree showing a verification decision and the subsequent decision to accept, continue
to verify or reject the aid’s recommendation. Shading indicates the part of the tree that the user may
traverse, depending on chance events (circular nodes) and decisions (square nodes).

Figure 7 is a decision tree with a simple verification decision, based on Figure 3. A user
of the Battle Position Planner has been assigned a desert attack mission, and at the beginning of
Phase 3 the aid has recommended a specific combat battle position. The user must first decide
whether to accept this recommendation at once, reject it at once, or verify it by collecting more
information.

This verification decision will determine the completeness and resolution of the subtree
that the user will traverse during the remainder of phase 3. In particular, if users decide to verify
the conclusion, they will traverse a subtree that contains branches for different angles of attack
(like the tree in Figure 3). Angle of attack information will then be included in the grounds of
subsequent judgments of trust, and the subsequent accept/reject decision will be based on this
information. On the other hand, if users choose not to verify the aid’s conclusion, they face a
subtree that is missing branches for angle of attack (like the incomplete tree shown in Figure 4),
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grounds for trust will not include angle of attack information, and the information will not be
available for the accept/reject decision (although, like rotorwash, angle of attack may become
known later, after the recommendation is executed in Phase 4). When the user chooses not to
verify, the accept/reject decision will be based on average trust, aggregated across the various
angle of attack possibilities, rather than on specific knowledge. One important goal of reliance
decisions is to improve the resolution of the judgments upon which subsequent decisions are
based.

The numbers at each node in Figure 7 do not represent the user’s trust in the decision aid
alone. In a decision tree, they represent the expected, or average, chance of successful
collaborative user-aid performance in the future, conditional on any such collaboration that may
have already taken place in the past.

Is it worthwhile for the user to verify the aid’s recommendation? The answer is
surprisingly simple, and involves a comparison of what is, in effect, trust in the aid by itself with
trust in the overall user-aid system given that the user will verify. The user chooses the path
through the event tree that gives the best chance of ending up with successful attack. We know
from Figure 3 that the user’s trust in the aid by itself before learning angle of attack is .53. This
number reappears in Figure 7 as trust in the overall user-aid system given that the user chooses
not to verify. In Figure 7, trust in the user-aid system given that the user does verify is .66 minus
the costs of verification. Such costs may include heightened risk, for example, of being targeted
by the enemy, or loss of opportunity to perform other important tasks. Suppose the user estimates
these risks as no greater than a 2% reduction in chance of successful attack. Since the expected
success of the user-aid system is greater if the user verifies the conclusion (.66 - .02 = .64) than if
the user does not (.53), the user should verify. Users can make reliance choices by maximizing
trust.

Value of Verification Information
The user in Figure 7 appears to benefit significantly by verifying the aid’s

recommendation. It is illuminating to consider why this benefit occurs. There are three basic
requirements:
•  Significant uncertainty, i.e., chance of correcting an error: The information to be collected

by verification must be capable of discriminating among situations in which a subsequent
decision by the user will be different. In Figure 7, a user who does not verify will accept the
aid’s top-ranked recommendation (chance of success = .53) rather than take a chance with
the next ranked aid recommendation (chance of success = .43). A user who verifies angle of
attack, on the other hand, may end up changing his or her mind, and rejecting the top-ranked
recommendation. There is a .25 chance that verification will reveal a frontal angle of attack,
and cause this change of mind. If the user does not verify, there is the same .25 chance that
the decision to accept will turn out to be an error, due to poor angle of attack. By increasing
resolution (i.e., reducing uncertainty), verification helps avoid mistakes.

•  Stakes: The change in a subsequent decision (such as accepting versus rejecting a battle
position) must make a difference to whatever the user values For example, it must change the
chance of successful attack. The higher the cost of an error, the more valuable verification
becomes. In our example, verification might help the user avoid the error of accepting a
frontal angle of attack. If this happens, trust grows from 0 (if the user were to mistakenly
adopt a recommended frontal battle position) to .43 (the overall chance that the next top
ranking aid recommendation will be acceptable). This represents an improvement of .43 in
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the chance of successful battle position selection.

•  Time: The cost of verifying must be outweighed by the benefits, as represented by the first
two factors. The expected benefit due to verification in this situation is the product of the first
two factors, i.e., the chance of an observation that changes behavior (.25) and the
improvement in chance of successful attack that results (.43): (.25)(.43) = .11. This is clearly
greater than the cost in time, which is.02 chance of a successful attack. By deciding to verify
—even before collecting the information about angle of attack — the user manages to
increase the expected success of joint user-aid battle position selection (i.e., trust) by 9%.

A convenient tool for putting these ideas together, and for building benchmark models of
reliance decisions, is the decision theoretic concept of value of information (VOI) (Cohen &
Freeling, 1981; Raiffa & Schlaifer, 1961; LaValle, 1968). A simple formula for value of
information, as applied to verification decisions by aid users, is the following:

Value of verification information = Sum over all observational outcomes that could
change the user’s subsequent decision

[ probability of the observational outcome * change in trust due to the change in decision
 – cost of time spent making the observation ]

The user should verify the aid’s recommendation if this value is greater than zero. Value
of information is a significant improvement over other information measures, such as entropy
reduction, which measure the sheer quantity of information without taking into account the
reason why information may be of value, i.e., its actual role to support decision making. And it is
better motivated and simpler than the large number of rather vague measures typically used in
information management system research, such as completeness, precision, accuracy, relevance,
timeliness, clarity, and readability (see Cohen & Freeling, 1981, for discussion).

Benchmark Model for Verifying A Specific Decision Aid Conclusion
Despite their generality, measures based on the value of information have limitations. A

major problem is that the information to be collected must be specified in advance (Cohen &
Freeling, 1981). This is not unreasonable for the purpose of training quick recognition of
standard patterns and associated responses (for example, “when in the desert, verify rotorwash”).
However, the advantage of interactive over automated systems may be the human ability to
handle novel and unexpected situations. In these cases, the possible results of a human
intervention (such as verification) may not be known ahead of time. There are several, closely
related problems:

1. Visual recognition. The verification process may be very straightforward in some
cases, yet the potential observations cannot be anticipated. For example, the user of a
target identification aid can verify identification of an image as a hostile tank simply
by looking at the image, yet it might be very difficult to specify in advance all the
relevant details that the user might see. (For an application of the model in that
domain, see Cohen, Thompson, & Freeman, 1997.)

2. Critical thinking. The verification process itself may be less straightforward in some
situations. For example, conflict between an aid’s recommendation and their own or
others’ conclusions, may prompt a process of critical thinking, in which users look
for an explanation of the differing recommendations. Resolution of the conflict may
take the form of discovering unreliable assumptions that were implicit in the user’s
conclusions or the aid’s. It is virtually impossible to make all assumptions explicit in
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advance in an event tree. Key assumptions may come into focus only when they lead
to problems, such as conflicting recommendations (Cohen, Freeman, & Thompson,
1997).

3. Novel situations. More generally, new issues to investigate may spring up as a result
of unique or unusual circumstances, or due to the pattern of ongoing verification
results. Just as novel situations may not be anticipated by the designer of a decision
aid, so they may not be anticipated by the training designer.

Fortunately, these (and other) difficulties can be surmounted without giving up the
essence of the value of information approach. We will describe a simple framework for deriving
benchmark models of verification performance, without specifying all possible observations, in
situations where previously learned or explicitly identified patterns may be insufficient to guide
decisions about user-aid interaction. This framework will apply even when verification involves
visual recognition of unanticipated patterns, critical thinking that ferrets out hidden assumptions,
and creative problem solving in novel situations.

The solution is to derive necessary conditions, or constraints, that must be satisfied if any
verification at all is to be of value. If the situation does not satisfy these constraints, verification
cannot be worthwhile, regardless of the number of unmodeled potential observations and
insights. These constraints need not be static, but may change dynamically as a the situation
itself evolves.

The constraints are derived based on the principle that if perfect information would not be
worth the cost of collecting it, then no other information is worth the cost either. Perfect
information is defined, in this context, as information that discriminates all situations for which
different actions would be appropriate. If verification that produced perfect information is not
worthwhile, then it cannot be worthwhile under more limited conditions. It turns out that these
constraints can be expressed simply, in terms of current trust in the aid, the cost of verification,
and the potential costs of errors that might be avoided by verification (see Cohen et al., 1997,
Appendix A, for a derivation). In particular, users should accept an aid recommendation without
verification if:

trust > 1 - cost of verification / the cost of incorrectly accepting the aid recommendation
If the aid’s conclusion is binary (e.g., classification of a contact as friend or foe), we get

two constraints on the user's verification decision: an upper bound on trust (above which users
should simply accept the recommendation) and an lower bound on trust (below which the users
should simply accept the negation of the aid recommendation). It may be appropriate to verify
the conclusion if neither of the two constraints is satisfied, i.e.:

1 - cost of verification / the cost of incorrectly accepting the aid’s recommendation >
trust >

cost of verification / the cost of incorrectly rejecting the aid’s recommendation
Figure 8 represents a benchmark model for a binary decision based on these constraints.

At any point in time, the vertical dimension, representing trust, is divided into two or three
regions. If trust in the aid’s conclusion falls in the upper region, the user should simply accept
the conclusion (e.g., engage the target), without taking further time for verification. If trust in the
aid’s conclusion falls in the lower region, the user should reject the aid’s conclusion without
taking further time. (For example, a target identification aid concludes that a vehicle is an enemy
tank, but the user is reasonably sure based on visual identification that the target is a friendly.) If
trust is neither high nor low, but falls in the intermediate region, then it may be worthwhile for
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the user to take more time to decide what to do.
In Figure 8, the dashed line shows that trust in the aid begins relatively low and warrants

further verification of the aid’s conclusion. After a while, however, the user’s confidence in the
aid increases as more information is collected. For example, the angle of attack of a
recommended battle position might be discovered to be flanking, it is then observed that there is
lots of room for other aircraft in the recommended position, and so on. Trust soon becomes high
enough to enter the upper region, where the aid conclusion should be accepted. At this point, the
user should stop thinking and act.

Trust
(Probabiliity

Aid
Conclusion
is Correct)

0

1.0

Accept aid
conclusion

Reject aid
conclusion

Verify
conclusion

Time

upper bound = 1 - cost of delay / cost of
incorrectly accepting aid's conclusion

lower bound = cost of delay /
cost of incorrectly rejecting aid's

conclusion

Figure 8. Benchmark model for deciding when to accept, reject, or take time to verify a decision aid’s
conclusion. Trust is represented by the dashed line.

What determines reliance decisions in this model? Like any value of information model,
this surprisingly simple representation has only three key variables: uncertainty, time stress, and
stakes.

1. Uncertainty pertains principally to the resolution of the trust assessment, i.e., the
proximity to zero or one of the probabilities discriminated by the user. The less resolution in the
user’s assessment of trust, the more likely that an assessment will fall in the middle region of
Figure 8, and the user will tend to utilize more time before making a decision. As we have noted,
the average resolution of a trust assessment is influenced by the completeness of the user’s
knowledge of conditions that affect system performance. The more complete the knowledge of
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relevant features of the domain, situation, task, and system, and the more reliably these features
are observed on a given occasion, the closer the calibrated trust assessments will come to zero or
one. We now see an important implication of the connection between completeness and
resolution. Training that improves a user’s knowledge (prior to phase 3) of features that predict
aid performance will reduce the amount of time the user needs to spend verifying the system (in
phase 3). Informed users will be able to assess the value of aid recommendations more quickly.

2. Time stress is represented by the cost-of-delay parameter in the equations determining
the upper and lower bounds. When the cost of delay is great, action is more imperative, even
with high uncertainty about trust. The cost of delay need not be constant, but may itself be a
function of time. As time stress increases, the upper and lower boundaries move toward each
other, squeezing out the region in which verification is appropriate. In Figure 8 the cost of each
further moment of delay is higher than the one before, until the upper and lower bounds meet,
and the user must act, regardless of the level of trust.

3. Stakes. Time stress affects the upper and lower bounds symmetrically. By contrast,
there are two different kinds of stakes, corresponding to the costs of mistakenly accepting or
rejecting the aid’s conclusion, respectively, which affect the two bounds independently. To think
about stakes, the user simply asks, regarding whatever action he or she is about to take, what are
the consequences if I am wrong? The more severe the consequences of a mistake, the more
difficult it is to clear threshold for taking the corresponding action. For example, suppose that a
target identification aid recommends engagement of a contact, and the user considers accepting
this recommendation. The cost of an error is the difference in the expected value between
engaging an inappropriate target and not engaging it. Engaging an inappropriate target is likely
to be more costly, the higher the proportion of friendlies among the non-targets. As a result,
increasing the number of friendlies in the area will raise the upper bound, setting a higher
requirement for trust before acting on the aid’s recommendation to engage.

In the same way, as the cost of incorrectly rejecting the aid’s conclusion increases, the
user’s distrust must be greater (or trust lower) to justify doing so. The cost of failing to engage an
appropriate target is higher as the target becomes more threatening to one’s own platform or to
other friendly assets.

Similar benchmark models have been developed for other reliance decisions at all phases
of decision aid use. These models address such issues as: deciding whether or not to verify an aid
conclusion when there are more than two responses (e.g., classification of a target as tank, apc,
truck, jeep, etc.); the verification decision when there is an open-ended set of possible
conclusions (e.g., discovering a good battle position or developing an attack plan); automation
mode decisions (e.g., assigning primary responsibility for a task to the user or to the aid,
choosing whether or not to monitor aid conclusions, choosing whether or not to let aid to monitor
the user’s performance); and modification of decision aid parameters.

3. A FRAMEWORK FOR TRAINING DECISION AID USERS
The most important implications of the APT framework are for training development.

Various aspects of the model lend support to different elements of a comprehensive training
strategy for decision aid users. Salas & Cannon-Bowers (1977) have proposed a framework to
describe training. According to them, a training strategy orchestrates methods (such as
instruction and practice) and tools (such as simulation, feedback, and performance measures) to
convey a content. Table 2 summarizes the elements of a training strategy based on APT.

It is worth pointing out the distinction between the APT framework, which attempts to
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model trust judgments and reliance decisions, and training based on that framework. We do not
advocate teaching APT to decision aid users, nor do we propose that they learn argument
structures, event trees, or decision trees, or that they assess their trust in terms of probabilities.
However, the elements of APT provide resources for generating training content, methods, and
tools, as shown in Table 2.

We discuss some of these elements in the remainder of this section.

Table 2. Outline of a training strategy for decision aid users based on APT.

Content to be trained Training Methods Training Tools

Task-organized
understanding of
decision aid
performance

Dynamic situation
awareness of factors
affecting aid
performance at each
phase of use

Critical thinking
strategies for novel
situations

Strategies for interacting
with decision aids based
on trust at each phase of
use

Methods for choosing
among different
interactive strategies

Introduction to concepts
via brief lecture and
discussion

Guided simulation-
based practice,
modeling of desired
responses, feedback

Interviews with
designers, domain
experts, and users to
identify factors affecting
aid performance and
plausible user strategies

Simulation scenarios
based on event and
decision tree models

Feedback based on
event tree and decision
tree models

Performance measures
based on APT
parameters

Training Content
Task-organized understanding of aid. Event trees provide a rich framework for

summarizing the kind of knowledge required in effective decision aid use. These structures spell
out the features that are predictive of successful decision aid responses and that are required for
user decisions about reliance on the aid at each phase of use. They indicate when such
information becomes available, and provide a clear mechanism for relating the information to
assessments of trust.

Training in decision aid use should be derive its organization from the structure of the
task, rather than from the structure of the decision aid. For example, training in use of the Battle
Position Planner, and RPA in general, addresses the role of the aid, and possible user interaction
strategies, at each stage of a mission. Task-organized training is likely to be better integrated by
pilots, and better recalled in the real world, than training that is organized according to the
architecture of the aid. The temporal structure of event trees lends itself to this kind of
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organization.
Critical thinking about decision aid performance. In addition to the substantive

knowledge about the aid represented in event trees, skilled users will also be adept in handling
novel or unanticipated situations. Novel conditions may occur that were specifically anticipated
neither by aid designers nor by user training. Critical thinking skills can help users learn to
handle surprises effectively when they occur. For example, the following two critical thinking
strategies may supplement the knowledge embedded in mental models:

1. Detecting and handling conflict. Conflict among different sources of information
about trust can be a symptom of erroneous assumptions in a user’s understanding of
the decision aid, or in the user’s understanding of the situation. For example,
observations of actual aid performance under various conditions may violate the
expectations generated by an event tree, or there may be a surprising difference
between an aid’s conclusion and the user’s independent judgment. Situation
awareness must be expanded to include such symptoms of trouble. Users can be
trained to be alert to such conflicts and to use them as opportunities to learn more
about the situation and the system (Cohen, Freeman, & Thompson, 1997).

2. Devil’s advocate. When stakes are high and time is available, devil’s advocate
strategies can be effectively employed for uncovering hidden assumptions and
generating alternative interpretations of events. In such a strategy, users try to
generate arguments against a favored conclusion. For example, users may imagine
that a conclusion of their own or of the aid is false, and to explain how that could be
so. Such strategies have been found to be an effective countermeasure against
overconfidence (Koriat, Lichtenstein, & Fischhoff, 1980) and to be successfully
trainable in realistic operational settings (Cohen, Freeman, & Thompson, 1997).

Dynamic decision-aid driven situation awareness. A corollary to the development of
adequate mental models of aid performance is the development of situation awareness required
for applying those models. Another training requirement, therefore, is to help users develop the
monitoring and observational skills necessary to track events that are diagnostic of decision aid
reliability.

Such situation awareness is relevant at every phase of decision aid use. For example, at
phase 2, users may need to monitor for information that could suggest the need for a change in
automation mode. If conditions occur that are correlated with relatively poor aid performance,
users may need to monitor the aid’s conclusions more closely or even switch to manual mode.
Similarly, at phase 3, users need to monitor for information signaling that more thorough
verification of an aid conclusion is appropriate.

Event trees help define the features that should be monitored for at each of these phases.
In addition, however, users may need to monitor for situations that call for critical thinking, for
example, when the degree of novelty or uncertainty in the situation suddenly increases. By
definition, such situations cannot be anticipated ahead of time in an event tree.

Interaction strategies. The concept of differentiated, context-specific trust implies the
relevance of a wide range of interaction strategies other than simply accepting or rejecting the
decision aid as a whole. Such strategies represent different ways of blending the strengths of the
aid and the user. For example, the following are among the strategies for which users of the
Battle Position Planner have been trained:

•  Monitor the aid’s conclusions / verify in detail those which seem suspect.
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•  Constrain the aid’s conclusions in advance, e.g., by ruling out certain
geographical areas.

•  Monitor for conditions in which different factors become more or less important,
and adjust the corresponding weights or thresholds that the aid used to arrive at its
conclusions.

•  Generate your own solution and let the aid evaluate it.
Choosing among interaction strategies. Decisions about which interaction strategy to

adopt must be made quickly. Otherwise, users will incur the risks of delay without any of the
benefits. For example, thinking in phase 3 about whether or not to verify an aid’s conclusion can
take time away from actually doing so. Or the time spent thinking in phase 2 about whether to
select a more automated aiding mode may rob users of the advantage of automation. The
premium on speed increases as the temporal scope of the decision decreases. Thus, the
verification decision at phase 3 must be made more quickly than an automation mode decision at
phase 2.

The goal of training is to sensitize users to patterns of cues that can be quickly and
intuitively recognized. Such patterns (rather than decision tree models) are the real content of
training. Benchmark models (such as Figure 8) are a valuable tool for identifying the elements of
the patterns to which users should be sensitive, and the manner in which they should respond to
them. We saw in the previous sections that such patterns can be simply characterized in terms of
uncertainty, time stress, and stakes.

Training Tools
Scenarios and feedback. Event tree representations are useful in the construction of

training scenarios and the design of feedback. The sequence of significant observations regarding
aid performance that is represented in the event tree can serve as the basis for the design of
scenarios that vary the features of the system, mission, task, and/or aid conclusion. In
conjunction with probabilities, such event trees can be used to generate a population of scenarios
with controlled statistical properties, e.g., concerning the chance of success with the aid under
various conditions.

Such scenarios afford an opportunity to observe the effects of significant events on a
users’ assessments of trust and users’ interaction decisions (such as selection of automation
mode or acceptance/rejection of an aid conclusion). Debriefings can use event tree
representations to provide specific feedback regarding trainee’s performance with respect to
features of the event tree that they failed to respond to or may have responded to inappropriately.

Benchmark models can be used to set up a series of training scenarios in which different
reliance decisions are appropriate. Such scenarios can then be used to provide practice and
feedback to decision aid users in making appropriate reliance decisions.

Figure 9 through Figure 12 show how a set of training scenarios for phase 3 verification
decisions might be generated by systematically manipulating two of the three key variables —
time stress and stakes. For this example, we have kept trust constant, at .4 chance that the aid’s
recommendation is correct. The aid has recommended that a contact be engaged. Stakes are
varied for the upper bound, by manipulating the mix of friendlies and enemy non-targets, thus
affecting the expected cost of a mistaken engagement. Time stress is varied by manipulating the
rate of increase in the danger of being targeted as the user spends more time unmasked.
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Figure 9. Scenario in which there is a large proportion of friendlies relative to enemy non-targets,
producing high stakes of incorrectly accepting the aid’s recommendation to engage. The probability of
being targeted by enemy platforms is low, but increases with time. Trust is highly uncertain, at .4. The
result is a significant amount of time (from time 1 to time 4) spent verifying the aid’s recommendation to
engage. Finally, the cost of remaining unmasked leads to a decision (in this case, not to engage).
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Figure 10. Scenario in which the low proportion of friendlies relative to enemy non-targets leads to a low
threshold for engagement. Even though time stress is low (as in the previous example), less time is spent
verifying the aid’s recommendation (from time 1 to time 2) because of the low cost of an error. A
relatively quick decision is made to engage.

In these scenarios, the user (or trainee) must decide not only what to do — i.e., whether
to engage or not to engage a contact — but how long to wait before doing it. In two of the
scenarios (Figure 10 and Figure 12), the appropriate action is to accept the aid’s recommendation
and engage, while in the other two (Figure 9 and Figure 11), the appropriate action is to reject the
aid’s recommendation and not to engage. The appropriate time spent verifying the aid’s
recommendation varies from 3 units (in Figure 9) to 1 unit (in Figure 10 and Figure 11) to 0 units
(in Figure 12). Trainees can be evaluated and given feedback on both dimensions, the
engagement decision and the time taken to make it. Exercises of this kind can help maintain
skills in the primary task, while enhancing the ability to interact effectively with a decision aid.
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Figure 11. Scenario in which the cost of a mistaken engagement is high, due to a high proportion of
friendlies. However, time stress is also high, due to a rapid increase in the chance of being targeted with
time spent unmasked. This results in a relatively early decision, in this case not to engage.
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Figure 12. Scenario in which the cost of a mistaken engagement is low (due to low proportion of
friendlies) and time stress is high (due to rapidly increasing chance of being targeted). The result is no
time spent verifying aid’s recommendation, and an immediate decision to accept the recommendation to
engage.

In the above examples, the upper and lower bounds were independent of trust in the aid’s
conclusion, and trust remained constant. As Figure 13 illustrates, however, neither of these
conditions is necessary. In this example, trust again starts at .4. However, in verifying the aid’s
recommendation to engage, the user finds evidence that supports the aid’s identification of the
contact as hostile. As the user becomes increasingly convinced that the contact is hostile, there is
also a rise in the chance of being targeted. In short, time stress increases along with trust. The
result is a somewhat earlier decision to engage the target, as compared with Figure 9.
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Figure 13. Scenario in which trust in the aid’s identification of the contact as hostile increases, bringing
with it an increase in time stress due to the expectation of being targeted. The result is a somewhat earlier
decision to engage than in Figure 9, which is otherwise based on the same underlying parameters.

4. DISCUSSION AND RELATIONSHIP TO PREVIOUS WORK ON TRUST
Recent research by Muir, Moray, Lee and others has pioneered the application of the

concept of trust to the human use of automation. Muir (1987, 1994) introduced a multi-
dimensional definition of trust. Muir and Moray (1987) described a non-obtrusive method for
eliciting subjective assessments of trust from users. Lee and Moray (1994) and Muir and Moray
(1996) showed that such assessments of trust could be correlated with subjects’ use of
automation. Nevertheless, this work, as it stands, has shortcomings both in clarity and  in the
completeness with which it makes distinctions that are required for effective application to
training. APT was developed to address these shortcomings.

Muir’s (1987, 1994) definition of trust in automation borrows from and integrates two
models of trust among humans. The first dimension of trust (Barber, 1983; shown in the first
column of Table 3) specifies three kinds of expectation: persistence of physical, biological, and
moral regularities, technical competence at skill-based, rule-based, and/or knowledge-based
levels (Rasmussen, 1983), and fiduciary responsibility, or the expectation that designers’ motives
are reliable.

The second dimension of Muir’s theory (from Rempel, Holmes, & Zanna, 1985; shown
in the second column of Table 3) is meant to be orthogonal to the first and describes the
evolution of trust with experience. Trust evolves from predictability of the machine’s behavior,
to dependability of the machine’s enduring dispositions, and finally to faith, or the conviction
that the machine will behave as expected in unknown situations.

Lee and Moray (1992) argued that the two dimensions in Muir’s theory were
complementary rather than orthogonal. The arrows in Table 3 show components that they equate
to one another. In particular, they regard faith and fiduciary responsibility as variants of the same
concept. Both refer to the basis for trust in situations where the user has little experience with the
automation and must fall back on expectations of underlying motives and intentions of the
designer. Similarly, Lee and Moray merge the concepts of predictability and technical
competence, claiming that each refers to “stable and desirable behavior or performance.” Finally,
Lee and Moray map Muir’s conceptualization onto a classification of aspects of trust by Zuboff
(1988; shown in the third column of Table 3). Zuboff’s trial-and-error experience is equated to
predictability and technical competence. Zuboff’s understanding is equated to dependability.
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Zuboff’s leap of faith is equated to faith, and hence, to fiduciary responsibility.
Confusion regarding the distinctiveness of these concepts is a symptom, we think, of their

lack of clarity and the absence of unifying principles in Muir’s framework. Moreover, there are
other, highly significant distinctions that Muir neglects or fails to make at all. These additional
distinctions are crucial if trust is to be differentiated by context and by temporal scope, and thus
support a variety of user interaction decisions at different phases of aid use. APT is intended to
capture this more differentiated conception of trust in a systematic and clear way.

Table 3. The first two columns represent Muir’s two-dimensional model of trust. Arrows link concepts in
Muir’s and Zuboff’s models that Lee & Moray believe to be equivalent.

Types of expectation
(Barber)

Basis of expectation (Rempel
et al.)

Aspects of trust (Zuboff)

Persistence

Physical

Biological

Social

Predictability (of acts) Trial & error experience

Competence

Skill-based

Rule-based

Knowledge-based

Dependability (of
dispositions)

Understanding

Fiduciary responsibility Faith Leap of faith

Table 4 compares the first dimension in Muir’s framework to corresponding elements of
APT. It is not at all clear in what sense persistence, competence, and fiduciary responsibility are
supposed to be different “types of expectation,” much less a complete classification of all
possible types of expectation. As indicated in Table 4 (second column), persistence refers to one
kind of temporal scope of a trust assessment, competence to one sort of grounds for a trust
assessment, and fiduciary responsibility to one kind of backing for a trust assessment. Rather
than forming a single dimension, each “type of expectation” is thus better regarded as part of a
separate dimension, or set of distinctions, pertaining to trust.

More importantly, these distinctions are not adequately explored in Muir’s model. In
particular, as shown in the third column of Table 4, a more differentiated conception of trust
requires judgments over shorter temporal scopes than persistence for all time, requires finer
discriminations than skill-based, rule-based, and knowledge-based competencies, and relies on
other sources of knowledge than assumptions of fiduciary responsibility.

In her second dimension, Muir represents the evolution of trust with experience as a
progression from predictability to dependability to faith. This progression seems to presuppose
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only good news about the performance of the aid. The value-laden terminology (dependability,
faith) precludes the possibility that distrust might also evolve as a user acquires experience with
a system. More importantly, it does not allow for the possibility that conditions of trust and
distrust might become better differentiated by a user with experience. If the user is fortunate, the
aid will perform well under most or even all conditions, but this is not necessarily so. If not, the
user may have to learn conditions of both good and bad performance, i.e., increase the resolution
of his or her trust judgments.

As indicated in Table 5, Muir’s second dimension is a hybrid of completeness and trust.
It thus confounds consistency and desirability in system behavior. APT has three basic metrics
for trust, rather than one: Trust itself (i.e., the context-specific chance of successful system
performance), completeness of the grounds and backing of the trust assessment, and the
reliability of the trust assessment. APT allows for completeness and reliability to increase with
experience, without begging the question of whether trust itself increases or decreases, or simply
becomes more differentiated by context.

Note that APT clarifies some of the distinctions originally made by Muir that Lee and
Moray found obscure. For example, fiduciary responsibility and faith both involves assumptions,
but are otherwise quite different. Fiduciary responsibility (Table 4) is a specific sort of backing
for an argument about trust, involving assumptions (about the designer’s motives) in the absence
of other knowledge. Faith (Table 5) appears to be a high level of trust combined with
completeness of backing for the assessment, based on extrapolation from a base of extensive
knowledge about system performance.

The three aspects of trust in Zuboff’s model map onto different sources of knowledge, or
backing, for a trust assessment: trial and error experience with a decision aid, understanding of
the aid’s design, and “leap of faith” (i.e., making assumptions to fill gaps in experience and
design knowledge). Other sorts of backing, and finer discriminations among sorts of backing,
might sometimes be important, however, such as talking to other users, basing expectations on
analogies with more familiar types of systems, and different types of assumptions (e.g.,
projecting one’s own traits into the decision aid, or making worst case rather than best case
assumptions about designers).

In sum, APT is rich enough to capture all the distinctions made by Muir and Zuboff, as
well as many others they did not make. However, APT is simple and clear enough to incorporate
all these distinctions within a single integrated framework, based on arguments about expected
system performance.
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Table 4. The first dimension of Muir’s framework, interpreted within APT.

Types of expectation
(Barber)

Corresponding element of
APT

Distinctions omitted by Muir’s
model

Persistence

Physical

Biological

Social

Persistence represents a prior
bias regarding the
trustworthiness of very broad
classes of systems (physical,
biological, and social). Thus, it
involves the longest possible
temporal scope of trust
judgments, and corresponds to a
phase of decision aid use prior
to knowing anything about a
decision aid other than that it is
a physical system used by a
biological system within a
social organization.

More differentiated trust
assessments involve more
limited temporal scope, and
appear to have more relevance to
decision aid use than highly
generalized biases. For example,
Muir’s model omits trust in a
particular aid over the span of its
existence, trust in a particular aid
during a particular type of
mission or task, and trust in a
specific aid conclusion.

Competence

Skill-based

Rule-based

Knowledge-based

Judgments of competence
simply mean that the type of
task undertaken by a decision
aid can form part of the grounds
for assessing trust. For example,
a particular system may have a
better chance of successful
performance in rule-based tasks
than in knowledge-based tasks.

This is only one of many
variables that can affect
predictions of system
performance. Far more
differentiated judgments are
possible. For example, a medical
expert system might be better for
diagnosing infectious diseases
than pulmonary disorders; a
planning aid might be less
trustworthy when a particular
factor, e.g., rotorwash, is
important; and so on.

Fiduciary responsibility Fiduciary responsibility
involves making assumptions
about the good motives of
system designers. As such, it is
a sort of backing, or source, for
trust judgments. In the absence
of more direct experience with
an aid, users might have to fall
back on such assumptions.

Fiduciary responsibility is only
one sort of assumption users
might make (e.g., they might
assume the worst regarding the
designers’ motives or
competence). In addition,
assumptions are only one kind of
backing for a trust assessment.
Other sorts of backing include
direct experience with the aid,
talking with other users,
analogies to other kinds of aids,
and design knowledge.
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Table 5. The second dimension of Muir’s model, interpreted within APT.

Basis of expectation
(Rempel et al.)

Corresponding element of
APT

Distinctions omitted by
Muir’s model

Predictability (of acts) Low to moderate
completeness, high trust: The
aid has been observed or is
understood in a limited range
of conditions and has been
found to perform well.

Dependability (of
dispositions)

Moderate to high
completeness, high trust. The
aid has been observed or is
understood in a wider range
of potentially degrading
conditions and has been found
to perform well.

Faith Highest completeness, high
trust. The aid has been
observed or is understood in
so many conditions and found
to perform well that it is
inferred / assumed to perform
well everywhere.

As completeness increases,
more and more conditions of
performance are observed, but
overall trust may either increase
or decrease.
The resolution of trust
assessments, however, will
increase as the user
differentiates conditions of good
and bad performance and makes
more specialized assessments.

Reliability and calibration may
also increase with experience,
independently of whether trust
increases or decreases.

One further issue worth noting is the relationship between trust in a system and
predictions of system performance. In Muir’s framework (e.g., Muir, 1994, Figure 3), there is a
one-to-one relationship between trust and expected automation performance. Because of this
one-to-one relationship, there is no benefit in regarding trust as a separate intervening variable,
distinct from expected automation performance itself. Simplicity and clarity are furthered by
regarding them as one and the same.

Moreover, by treating trust as a measure of uncertainty regarding system performance,
we gain the systematic advantages of probability theory over an ad hoc measure of trust. As we
have seen, we can use the probabilistic aspect of trust to generate training scenarios based on
event trees, to explicate qualitative considerations in choosing an interaction strategy, and to
develop feedback.

Most importantly, APT provides a single, unified framework in which user assessments
of trust, and user decisions about interaction with an aid, can be studied and trained at any stage
of decision aid use, and under a wide variety of different conditions.
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